Towards a Perceptual Quality Metric for Computer-Generated Images

Pierre Boulenguez Boris Airieau Mohamed-Chaker Larabi Daniel Meneveaux

XLIM Lab., SIC Dept., Poitiers, France

Electronic Imaging 2012

Computer-generated images (CGIs)

scientific visualisation;

- scientific visualisation;
- electronic gaming;

- scientific visualisation;
- electronic gaming;
- lighting engineering;

- scientific visualisation;
- electronic gaming;
- lighting engineering;
- ...

Computer-generated images (CGIs)

- scientific visualisation;
- electronic gaming;
- lighting engineering;
- ...

Physically Based Rendering

Computer-generated images (CGIs)

- scientific visualisation;
- electronic gaming;
- lighting engineering;
- ...

Physically Based Rendering

Geometrical/wave/quantum optics

Computer-generated images (CGIs)

- scientific visualisation;
- electronic gaming;
- lighting engineering;
- ...

Physically Based Rendering

Geometrical/wave/quantum optics, but:

Computer-generated images (CGIs)

- scientific visualisation;
- electronic gaming;
- lighting engineering;
- ...

Physically Based Rendering

Geometrical/wave/quantum optics, but:

exhaustive simulation impossible;

Computer-generated images (CGIs)

- scientific visualisation;
- electronic gaming;
- lighting engineering;
- ...

Physically Based Rendering

Geometrical/wave/quantum optics, but:

- exhaustive simulation impossible;
- complexity reducing assumptions!

Classical Assumptions

ambiant term;

- ambiant term;
- diffuse/specular scattering;

- ambiant term;
- diffuse/specular scattering;
- trichromatic;

- ambiant term;
- diffuse/specular scattering;
- trichromatic;
- o ...

Classical Assumptions

- ambiant term;
- diffuse/specular scattering;
- trichromatic;
- ...

Compromize?

Classical Assumptions

- ambiant term;
- diffuse/specular scattering;
- trichromatic;
- ...

Compromize?

 $\frac{\mathsf{Complexity\ reduction}}{\mathsf{Quality\ reduction}}$ ratio of a given assumption.

Classical Assumptions

- ambiant term;
- diffuse/specular scattering;
- trichromatic;
- ...

Compromize?

 $\frac{\text{Complexity reduction}}{\text{Quality reduction}}$ ratio of a given assumption.

Problem

Classical Assumptions

- ambiant term;
- diffuse/specular scattering;
- trichromatic;
- ...

Compromize?

Problem

No metric to quantify the perceptual quality of a CGI!

Objective function ${\mathcal M}$

Objective function ${\mathcal M}$

$$Q = \mathcal{M}(C_1, \ldots, C_n)$$

• \mathcal{M} relates:

Objective function ${\mathcal M}$

$$Q = \mathcal{M}(C_1, \ldots, C_n)$$

- \bullet $\mathcal M$ relates:
 - \bullet the overall perceptual quality Q,

Objective function \mathcal{M}

$$Q = \mathcal{M}(C_1, \ldots, C_n)$$

- \mathcal{M} relates:
 - the overall perceptual quality Q,
 - to the perceived qualities of the criteria C_1, \ldots, C_n .

Objective function \mathcal{M}

$$Q = \mathcal{M}(C_1, \ldots, C_n)$$

- \mathcal{M} relates:
 - \bullet the overall perceptual quality Q,
 - to the perceived qualities of the criteria C_1, \ldots, C_n .

Assessment of Q and C_1, \ldots, C_n

Objective function \mathcal{M}

$$Q = \mathcal{M}(C_1, \ldots, C_n)$$

- \mathcal{M} relates:
 - the overall perceptual quality Q,
 - to the perceived qualities of the criteria C_1, \ldots, C_n .

Assessment of Q and C_1, \ldots, C_n

psychovisual experiments;

Objective function ${\cal M}$

$$Q = \mathcal{M}(C_1, \ldots, C_n)$$

- M relates:
 - the overall perceptual quality Q,
 - to the perceived qualities of the criteria C_1, \ldots, C_n .

Assessment of Q and C_1, \ldots, C_n

- psychovisual experiments;
- automated measurement (work in progress).

Constraints on the Criteria

Constraints on the Criteria

every possible aspect of Q;

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;
- automatically measurable.

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;
- automatically measurable.

