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DENSITY ESTIMATES FOR SOLUTIONS TO ONE DIMENSIONAL

SDE’S AND BACKWARD SDE’S

OMAR ABOURA AND SOLESNE BOURGUIN

Abstract. In this paper, we give sufficient conditions for the solutions of stochastic
differential equations and backward stochastic differential equations to have a density
for which we give upper and lower estimates. In the case of backward SDEs, the density
estimates we derive are Gaussian.

1. Introduction

In [2], I. Nourdin and F.G. Viens have introduced sufficient conditions to prove the
existence of a density for a Malliavin differentiable random variable and to provide upper
and lower Gaussian estimates for this density.

This result has lead to several research papers, such as those by D. Nualart and L. Quer-
Sardanyons ([4], [5]), in which these authors applied Nourdin and Viens result to solutions
of quasi-linear stochastic partial differential equations and to a class of stochastic equations
with additive noise.

In this paper, we use Nourdin and Viens’s approach to prove that, under proper con-
ditions on the coefficients, each component of the solution (Xt, Yt, Zt) to a backward
stochastic differential equation





Xt = x0 +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs (1.1)

Yt = φ (XT ) +

∫ T

t

f (Xs, Ys, Zs) ds−
∫ T

t

ZsdWs (1.2)

has a density for which upper and lower Gaussian bounds can be derived. This implies to
study the diffusion equation (1.1) (which stands for itself) and provide upper and lower
bounds for its density on one hand, and the backward SDE (1.2) on an other hand.

Our paper is organized in two main parts, the first one dealing with diffusions and
the second one with backward SDEs. The question of the existence of a density for the
solution to an SDE of the type (1.1) and the properties of this density has been intensively
studied and we refer the reader to [3] for an extensive survey of the existing litterature
and results on this topic.

We establish that under a sign condition on σ and a growth condition on the Lie bracket
of b and σ (see Hypotheses (H1) and (H2)), (1.1) has a density for which upper and lower
estimates can be derived. We also study the same question in the backward SDEs setting,
where we consider equations of the type (1.2). These equations introduced in [6], which
are closely related with viscosity solution to PDEs, have been intensively studied and have
many applications in control theory and financial methods among others.
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The existence of the density for the random variable Yt at a fixed time t ∈ (0, T ), as well
as upper bounds for its tail behavior, have been proven by F. Antonelli and A. Kohatsu-
Higa [1], using a different approach (Bouleau-Hirsch Theorem). We retrieve Antonelli and
Kohatsu-Higa’s existence result for the density of Yt, and we also derive Gaussian estimates
for it. In order to provide (additionally to the existence result itself) estimates for the
density of Yt, we need to slightly strengthen the hypotheses of Antonelli and Kohatsu-Higa.

We also address the question of the existence of a density for the random variable Zt

as well as the possibility of deriving Gaussian estimates for it. This question has not been
solved in [1]. We need the same hypotheses as in the case of Yt, as well as additional ones,
since Zt can be expressed as a function of the Malliavin derivative of Yt.

In order to be self contained, we at first give an overview of some elements of Malliavin
calculus in Section 2, and the corresponding notations. In Section 3, we study the case of
a diffusion and give sufficient conditions for the density of the solution to exist and admit
upper and lower estimates (which need not be Gaussian, except in some particular cases).
Section 4 is dedicated to the backward SDE case and is organized in two subsections,
dealing respectively with the question of the existence of a density, as well as its Gaussian
upper and lower estimates for Yt and Zt.

2. Framework, main tools and notations

2.1. Elements of Malliavin calculus. Consider the real separable Hilbert space L2([0, T ])
and (W (ϕ), ϕ ∈ L2([0, T ])) an isonormal Gaussian process on a probability space (Ω,A, P ),
that is a centered Gaussian family of random variables such that E (W (ϕ)W (ψ)) =
〈ϕ,ψ〉L2([0,T ]). For any integer n ≥ 1, denote by In the multiple stochastic integral with
respect to W (see [3] for an extensive survey on Malliavin calculus). The map In is ac-
tually an isometry between the Hilbert space L2([0, T ]n) equipped with the scaled norm
1√
n!
‖ · ‖L2([0,T ]n) and the Wiener chaos of order n, which is defined as the closed linear

span of the random variables Hn(W (ϕ)) where ϕ ∈ L2([0, T ]), ‖ϕ‖L2([0,T ]) = 1 and Hn is
the Hermite polynomial of degree n ≥ 1, that is defined by

Hn(x) =
(−1)n

n!
exp

(
x2

2

)
dn

dxn

(
exp

(
−x

2

2

))
, x ∈ R.

The isometry of multiple integrals can be written as follows: for positive integers m,n,

E (In(f)Im(g)) = n!〈f, g〉L2([0,T ]n) if m = n,

E (In(f)Im(g)) = 0 if m 6= n.

It also holds that

In(f) = In
(
f̃
)

where f̃ denotes the symmetrization of f defined by

f̃(x1, . . . , xn) =
1

n!

∑

σ∈Sn

f(xσ(1), . . . , xσ(n)).

We recall that any square integrable random variable which is measurable with respect
to the σ-algebra generated by W can be expanded into an orthogonal sum of multiple
stochastic integrals

F =
∑

n≥0

In(fn) (2.1)

where fn ∈ L2([0, T ]n) are (uniquely determined) symmetric functions and I0(f0) = E [F ].

Let L be the Ornstein-Uhlenbeck operator defined by LF = −∑n≥0 nIn(fn) if F is given
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by (2.1). For p > 1 and α ∈ R we introduce the Sobolev-Watanabe space D
α,p as the

closure of the set of polynomial random variables (see (1.28) in [3]) with respect to the
norm defined by

‖F‖α,p = ‖(I − L)
α
2 F‖Lp(Ω),

where I represents the identity. We denote by D the Malliavin derivative operator that
acts on smooth functions of the form F = g(W (ϕ1), . . . ,W (ϕn)) (g is a smooth function
with compact support and ϕi ∈ L2([0, T ])) as follows:

DF =

n∑

i=1

∂g

∂xi
(W (ϕ1), . . . ,W (ϕn))ϕi.

