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Criteria for variable selection with dependence

Aurélie Boisbunon Stéphane Canu Dominique Fourdrinier

1 Context

Most theoretical tools for model selection rely on one main assumption: the independence of noise
components. However, in many real regression examples this assumption is too strong and does
not fit well the reality (see for instance the discussion on this issue in [1] and references therein).
A way to take dependence into account is to model noise as a multivariate spherically symmetric
random variable. This general framework includes the well-known multivariate Student and Kotz
distributions. Our work consists in integrating this idea into model selection problems.

The problem of model selection implies three steps, as discussed in [2]: (a) the definition of a way
to explore models, (b) the estimation of parameters for each model, and (c) the evaluation of the
models. If we consider the example of Lasso [3], the L;-penalization solves both step (a), with the
regularization path algorithm [4], and step (b) simultaneously, while step (c) is usually performed
with Mallows’ C}, [5] or cross-validation [6].

We propose a new procedure for step (c) based on loss estimation. Loss estimation is a data-driven
approach closely related to Stein’s Unbiased Risk Estimation (SURE) [7], and has been extended to
spherically symmetric distributions (see for instance [8]). Our estimator of loss is of the following

form:
dp(y) = do(y) — p(y), (1)

where y € R”™ corresponds to the data, do(y) is an unbiased estimator of loss (close to Mallows C,,
and AIC [9] in the Gaussian case) and p(y) is a correction function. We will give in the sequel some
details on how to build p as well as an explicit formula in a more specific context.

Note that our procedure should not be considered alone. Indeed, as efficient as it can be, it may
not give satisfactory results if step (a) and (b) are not well handled. For instance, methods such
as Lasso give an interesting and low-computational solution for step (a) exploring models through
a regularization path, but not all of them propose good estimates of the parameters (see [10] for
instance). We suggest to use Firm Shrinkage [10], which leads to the same model exploration as
Lasso for step (a) and whose estimates for step (b) are much less biased than those induced by
the L-penalty. The choice of a regularization path for step (a) is driven by the increasing size of
datasets, but we will discuss the limitations induced by searching only on a small number of models.

2 Loss estimation as a variable selection criterion

We focus our study on the linear regression model
Y =XB+¢, )

where Y is a random vector in R", X is a fixed design matrix containing p explanatory variables,
B € RP is the unknown regression coefficient, and ¢ is the error vector in R” with mean zero. We
assume that the distribution of ¢ is spherically symmetric. In the case where it admits a density,
this one is of the form ¢ + f(|| ¢ ||?) for a given function f mapping from R into R, with ||.|
the Euclidean norm. What characterizes our work is that we do not need to specify the form of f,
thus our results are more robust in terms of distribution. Another important feature of this family
of distributions is the dependence between the components of ¢, with the exception of the Gaussian
distribution. However, €; and €; are not correlated, but correlation could be handled by the more




general elliptical case. The family of spherically symmetric distributions covers, among others, the
well known Student and Kotz distributions.

Model selection includes the specific problem of variable selection. In order to address this problem,
we assume that only a small subset of variables in X are relevant to explain Y. The literature on this
issue, corresponding to step (a), covers three main ways to perform the selection: the first one is
to consider all possible subsets, leading to an exhaustive exploration, like in Subset Selection; the
second one is to assess the significativity of each variable through statistical tests in order to decide
whether to keep it or drop it, as is done in Forward and Backward Selection; the last one, which
has been widely studied in the last 20 years, is the construction of a regularization path adding one
variable at a time with respect to some criterion. We can cite from this latter approach methods such
as the LARS algorithm for Lasso [3, 4] or Firm Shrinkage [10]. These methods generally depend
on some hyperparameter tuning the level of sparsity, reducing the problem of variable selection to
the optimization of this hyperparameter. The huge number of comparisons of the first two ways
discussed here has led researchers to focus their interest on regularization path methods, especially
in a context of large datasets.

In the sequel, we consider the Firm Shrinkage estimator, a method developed by Bruce and Gao in
1997 that reduces the large bias of Lasso. This way, Firm Shrinkage achieves a good estimation
of parameter /3 and shares a low computational cost with Lasso. It is an arguable choice since
there exist other Lasso-type methods with low bias, but it turns out to perform quite well on our
simulations. Nevertheless, a comparison of such methods in terms of selection and estimation could
lead to even better results. Note that Firm Shrinkage requires X to be orthogonal. Its estimator of 3
is

) 0 BE] < A
B =9 a(BlS = Asign(B19))/(a—1) A <[BFF] <ar 3)
BES 1BE9] > ax

where BLS is the least-squares solution, A > 0 is the hyperparameter tuning the sparsity, anda > 1 a
hyperparameter tuning the bias. We set a to 2 in order to avoid the estimation of a second parameter
and because it yields good results (see [11]).