Five Retained Criteria

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;
- automatically measurable.

Five Retained Criteria

Color Bleeding

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;
- automatically measurable.

Five Retained Criteria

- Color Bleeding
- Shadows

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;
- automatically measurable.

- Color Bleeding
- Shadows
- Noise

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;
- automatically measurable.

- Color Bleeding
- Shadows
- Noise
- 4 Aliasing

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;
- automatically measurable.

- Color Bleeding
- Shadows
- Noise
- 4 Aliasing
- Oynamic

Constraints on the Criteria

- every possible aspect of Q;
- intuitive:
- automatically measurable.

Five Retained Criteria

- Color Bleeding =;
- Shadows
- Noise
- 4 Aliasing
- Openable
 Openable

Color Bleeding

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;
- automatically measurable.

Five Retained Criteria

- Color Bleeding =;
- Shadows ;;
- Noise
- 4 Aliasing
- Openamic

Shadows

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;
- automatically measurable.

Five Retained Criteria

- Color Bleeding =;
- Shadows ;;
- Noise ();
- 4 Aliasing
- Openamic

Noise

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;
- automatically measurable.

Five Retained Criteria

- Color Bleeding =;
- Shadows ;;
- Noise ();
- Aliasing [III];
- Oynamic

Aliasing

Constraints on the Criteria

- every possible aspect of Q;
- intuitive;
- automatically measurable.

- Color Bleeding =;
- Shadows
 |
- Noise ();
- Aliasing [III];

Seven Rendering Methods

4 Ambient Term;

- Ambient Term;
- 2 Ambient Occlusion;

- Ambient Term;
- 2 Ambient Occlusion;
- Environment Gather;

- 4 Ambient Term;
- Ambient Occlusion;
- Environment Gather;
- Open Photon Streaming;

- 4 Ambient Term;
- Ambient Occlusion;
- Environment Gather;
- Open Photon Streaming;
- Opening Property Property (Inc.)
 Opening Property (Inc.)

- 4 Ambient Term;
- 2 Ambient Occlusion;
- Environment Gather;
- Open Photon Streaming;
- Opening Photon Mapping;
- PM + Final Gather;

Seven Scenes

- 4 Ambient Term;
- 2 Ambient Occlusion;
- Environment Gather;
- Open Photon Streaming;
- Opening Photon Mapping;
- O PM + Final Gather:
- Metropolis Light Transport.

Seven Scenes

Seven Rendering Methods

- 4 Ambient Term;
- 2 Ambient Occlusion;
- Environment Gather;
- Photon Streaming:
- Opening Photon Mapping;
- O PM + Final Gather:
- Metropolis Light Transport.

Test Set

7 Scenes \times 7 Methods \rightarrow 49 CGIs.

Controled Environment

Controled Environment

• Display [30" LCD/2,560 \times 1,600/calibrated/d = 4h];

Controled Environment

- Display [30" LCD/2,560 \times 1,600/calibrated/d = 4h];
- Lighting [4 D50 neons/64 lx].

Controled Environment

- Display [30" LCD/2,560 \times 1,600/calibrated/d = 4h];
- Lighting [4 D50 neons/64 lx].

Controled Environment

- Display [30" LCD/2,560 \times 1,600/calibrated/d = 4h];
- Lighting [4 D50 neons/64 lx].

Participants

• Gender [21 0 /9 9];

Controled Environment

- Display [30" LCD/2,560 \times 1,600/calibrated/d = 4h];
- Lighting [4 D50 neons/64 lx].

Participants¹

- Gender [21 0'/9 9];
- Age [mean: 31.4 y./sd: 7.3 y./min: 23 y./max: 51 y.];

Controled Environment

- Display [30" LCD/2,560 \times 1,600/calibrated/d = 4h];
- Lighting [4 D50 neons/64 lx].

- Gender [21 0'/9 9];
- Age [mean: 31.4 y./sd: 7.3 y./min: 23 y./max: 51 y.];
- Vision [visual acuity/color blindness];

Controled Environment

- Display [30" LCD/2,560 \times 1,600/calibrated/d = 4h];
- Lighting [4 D50 neons/64 lx].

- Gender [21 0'/9 9];
- Age [mean: 31.4 y./sd: 7.3 y./min: 23 y./max: 51 y.];
- Vision [visual acuity/color blindness];
- CG Knowledge [quiz/non-experts];

Controled Environment

- Display [30" LCD/2,560 \times 1,600/calibrated/d = 4h];
- Lighting [4 D50 neons/64 lx].