The operator D is continuous from D
α,p into D

α−1,p
(
L2([0, T ])

)
. The adjoint of D is

denoted by δ and is called the divergence (or Skorohod) integral. It is a continuous
operator from D

α,p
(
L2([0, T ])

)
into D

α+1,p. More generally, we can introduce iterated
weak derivatives of order k. If F is a smooth random variable and k is a positive integer,
we set

Dk
t1,...,tk

F = Dt1Dt2 ...DtkF.

We have the following duality relationship between D and δ

E(Fδ(u)) = E〈DF, u〉L2([0,T ]) for every smooth F .

For adapted integrands, the divergence integral coincides with the classical Itô integral.
We will use the notation

δ(u) =

∫ T

0
usdWs.

Note that the following integration by parts relationship between D and δ holds

Dt(δ(u)) = ut +

∫ T

0
DtusdWs,

with u ∈ D
1,2(L2([0, T ])) such that δ(u) ∈ D

1,2.

2.2. Density existence and Gaussian estimates. In [2], Corollary 3.5, Nourdin and
Viens have given the following sufficient condition for a weakly differentiable random
variable to have a density with lower and upper Gaussian estimates.

Proposition 2.1. Let F be in D
1,2 and let the function g be defined for all x ∈ R by

g(x) = E
(
〈DF,−DL−1F 〉L2([0,T ])

∣∣∣F −E(F ) = x
)
. (2.2)

If there exist positive constants γmin, γmax such that, for all x ∈ R, almost surely

0 < γ2min 6 g(x) 6 γ2max

then F has a density ρ satisfying, for almost all z ∈ R

E|F −E(F )|
2 γ2max

exp

(
−(z −E(F ))2

2γ2min

)
6 ρ(z) 6

E|F −E(F )|
2 γ2min

exp

(
−(z −E(F ))2

2γ2max

)
.

Furthermore, Nourdin and Viens have also provided the following useful result, which
gives some rather explicit description of g(x). Recall that W =

(
W (φ), φ ∈ L2 ([0, T ])

)
.

Proposition 2.2. Let F be in D
1,2 and write DF = ΦF (W ) with a measurable function

ΦF : RL2([0,T ]) → L2([0, T ]). Then, if g(x) is defined by (2.2), we have

g(x) =

∫ ∞

0
e−u E

(
E′(〈ΦF (W ), Φ̃u

F (W )〉L2([0,T ])

)
|F −E(F ) = x

)
du,
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where Φ̃u
F (W ) = ΦF (e

−uW+
√
1− e−2uW ′), W ′ stands for an independent copy ofW , and

is such that W and W ′ are defined on the product probability space (Ω×Ω′,F ⊗F ′,P×P
′)

and E′ denotes the mathematical expectation with respect to P
′.

2.3. Notations. Let f be a twice differentiable function of two variables x and y. We

will use the following notations : ∂f
∂x

= fx,
∂f
∂y

= fy,
∂2f
∂x2 = fxx,

∂2f
∂y2

(x, y) = fyy,
∂2f
∂x∂y

= fxy,
∂2f
∂y∂x

= fyx. We will also use the following notation for the Lie bracket : [f, g] = fg′− gf ′.

In the whole paper, c and C will denote constants that may vary from line to line.

3. Density estimates for one dimensional SDEs

Consider the following one dimensional stochastic differential equation

Xt = x0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs, (3.1)

where x0 ∈ R, b and σ are appropriately smooth functions to ensure the existence and
uniqueness of solutions and (Wt)t≥0 is a standard Brownian motion in R. In this section,
we establish under what conditions the solution to (3.1) has a density for which upper and
lower estimates can be derived. Expect for some particular cases such as the Ornstein-
Uhlenbeck process, these estimates are not Gaussian and are defined on the support of
the density. We will start by giving the hypotheses we will be working with before stating
the main result of this section, i.e., the upper and lower estimates of the density of the
solution to (3.1).

3.1. Hypotheses and examples. We consider b and σ to be C2 Lipschitz functions,
which ensures the existence and uniqueness of solutions to (3.1). In addition to that, we
impose the following conditions:




H0 :

{
For every t > 0, σ(x) > 0 a.e. on the support of Xt

Moreover we suppose that supp(Xt) is an interval independent of t > 0
(3.2)

H1 : ∃ Ml ≥ 0, | [b, σ] | ≤Ml|σ|
H2 : ∃ Mσσ′′ ≥ 0, |σσ′′| ≤Mσσ′′

where [b, σ] denotes the Lie bracket of b and σ.

Remark 3.1. Hypothesis (H0) on the positivity of σ on the support of Xt is not a loss
of generality. In fact, we only need σ to keep the same sign on the support of Xt. The
case where σ is negative was included neither in the proofs nor in the hypotheses for
the sake of clarity and readability of the paper. However this case can be addressed
(without any further difficulties) by using the following transformations: σ → σ̃ := −σ
and W → W̃ := −W . After performing those tranformations, it suffices to consider X to
be the solution of

Xt = x0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ̃(Xs)dW̃s.

This brings the problem back to the above set of hypotheses and it can be dealt with by
the exact same arguments.

Here are some examples of coefficients b and σ satisfying hypotheses (H0) – (H2).

Example 3.2. Consider the particular case where (Xt)t≥0 is the drifted Brownian motion,
i.e. x0 = 0, b(x) = b and σ(x) = σ 6= 0. It is clear that [b, σ] = 0 = σσ′′, supp(Xt) = R,
and that hypotheses (H0) – (H2) are satisfied.