We now define more precisely our procedure of selection. Loss estimation is a decision theory tool
originally designed for the problem of estimating the location parameter p of a distribution P,
like the multivariate Gaussian (see for instance [7, 12]). It aims at evaluating the quality of some
estimator of y by estimating its loss function L(fi, ) through the observations only, the real loss
L(fa, 1v) being inaccessible because of its dependence on the unknown parameter u. The idea of loss
estimation is closely related to Stein’s Unbiased Risk Estimation (SURE), but the main difference
lies in the fact that it does not only consider unbiased estimates. Unbiasedness is indeed not always
an interesting property, and potential improvement can be achieved in terms of quadratic risk by
adding a bias. We formalize this idea as follows. Let dy be an unbiased estimator of loss L(fi, pt),
that is to say dy verifies the property E,, [do] = E, [L({, )], where E,, is the expectation with respect
to spherically symmetric distributions with location parameter p. We look for corrections p(y) in
(1) such that

Rpu(8p) = Eul(8, — Lt 1))?] = E,[(80 — p(y) — L(2, 1))°] < Eu[(o — L(f, )] = Ru(&a’)
and with strict inequality at least for one value of ;1. A common loss for L is the quadratic loss
L(fi, ;1) = ||x — p|?, since it allows easy computations. It is also interesting to use this loss function
in combination with nearly unbiased estimators of y, like Firm Shrinkage for = X3, as it has a
high probability of reaching its minimum for the true model, as soon as this latter one belongs to the
set of models explored.

From now on we will restrict the study to the estimation of the quadratic risk of the Firm Shrinkage
estimator. The corrective estimator of loss is

8,(y) = do(y) — ply) 5)
where 2df
o= ="l = XBHIP + fly = XA (©6)

and p is a correction function. Note that the number of degrees of freedom for Firm Shrinkage is
df = k+#{i\ A < |BE%|] < aA}/(a — 1) with k the number of selected variables. We consider



correction functions of the form

p(y) = lly = XB"*|*(y) (7)
where y(y) is a twice weakly differentiable function. In particular, we study the function
T, N\2\ |, T T, \2 -t
Y(y) = C(’f I?fg({(qi D>\ lg yl <A+ () y) 11{|q;y\9}) ; (8)
B J<p

where ¢; corresponds to the it column of matrix () in the QR decomposition of X. The constant
C leading to the lower approximate quadratic risk in (4) is

2p—2 —2k(k+1)/p+1074\2(n + 4)(n — 2p + 2df) /(n — p))

¢= (n—p+4)(n—p+6)

©))

3 Simulations

The following example is inspired by [13]: y is a vector of n = 40 observations from the ran-
dom variable Y, and X contains p = 5 explanatory variables. The regression coefficient J is set
to (2,0,0,4,0)T. The error vector ¢ is drawn from two different distributions with variance 1: the
Gaussian distribution, which is the usual assumption for most criteria, and the Student distribu-
tion with v = 4 degrees of freedom, corresponding to our assumption of spherical symmetry. We
replicate this error vector 5000 times, this way we obtain 5000 regularization paths.

The estimators of loss dy and ¢, are those described in (6) and (5) with the choices of the corrective
function in (7), (8) and (9). We compare their selection to the real quadratic loss L(ji, ) as well
as to the classical Akaike’s Information Criterion (AIC) and Schwarz’ Information Criterion (BIC)
with a Gaussian assumption, and the distribution-free leave-one-out cross-validation (LOOCV).

Tables 1 and 2 present for each method the empirical probabilities of selecting the subsets over the
5000 replicates. We iterated the experience ten times to estimate the means and standard deviations

shown in the tables. Only the ten most voted subsets are displayed.

Table 1: Empirical probabilities (%) of selection with Firm Shrinkage (Gaussian case).