- Gender [21 0'/9 9];
- Age [mean: 31.4 y./sd: 7.3 y./min: 23 y./max: 51 y.];
- Vision [visual acuity/color blindness];
- CG Knowledge [quiz/non-experts];
- Training [normalized speech/questions].

Test per se • random order;

- random order;
- assessment of:

- random order;
- assessment of:
 - \rightarrow overall quality Q,

- random order;
- assessment of:
 - \rightarrow overall quality Q,
 - \rightarrow five criteria.

- random order;
- assessment of:
 - \rightarrow overall quality Q,
 - \rightarrow five criteria.
- continuous scale (Poor & Excellent);

- random order;
- assessment of:
 - \rightarrow overall quality Q,
 - \rightarrow five criteria.
- continuous scale (Poor & Excellent);
- $\bullet \approx 1$ hour.

- random order;
- assessment of:
 - \rightarrow overall quality Q,
 - → five criteria.
- continuous scale (Poor & Excellent);
- $\bullet \approx 1$ hour.

Radar plot with confidence intervals

Criteria/quality vs Methods (distributions)

Linear regression of ${\cal M}$

$$\begin{aligned} \textit{Q} = \textbf{0.40} \; \textit{C}_{\sf dynamic} + \textbf{0.27} \; \textit{C}_{\sf shadows} + \textbf{0.18} \; \textit{C}_{\sf noise} \\ \textbf{0.07} \; \textit{C}_{\sf color \; ble} + \textbf{0.03} \; \textit{C}_{\sf aliasing} \; - \textbf{0.06} \end{aligned}$$

Linear regression of ${\cal M}$

$$\begin{aligned} \textit{Q} = \textbf{0.40} \; \textit{C}_{\sf dynamic} + \textbf{0.27} \; \textit{C}_{\sf shadows} + \textbf{0.18} \; \textit{C}_{\sf noise} \\ \textbf{0.07} \; \textit{C}_{\sf color \; ble} + \textbf{0.03} \; \textit{C}_{\sf aliasing} \; - \textbf{0.06} \end{aligned}$$

Discussion

- Overall quality mostly dependant on:
 - + Dynamic, Shadows, Noise,
 - Color Bleeding, Aliasing;

Linear regression of ${\cal M}$

$$\begin{aligned} \textit{Q} = \textbf{0.40} \; \textit{C}_{\sf dynamic} + \textbf{0.27} \; \textit{C}_{\sf shadows} + \textbf{0.18} \; \textit{C}_{\sf noise} \\ \textbf{0.07} \; \textit{C}_{\sf color \; ble} + \textbf{0.03} \; \textit{C}_{\sf aliasing} \; - \textbf{0.06} \end{aligned}$$

Discussion

- Overall quality mostly dependant on:
 - + Dynamic, Shadows, Noise,
 - Color Bleeding, Aliasing;
- Similar results with three criteria.

Synthesis

Synthesis

Perceptual Quality Metric Adapted to CGIs;

Synthesis

- Perceptual Quality Metric Adapted to CGIs;
- Five Criteria Identified;

Synthesis

- Perceptual Quality Metric Adapted to CGIs;
- Five Criteria Identified;
- Assessed by Psychovisual Experiments (49 CGIS);

Synthesis

- Perceptual Quality Metric Adapted to CGIs;
- Five Criteria Identified:
- Assessed by Psychovisual Experiments (49 CGIS);
- (Dynamic, Shadows, Noise) / (Color Bleeding, Aliasing).

Future work

Synthesis

- Perceptual Quality Metric Adapted to CGIs;
- Five Criteria Identified;
- Assessed by Psychovisual Experiments (49 CGIS);
- (Dynamic, Shadows, Noise) / (Color Bleeding, Aliasing).

Future work

Automated Measurement of the Criteria;

Synthesis

- Perceptual Quality Metric Adapted to CGIs;
- Five Criteria Identified;
- Assessed by Psychovisual Experiments (49 CGIS);
- (Dynamic, Shadows, Noise) / (Color Bleeding, Aliasing).

Future work

- Automated Measurement of the Criteria;
- Perceptual Quality Metric Assessment Tool.