DENSITY ESTIMATES FOR SOLUTIONS TO SDE’S AND BSDE’S 5

Example 3.3. Consider the particular case where (Xt)t≥0 is an Ornstein-Uhlenbeck pro-
cess, i.e. b(x) = bx, b ∈ R and σ(x) = σ 6= 0 Thus, [σ, b] = bσ, σσ′′ = 0, supp(Xt) = R,
and hypotheses (H0) – (H2) are satisfied.

Example 3.4. Consider the particular case where (Xt)t≥0 is a geometric Brownian mo-
tion, i.e. x0 6= 0, b(x) = bx, b ∈ R and σ(x) = σx, σ 6= 0 with σx0 > 0. Thus,
[b, σ] = 0 = σσ′′, if x0 > 0 then supp(Xt) = [0,∞) and we suppose that σ > 0 (resp. if
x0 < 0, then supp(Xt) = (−∞, 0] and we suppose that σ < 0). The hypotheses (H0) –
(H2) are satisfied.

3.2. Main result (Existence and estimates for the density of X). The following
result provides upper and lower estimates for the solutions to (3.1).

Theorem 3.5. Consider equation (3.1) and let G be an antiderivative of 1
σ
. Under the

hypotheses of Subsection 3.1, for t ∈ (0, T ] the random variable Xt has a density ρXt.
Furthermore, there exist strictly positive constants c and C such that, for almost all x ∈ R,
ρXt satisfies the following:

ρXt(x) ≥ 1supp(Xt)(x)
E|G(Xt)−E(G(Xt))|

2σ(x)Ct
e−

(G(x)−E(G(Xt)))
2

2ct (3.3)

and

ρXt(x) ≤ 1supp(Xt)(x)
E|G(Xt)−E(G(Xt))|

2σ(x)ct
e−

(G(x)−E(G(Xt)))
2

2Ct . (3.4)

Note that G|supp(Xt) is invertible and that supp(Xt) = Im(
{
G|supp(Xt)

}−1
) does not de-

pend on the antiderivative G.

Remark 3.6. Note that the support of the density ρXt is not necesseraly R, but supp(Xt).

Here are some examples of bounds derived on classical processes using Theorem 3.5.

Example 3.7. Consider the particular case where Xt = x0 + σWt + bt, i.e. x0 ∈ R,
b(x) = b and σ(x) = σ. We have G(x) = x

σ
+ cst and Xt(Ω) = R. Thus the bounds (3.3)

and (3.4) become

1

2Cσt
e
− (x−bt−x0)

2

2cσ2t ≤ ρXt(x) ≤
1

2cσt
e
− (x−bt−x0)

2

2Cσ2t

Example 3.8. Consider the particular case where (Xt)t≥0 is an Ornstein-Uhlenbeck pro-

cess, i.e. b(x) = bx, b ∈ R
∗ and σ(x) = σ ∈ R. Then Xt ∼ N

(
x0e

bt, σ
2

2b (e
2bt−1)

)
. We

have G(x) = x
σ
+ cst and Xt(Ω) = R. Thus the bounds (3.3) and (3.4) become

√
e2bt − 1

2σCt
√
b
e
− (x−x0e

bt)2

2σ2ct ≤ ρXt(x) ≤
√
e2bt − 1

2σct
√
b
e
− (x−x0e

bt)2

2σ2Ct

Example 3.9. Consider the particular case where (Xt)t≥0 is a geometric Brownian mo-
tion, i.e. x0 6= 0, b(x) = bx, b ∈ R and σ(x) = σx, σ 6= 0 with σx0 > 0. We have, for

x 6= 0, G(x) = ln(|x|)
σ

+ cst and if x0 > 0, Xt(Ω) = ]0,+∞[ (resp. Xt(Ω) = ]−∞, 0[ if
x0 < 0). Thus the bounds (3.3) and (3.4) become

1supp(Xt)(x)

4σxCt
e
−

(

ln(|x|)−ln(|x0|)−

(

b−σ2

2

)

t

)2

2cσ2t ≤ ρXt(x) ≤
1supp(Xt)(x)

4σxct
e
−

(

ln(|x|)−ln(|x0|)−

(

b− σ2

2

)

t

)2

2Cσ2t .

Let us first prove the following Lemma that will be useful for the proof of Theorem 3.5.
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Lemma 3.10. For every T > 0, x ∈ R
∗, there exist positive constants c and C such that

for every t ∈ [0, T ],

ct ≤ ext − 1

x
≤ Ct.

Proof: If x > 0, Taylor’s formula implies that for t ∈ [0, T ],

t ≤ ext − 1

x
=

∫ t

0
exsds ≤ texT .

Similarly, if x < 0, we have, for t ∈ [0, T ], texT ≤ ext−1
x

≤ t. �

Proof of Theorem 3.5: Recall that G denotes an antiderivative of 1
σ
. Then G is

strictly increasing on supp(Xt) and we denote by G−1 the inverse map of G : supp(Xt) →
G(supp(Xt)). Let Ut be defined by

Ut = G(Xt) ⇔ Xt = G−1(Ut). (3.5)

Remark 3.11. Note at first that G does not depend on t (as an antiderivative of 1
σ
), and

that (H0) implies that the restriction of G to the support of Xt is invertible since supp(Xt)
is assumed to be an interval independent of t. The invertibility of G reduced to the interior

of the support of Xt, ˚supp(Xt), is the only assumption that is required for the proof.