Subset 5o 5o AIC BIC LOOCV L(f1, 1)
{4} 20.18 (0.59) 26.12(0.56) 20.18(0.59) 40.05(0.83) 14.42(16.18) 14.17 (0.43)
{14} 39.02(0.74) 44.41(0.60) 39.02(0.74) 39.37(0.49) 32.71(12.27) 54.29 (0.56)
{24} 2.09(0.22)  3.08(0.24)  2.09(0.22)  1.51(020) 3.66 (1.55  0.00(0.11)
{3.4} 2.11(021)  323(032)  2.11(021)  1.54(0.16)  3.17 (1.09)  0.00 (0.15)
{45} 205(0.13)  274(0.19)  2.05(0.13)  147(020) 3.60 (1.56)  0.00 (0.07)

{124} 757(0.34)  133(0.15)  7.57(0.34)  3.66 (026)  5.68 (3.06)  7.46(0.33)

{134} 783(0.40)  1.30(0.13)  7.83(040) 3.73(0.19) 693 (299)  7.63(0.32)

{145} 773(040)  2.13(0.20)  7.73(0.40) 3.73(036) 649 (3.73)  7.87 (0.27)

{1234}  2.62(020) 5.03(0.39) 2.62(0.20) 0.00(0.12)  2.56 (1.35)  1.96 (0.22)
{12345}  134(0.13) 3.75(023) 134(0.13) 0.00(0.04) 11.58 (6.84)  1.04(0.18)
Subset 5o 5, AIC BIC LOOCV L(f1, 1)

0 9.94(0.65)  8.87(0.43)  9.94(0.65) 20.90(0.74)  7.21 (3.12) 14.62 (0.45)
{4} 1577 (0.37)  19.11(0.29) 1577 (0.37) 2433 (0.45) 12.63 (8.99) 14.88 (0.50)
{14} 3208(0.74) 38.01(0.62) 32.08(0.74) 35.15(0.82) 26.35(11.77) 46.08 (0.78)

{124} 6.08(0.21)  0.00(0.14)  6.08(0.21) 274(0.16) 582 (2.93)  4.65(0.21)

{134} 597(0.19)  0.00(0.19)  597(0.19) 2.75(027) 5.62 (3.48)  4.72(0.20)

{145} 621(0.36)  1.63(0.22)  621(0.36) 2.83(020) 658 (339)  4.50(0.16)

{1234}  2.12(0.19) 4.03(029) 2.12(0.19)  0.00(0.08) 2.84 (1.47)  1.34(0.13)
{1245} 201025 223(023) 201(0.25 0.00(0.06) 2.64 (1.14)  1.30(0.15)
{1345}  209(0.19) 2.15(0.19) 2.09(0.19)  0.00(0.08) 2.67 (1.19)  1.37(0.19)
{12345} 1.04(0.13) 3.10(0.16)  1.04(0.13)  0.00(0.05) 11.45 (3.47)  0.00(0.11)

Table 2: Empirical probabilities (%) of selection with Firm Shrinkage (Student case).



Here, we can see that the corrective estimator 0, selects the right model {1, 4} with higher probabil-
ity than the unbiased estimator ¢y and the classical methods even for the usual i.i.d. Gaussian case,
and is closer to the real loss results. Improvement might be even larger if we consider a more general
form of correction, like 6* = a(Jy — ||y — X375||*y) for instance, as was done in [13]. But the
most striking result is the low empirical probabilities of all the methods. The real loss L( /i, ;1) man-
ages to select the right subset only around half of the time, bounding from above the probability of
selection with our criterion. On the contrary, the results in [13] showed that systematic exploration
with subset selection leads to select {1, 4} with an empirical probability of 83% for their corrective
estimator (which is slightly different from the one in (1)), that is to say twice the probability obtained
with Firm Shrinkage. This important difference is a consequence of the regularization path, which
sometimes introduces irrelevant variables first and fails to select the right subset. It also explains the
selection by dg and AIC of subsets of size 3 containing the two relevant variables, with empirical
probabilities around 7%, or subsets of bigger size by 6, and LOOCV.

4 Discussion

We proposed a new data-driven procedure of model selection based on loss estimation and valid
for the whole family of spherically symmetric distributions, allowing dependence between noise
components. From this procedure, we derived a criterion for the Firm Shrinkage estimator, a regu-
larization path method with low bias, evaluated by a quadratic loss. In the experience we drove, this
criterion performs better than classical criterion like AIC, BIC and LOOCY, even under the usual
i.i.d. Gaussian assumption for the noise.

Note that this procedure can be applied to other estimators and loss functions, and this way it could
be adapted to problems such as classification or reinforcement learning.
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