Applying Itô’s formula to G(Xt) and using the identity G′(x) = 1
σ(x) , we obtain

dUt =G
′(Xt)dXt +

1

2
G′′(Xt)d 〈X〉t

=

[
G′(Xt)b(Xt) +

1

2
G′′(Xt)σ

2(Xt)

]
dt+G′(Xt)σ(Xt)dWt

=β ◦G−1(Ut)dt+ dWt,

where β is defined by

β(x) = G′(x)b(x) +
1

2
G′′(x)σ2(x) =

b

σ
(x)− σ′(x)

2
. (3.6)

Thus,

Ut = G(x0) +

∫ t

0
β ◦G−1(Us)ds+Wt

and for θ ∈ [0, t] we have

DθUt = 1 +

∫ t

θ

(β ◦G−1)′(Us)DθUsds = exp

[∫ t

θ

(β ◦G−1)′(Us)ds

]
. (3.7)

Deriving the identity G ◦ G−1(x) = x on G(supp(Xt)) yields (G−1)′(x) = σ ◦ G−1(x).
Using this fact we get (β ◦G−1)′(x) = β′ ◦G−1(x)(G−1)′(x) = (β′σ)◦G−1(x). In addition,
it is easy to check that on G(supp(Xt)),

(β′σ)(x) =
[σ, b](x)

σ(x)
− (σσ′′)(x)

2
. (3.8)

Gathering those results and using hypotheses (H1) and (H2) of Subsection 3.1 immediatly
yields on G(supp(Xt))

−
(
Ml +

Mσσ′′

2

)
≤ (β ◦G−1)′ ≤

(
Ml +

Mσσ′′

2

)
.
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Using (3.7), we deduce, P-a.s,

0 < e
−
(

Ml+
M

σσ′′
2

)

(t−θ) ≤ DθUt ≤ e

(

Ml+
M

σσ′′
2

)

(t−θ)
. (3.9)

Write D•Ut = Φ•
Ut
(W ) with a measurable function Φ•

Ut
: RL2([0,T ]) −→ L2([0, T ]). Then

(3.9) becomes, for θ < t,

0 < e
−
(

Ml+
M

σσ′′
2

)

(t−θ) ≤ Φθ
Ut
(W ) ≤ e

(

Ml+
M

σσ′′
2

)

(t−θ)
. (3.10)

Define Φ̃•,u
Ut

(W ) = Φ•
Ut
(e−uW +

√
1− e−2uW ′) for u ∈ [0,+∞[, where W ′ stands for an

independent copy of W and is such thatW andW ′ are defined on the product probability
space (Ω × Ω′,F ⊗ F ′,P × P

′). Using (3.9), it is clear that the following holds, for θ < t,
u ∈ [0,∞)

0 < e
−
(

Ml+
M

σσ′′
2

)

(t−θ) ≤ Φ̃θ,u
Ut

(W ) ≤ e

(

Ml+
M

σσ′′
2

)

(t−θ)
. (3.11)

Using Proposition 2.2 for g(x) = E
(
〈DUt,−DL−1Ut〉L2([0,T ])

∣∣∣Ut −E(Ut) = x
)
, we have

g(x) =

∫ ∞

0
e−uE

(
E′(〈Φ•

Ut
(W ), Φ̃•,u

Ut
(W )〉L2([0,T ])

)
|Ut −E(Ut) = x

)
du

=

∫ ∞

0
e−uE

(
E′
(∫ t

0
Φθ
Ut
(W )Φ̃θ,u

Ut
(W )dθ

)
|Ut −E(Ut) = x

)
du.

Using the bounds in (3.10) and (3.11), we obtain, P-a.s,

0 <

∫ ∞

0
e−u

∫ t

0
e−(2Ml+Mσσ′′)(t−θ)dθdu ≤ g(x) ≤

∫ ∞

0
e−u

∫ t

0
e(2Ml+Mσσ′′)(t−θ)dθdu,

which leads to, P-a.s,

0 <
1− e−(2Ml+Mσσ′′)t

2Ml +Mσσ′′
≤ g(x) ≤ e(2Ml+Mσσ′′)t − 1

2Ml +Mσσ′′
.

Lemma 3.10 implies the existence of strictly positive constants c and C such that, for
t ∈ (0, T ],

0 < ct ≤ g(x) ≤ Ct P− a.s.

Using (3.9) we deduce that Ut ∈ D
1,2. Hence Proposition 2.1 implies that Ut has a density

ρUt and that there exist constants c and C such that 0 < c < C and for u ∈ G(supp(Xt)),

E|Ut −E(Ut)|
2Ct

exp

(
−(u−E(Ut))

2

2ct

)
≤ ρUt(u) ≤

E|Ut −E(Ut)|
2ct

exp

(
−(u−E(Ut))

2

2Ct

)
.

We now prove that for any t ∈ (0, T ], Xt has a density, which we compare to that of
Ut. For any bounded Borel function f , (using the change of variable x = G−1(u)) for all
x ∈ supp(Xt), we deduce

E (f(Xt)) = E
(
f ◦G−1(Ut)

)
=

∫

G(supp(Xt))
f ◦G−1(u)ρUt(u)du =

∫

supp(Xt)
f(x)

ρUt ◦G(x)
σ(x)

dx.

Using this, we can recover that Xt has a density ρXt such that

ρXt(x) =
ρUt ◦G(x)
σ(x)

1supp(Xt)(x).

Hence, the upper and lower estimates of ρUt yield

ρXt(x) ≥ 1supp(Xt)(x)
E|G(Xt)−E(G(Xt))|

2σ(x)Ct
e−

(G(x)−E(G(Xt)))
2

2ct
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and

ρXt(x) ≤ 1supp(Xt)(x)
E|G(Xt)−E(G(Xt))|

2σ(x)ct
e−

(G(x)−E(G(Xt)))
2

2Ct .

This concludes the proof of Theorem 3.5. �

4. Gaussian density estimates for one dimensional backward SDEs

4.1. Preliminaries. The following backward stochastic differential equation was intro-
duced in Pardoux and Peng [6] (see also [7]) and was also studied in [1]:

{
Xt = x0 +

∫ t

0 b(Xs)ds+
∫ t

0 σ(Xs)dWs,

Yt = φ (XT ) +
∫ T

t
f (Xs, Ys, Zs) ds−

∫ T

t
ZsdWs.

(4.1)

In this section, we give conditions for the random variables Yt and Zt to have a density
which can be bounded from above and below by Gaussian ones. We will first focus on the
case of Yt for which we have to impose strict ellipticity conditions on the coefficients of X
along with some additional hypotheses on the coefficients of Y . The case of Zt requires
stronger assumptions on the coefficients of X and Y that will be detailed in the dedicated
subsection. Note that, as opposed to the case of the diffusion process Xt, the estimates
we obtain for the backward part (Y,Z) of equation (4.1) are always Gaussian.

4.2. Notations. We introduce here some notations in use in this section. Let Bn,+
0 (R)

be the space of bounded Cn(R) functions which are bounded positively away from 0 such

that their derivatives up to order n are bounded, i.e., f ∈ B
n,+
0 (R) if and only if there

exist positive constants c, C and Mf(i) , i = 1, ..., n, such that 0 < c ≤ f ≤ C and for

each i = 1, ..., n,
∣∣f (i)

∣∣ ≤ Mf(i) . Let B
n,−
0 (R) be the space of Cn (R) functions such that

−f ∈ Bn,+
0 (R) and Bn

0 (R) = B
n,+
0 (R) ∪Bn,−

0 (R).

4.3. Density of Yt : existence and Gaussian estimates. We first give the set of
hypotheses (in terms of the diffusion’s coefficients and the backward equation’s coefficients)
that will be needed in the main theorem on the density of Yt.

4.3.1. Hypotheses. Consider equation (4.1). On the diffusion part, we still consider b and
σ to be appropriately smooth functions to ensure the existence and uniqueness of solutions
to the first equation in (4.1). We also need to impose these two additional conditions on
b and σ:

{
H3 : ∃ Ml ≥ 0, |[b, σ]| ≤Ml

H4 : σ ∈ B
2,+
0 (R)

where [b, σ] denotes the Lie bracket between b and σ.

Remark 4.1. Recall that σ ∈ B
2,+
0 (R) implies that there exist two strictly positive con-

stants that will be refered to as mσ and Mσ such that 0 < mσ ≤ σ ≤Mσ.

Hence if σ ∈ B
2,+
0 (R), the assumption (H1) is equivalent to |[b, σ]| ≤ M for some

positive constant M . Clearly, (H0) and (H2) are also satisfied if σ ∈ B
2,+
0 (R).

On the backward part of (4.1), we make the following assumptions:




H5 : ∃ cφ′ , Cφ′ , 0 < cφ′ ≤ |φ′| ≤ Cφ′

H6 : ∃ cfx , Cfx ,Mfy ,Mfz ,

{
0 < cfx ≤ |fx| ≤ Cfx

|fy| ≤Mfy |fz| ≤Mfz

}

H7 : ∀u, v, φ′(u)fx(v) > 0
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4.3.2. Main result (Existence and estimates for the density of Yt). Under the above as-
sumptions, we have the following Gaussian estimates for the density of Yt.

Theorem 4.2. Under the hypotheses of Subsection 4.3.1, for t ∈ (0, T ) the random vari-
able Yt defined in (4.1) has a density ρYt. Furthermore, there exist strictly positive con-
stants c and C such that, for almost all y ∈ R, ρYt satisfies the following:

E|Yt −E(Yt)|
2ct

exp

(
−(y −E(Yt))

2

2Ct

)
≤ ρYt(y) ≤

E|Yt −E(Yt)|
2Ct

exp

(
−(y −E(Yt))

2

2ct

)
.

Before proving Theorem 4.2, we will first prove the following Proposition that will play a
key role in the upcoming proof of this Theorem.

Proposition 4.3. Suppose that the conditions (H3)−(H7) hold. Then for 0 < θ < t ≤ T ,
there exist some strictly positive constants kY,1(θ, t), kY,2(θ, t) such that P-a.s,

0 < kY,1(θ, t) ≤ |DθYt| ≤ kY,2(θ, t) (4.2)

with

kY,1(θ, t) =cφ′mσe
mb,σ(T−θ)−Mfy (T−t)

+
cfxmσe

Mfy t−mb,σθ

mb,σ −Mfy

(
e(mb,σ−Mfy )T − e(mb,σ−Mfy )t

)

and

kY,2(θ, t) =Cφ′Mσe
Mb,σ(T−θ)+Mfy (T−t)

+
CfxMσe

−Mfy t−Mb,σθ

Mb,σ +Mfy

(
e(Mb,σ+Mfy )T − e(Mb,σ+Mfy )t

)
,

where mb,σ and Mb,σ are constants depending only on b and σ.

Proof: We at first represent DθYt by means of an equivalent probability; this is similar
to [1] and the proof is included for the sake of completeness. It is well known (see for
example Theorem 2.2 in [1]) that, for every t ∈ (0, T ], Yt ∈ D

1,2 and Z ∈ L2
(
0, T ;D1,2

)
.

Furthermore, since θ < t, we have

DθYt =φ
′ (XT )DθXT −

∫ T

t

DθZsdWs

+

∫ T

t

[fx (Xs, Ys, Zs)DθXs + fy (Xs, Ys, Zs)DθYs + fz (Xs, Ys, Zs)DθZs] ds.

(4.3)

The product e
∫ t

0 fy(Xs,Ys,Zs)dsDθYt yields a more suitable representation of DθYt; indeed,
for t ∈ (0, T ], and 0 ≤ θ < t

d
[
e
∫ t

0 fy(Xs,Ys,Zs)dsDθYt

]
=
[
DθYte

∫ t

0 fy(Xs,Ys,Zs)dsfy (Xt, Yt, Zt)

−e
∫ t

0 fy(Xs,Ys,Zs)ds (fx (Xt, Yt, Zt)DθXt + fy (Xt, Yt, Zt)DθYt

+fz (Xt, Yt, Zt)DθZt)
]
dt+ e

∫ t

0 fy(Xs,Ys,Zs)dsDθZtdWt.

Integrating from t to T yields, for θ < t,

e
∫ T

0 fy(Xs,Ys,Zs)dsDθYT−e
∫ t

0 fy(Xs,Ys,Zs)dsDθYt = −
∫ T

t

e
∫ s

0 fy(Xr ,Yr,Zr)dr [fx (Xs, Ys, Zs)DθXs

+fz (Xs, Ys, Zs)DθZs] ds+

∫ T

t

e
∫ s

0
fy(Xr ,Yr,Zr)drDθZsdWs.
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Note that DθYT = φ′ (XT )DθXT ; therefore, for t ∈ (0, T ],

DθYt =e
∫ T

t
fy(Xs,Ys,Zs)dsφ′ (XT )DθXT +

∫ T

t

e
∫ s

t
fy(Xr,Yr ,Zr)dr [fx (Xs, Ys, Zs)DθXs

+fz (Xs, Ys, Zs)DθZs] ds−
∫ T

t

e
∫ s

t
fy(Xr ,Yr,Zr)drDθZsdWs.

Let W̃t = Wt −
∫ t

0 fz (Xs, Ys, Zs) ds. Because |fz| ≤ Mfz , Novikov’s condition is verified

and W̃ is a Brownian motion under some equivalent probability P̃. Girsanov’s theorem
yields

DθYt =e
∫ T

t
fy(Xs,Ys,Zs)dsφ′ (XT )DθXT +

∫ T

t

e
∫ s

t
fy(Xr ,Yr,Zr)drfx (Xs, Ys, Zs)DθXsds

−
∫ T

t

e
∫ s

t
fy(Xr,Yr,Zr)drDθZsdW̃s.

Conditionning by Ft under P̃ and taking into account the fact that Yt andDθYt are adapted
with respect to Ft while

∫ s

t
fy (Xr, Yr, Zr) dr and DθZs are Fs-adapted for θ < t ≤ s ≤ T ,

we obtain

DθYt =Ẽ
(
e
∫ T

t
fy(Xs,Ys,Zs)dsφ′ (XT )DθXT

∣∣∣Ft

)

+ Ẽ

(∫ T

t

e
∫ s

t
fy(Xr ,Yr,Zr)drfx (Xs, Ys, Zs)DθXsds

∣∣∣∣Ft

)
. (4.4)

At this point, we need to make use of the random variable Ut introduced in the proof
of Theorem 3.5. Recall that Ut = G(Xt) where G is an antiderivative of 1

σ
. We have

established in (3.7) that if G−1 is the inverse function of G restricted to supp(Xt),

DθUt = exp

[∫ t

θ

(β ◦G−1)′(Us)ds

]
, (4.5)

where β is defined by (3.6). Finally, recall that (β ◦G−1)′ = (β′σ)◦G−1 where β′σ is given
by (3.8). Using hypotheses (H3) and (H4) of Subsection 4.3.1 as well as (3.9), we deduce
the existence of two constants mb,σ and Mb,σ such that for 0 < θ < t ≤ T ,

0 < emb,σ(t−θ) ≤ DθUt ≤ eMb,σ(t−θ). (4.6)

Futhermore, as Xt = G−1(Ut), it holds that, for 0 < θ < t ≤ T ,

DθXt = (G−1)′(Ut)DθUt = σ ◦G−1(Ut)DθUt. (4.7)

Combining (4.6) and (4.7) with the fact that 0 < mσ ≤ σ ≤ Mσ yields, P-a.s (and P̃-a.s

since P and P̃ are equivalent),

0 < mσe
mb,σ(t−θ) ≤ DθXt ≤Mσe

Mb,σ(t−θ). (4.8)

For every t ∈ [0, T ), DθXt is positive and using (H7), we deduce that φ′(XT ) and
fx(Xs, Ys, Zs) have the same sign. Hence both terms in the right hand side of (4.4) have
the same sign. Using this fact along with hypotheses (H5), (H6) we estimate both terms

in the right hand side of (4.4) and hence their sum; this yields P̃-a.s for 0 < θ < t ≤ T ,

0 < kY,1(θ, t) ≤ |DθYt| ≤ kY,2(θ, t) (4.9)
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with

kY,1(θ, t) =cφ′mσe
mb,σ(T−θ)−Mfy (T−t)

+
cfxmσe

Mfy t−mb,σθ

mb,σ −Mfy

(
e(mb,σ−Mfy )T − e(mb,σ−Mfy )t

)

and

kY,2(θ, t) =Cφ′Mσe
Mb,σ(T−θ)+Mfy (T−t)

+
CfxMσe

−Mfy t−Mb,σθ

Mb,σ +Mfy

(
e(Mb,σ+Mfy )T − e(Mb,σ+Mfy )t

)
.

This concludes the proof of Proposition 4.3. �

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2: Write D•Yt = Φ•
Yt
(W ) with a measurable function Φ•

Yt
:

R
L2([0,T ]) −→ L2([0, T ]). Then Proposition 4.3 yields, for θ < t,

0 < kY,1(θ, t) ≤
∣∣∣Φθ

Yt
(W )

∣∣∣ ≤ kY,2(θ, t). (4.10)

Define Φ̃•,u
Yt

(W ) = Φ•
Yt
(e−uW +

√
1− e−2uW ′) for u ∈ [0,+∞[, where W ′ stands for an

independent copy of W and is such thatW andW ′ are defined on the product probability
space (Ω × Ω′,F ⊗ F ′,P × P

′). Using Proposition 4.3, it is clear that, for θ < t, we have

for any u ∈ [0,∞), 0 < kY,1(θ, t) ≤
∣∣∣∣Φ̃

θ,u
Yt

(W )

∣∣∣∣ ≤ kY,2(θ, t). Noticing that Φθ
Yt
(W ) and

Φ̃θ,u
Yt

(W ) have the same sign and combining the two previous bounds yields, for θ < t,

u ∈ [0,∞),

0 < k2Y,1(θ, t) ≤ Φθ
Yt
(W )Φ̃θ,u

Yt
(W ) ≤ k2Y,2(θ, t). (4.11)

Using the notation from Propositions 2.1 and 2.2,

g(y) =

∫ ∞

0
e−uE

(
E′
(∫ t

0
Φθ
Yt
(W )Φ̃θ,u

Yt
(W )dθ

) ∣∣∣Yt −E(Yt) = y

)
du.

The bounds obtained in (4.11) immediatly yield

0 <

∫ t

0
k2Y,1(θ, t)dθ ≤ g(y) ≤

∫ t

0
k2Y,2(θ, t)dθ. (4.12)

We will now give lower (resp. upper) estimates of A1 =
∫ t

0 k
2
Y,1(θ, t)dθ (resp. A2 =∫ t

0 k
2
Y,2(θ, t)dθ). The constants c and C appearing in the calculations may change from

line to line. We start by calculating a lower bound of A1. Since both summands in kY,1
are positive, we have

k2Y,1(θ, t) ≥ ce2mb,σ(T−θ)−2Mfy (T−t).

Thus,

A1 ≥ ce−2Mfy (T−t)

[
e2mb,σT − e2mb,σ(T−t)

2mb,σ

]
≥ e(2mb,σ−2Mfy )(T−t)

2mb,σ

(2mb,σct),

where we used the fact that ey(x − y) ≤ ex − ey if x ≥ y. Because e(2mb,σ−2Mfy )(T−t) is

lower bounded by e−2|Mfy−mb,σ |T , we finally obtain for some constant c depending on b,
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σ, fy and T ,

A1 =

∫ t

0
k2Y,1(θ, t)dθ ≥ ct. (4.13)

It remains to prove that A2 ≤ Ct for some constant C. Using Young’s lemma, we can
write

A2 ≤ Ce2Mfy (T−t)

[
e2Mb,σT − e2Mb,σ(T−t)

2Mb,σ

]
+ Ce2(Mb,σ+Mfy )T

∫ t

0
e−2Mb,σθ−2Mfy tdθ

≤ e2Mfy (T−t)

2Mb,σ

e2Mb,σT (2Mb,σCt) + C

[
e−2Mfy t − e−2(Mb,σ+Mfy )t

2Mb,σ

]
.

This upper estimate and the fact that ex − ey ≤ ex(x− y) for x ≥ y yields

A2 =

∫ t

0
k2Y,2(θ, t)dθ ≤ Ct. (4.14)

The inequalities (4.12) – (4.14) yield, P-a.s,

0 < ct ≤ g(y) ≤ Ct,

with strictly positive constants c and C. Thus, Propositions 2.1 and 2.2 conclude the proof
of Theorem 4.2. �

4.4. Density of Zt : existence and Gaussian estimates. In this subsection, we will
prove that under some conditions on the coefficients, Zt has a density with Gaussian upper
and lower bounds. We begin by listing those conditions in the upcoming subsection.

4.4.1. Hypotheses. We need to make additional assumptions with respect to those in sub-
sections 3.1 and 4.3. More precisely, we assume (H1) and that the following holds on the
diffusion process Xt,

{
H8 : σ ∈ B3,+

0 (R), σ′ ≥ 0.

H9 : ∃ Ml,Mdl ≥ 0, |[b, σ]| ≤Mlσ, 0 ≤ [σ, [σ, b]] ≤Mdlσ.

where [φ,ψ] denotes the Lie bracket between φ and ψ.

Remark 4.4. Recall that σ ∈ B
3,+
0 (R) implies that there exist strictly positive constants

that will be refered to as mσ and Mσ such that 0 < mσ ≤ σ ≤Mσ . It also implies, along
with the fact that σ′ ≥ 0, that there exist strictly positive constants that will be refered
to as Mσ′ , Mσ′′ and Mσ(3) such that 0 ≤ σ′ ≤Mσ′ , |σ′′| ≤Mσ′′ and |σ(3)| ≤Mσ(3) .

On the backward process (Y,Z), we need the following conditions on the functions φ and
f , where f : R2 → R does not depend on z:




H10 : There exist constants cφ′ , Cφ′ , Cφ′′ such that 0 < cφ′ ≤ φ′ ≤ Cφ′ , 0 < cφ′′ ≤ φ′′ ≤ Cφ′′

H11 : There exist constants mfx ,Mfx ,Mfy ,Mfxx ,Mfxy ,Mfyx ,Mfyy such that

0 < mfx ≤ fx ≤Mfx , |fy| ≤Mfy , 0 ≤ fxx ≤Mfxx, 0 ≤ fxy ≤Mfxy , 0 ≤ fyy ≤Mfyy

Note that (H10) and (H11) imply (H5)-(H7).
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4.4.2. Main result (Existence and estimates for the density of Zt). We consider equation
(4.1) with a function f⋆ that only has a linear dependency on Z, i.e.

{
Xt = x0 +

∫ t

0 b(Xs)ds+
∫ t

0 σ(Xs)dWs

Yt = φ (XT ) +
∫ T

t
f⋆ (Xs, Ys, Zs) ds−

∫ T

t
ZsdWs

where f⋆(x, y, z) = f(x, y) + αz, α ∈ R.

Remark 4.5. Because of the dependency of f on Z, the Malliavin derivative DZ will
depend on D2Z, which is not suitable for analyzing it within our framework. One can
circumvent the above mentioned issue by using the Girsanov theorem to dispose of the
impeding terms (similarly as done in the proof of Propositon 4.3). In order to clarify
the proofs and to improve readability, we will consider that this step has already been
performed in all of our proofs. This procedure leaves us with an equation of the type

{
Xt = x0 +

∫ t

0 b(Xs)ds+
∫ t

0 σ(Xs)dWs

Yt = φ (XT ) +
∫ T

t
f (Xs, Ys) ds−

∫ T

t
ZsdWs,

which is the one that will be referred to in the proofs of the upcoming results.

The following theorem provides Gaussian estimates for the density of Zt.

Theorem 4.6. Under the hypotheses of Subsection 4.4.1, for t ∈ (0, T ) the random vari-
able Zt has a density ρZt. Furthermore, there exist strictly positive constants c and C such
that, for almost all z ∈ R, ρZt satisfies the following:

E|Zt −E(Zt)|
2ct

exp

(
−(z −E(Zt))

2

2Ct

)
≤ ρZt(z) ≤

E|Zt −E(Zt)|
2Ct

exp

(
−(z −E(Zt))

2

2ct

)
.

Before proving Theorem 4.6, we will first give a technical Lemma and a Proposition which
will play a key role in the upcoming proof of this Theorem. First recall a lemma used to
calculate the Malliavin derivative of a product of random variables in D

1,2 (for example,
see [3], p.36, exercice 1.2.12).

Lemma 4.7. (i) Let s, t ∈ [0, T ] and F ∈ D
1,2; then we have E (F |Ft) ∈ D

1,2 and

DsE (F |Ft) = E (DsF |Ft) 1s≤t.

(ii) If F,G ∈ D
1,2 are such that F and ‖DF‖L2([0,T ]) are bounded, then FG ∈ D

1,2 and

D(FG) = FDG+GDF.

The following Proposition ensures that under the hypotheses of Subsection 4.4.1, the
second order Malliavin derivatives of X and Y are positive and bounded from above.

Proposition 4.8. Under the assumptions of section 4.4.1, there exist two positive con-
stants MD2X and MD2Y such that for 0 < θ < t < s ≤ T , P-a.s,

0 ≤ D2
θ,tXs ≤MD2X and 0 ≤ D2

θ,tYs ≤MD2Y .

Remark 4.9. Here we obtain large inequalities since the basic example of standard Brow-
nian motion shows that the second Malliavin derivative of Xt may be null.

Proof: We start by proving the inequalities onD2
θ,tXs. Applying the Malliavin derivative

to (4.7) and using the second point in Lemma 4.7, we deduce for θ, t ≤ s ≤ T , since
Us = G(Xs),

D2
θ,tXs =(σ ◦G−1)′(Us)DθUsDtUs + (σ ◦G−1)(Us)D

2
θ,tUs

=(σ′σ)(Xs)DθUsDtUs + σ(Xs)D
2
θ,tUs. (4.15)
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The hypotheses (H8) and (H9) along with (3.9) ensure that the term (σ′σ)(Xs)DθUsDtUs

is non negative and can be bounded from above by a constant given by

0 ≤ (σ′σ)(Xs)DθUsDtUs ≤Mσ′Mσe

(

Ml+
MσM

σ′′
2

)

(2s−t−θ)
. (4.16)

It remains to prove that the second summand in (4.15) is also non negative and bounded
from above. As σ is non negative and bounded, we focus on proving that D2

θ,tUs is too.

Applying once again the Malliavin derivative operator to (3.7) and using the second point
in Lemma 4.7 as well as (4.5), we deduce for θ < t ≤ s,

D2
θ,tUs =

∫ s

t

(β ◦G−1)′′(Ur)DtUrDθUrdr +

∫ s

t

(β ◦G−1)′(Ur)D
2
θ,tUrdr

=

∫ s

t

e
∫ s

r
(β◦G−1)′(Uv)dv(β ◦G−1)′′(Ur)DtUrDθUrdr

=

∫ s

t

(β ◦G−1)′′(Ur)DrUsDtUrDθUrdr.

Further calculations yield the following expression

(
β ◦G−1

)′′
(x) =

(
σ

(
[σ, b]′

σ
− [σ, b] σ′

σ2

)
− 1

2

(
σ′′σ

)′
σ

)
◦G−1(x)

=

(
[σ, [σ, b]]

σ
− 1

2

(
σ′′σ

)′
σ

)
◦G−1(x).

Using hypotheses (H8), (H9), the fact that DaUb > 0 for a < b and (3.9), we immediatly
obtain for θ < t ≤ s,

0 ≤ σ(Xs)D
2
θ,tUs ≤

2
(
Mdl +

1
2M(σ′′σ)′Mσ

)

2Ml +MσMσ′′

[
e

(

Ml+
MσM

σ′′
2

)

(2s−θ−t) − e

(

Ml+
MσM

σ′′
2

)

(s−θ)
]
.

(4.17)

Combining (4.15) and (4.17), it is clear that there exists a positive constant MD2X such
that 0 ≤ D2

θ,tXs ≤MD2X with, for θ < t ≤ s,

MD2X =

(
Mσ′Mσ +

2
(
Mdl +

1
2M(σ′′σ)′Mσ

)

2Ml +MσMσ′′

)
e

(

Ml+
MσM

σ′′
2

)

(2s−t−θ)

− 2
(
Mdl +

1
2M(σ′′σ)′Mσ

)

2Ml +MσMσ′′
e

(

Ml+
MσM

σ′′
2

)

(s−θ)
.

We will now address the second part of the Proposition, i.e., the inequalities on D2
θ,tYs.

Let θ < t ≤ s. Applying once more the Malliavin derivative operator to DθYs in (4.3)
and using the second point in Lemma 4.7, since f does not depend on Z we obtain, for
0 ≤ θ < t ≤ s ≤ T ,

D2
θ,tYs =φ

′ (XT )D
2
θ,tXT + φ′′(XT )DθXTDtXT −

∫ T

s

D2
θ,tZrdWr

+

∫ T

s

{
fxx (Xr, Yr)DθXrDtXr + fx (Xr, Yr)D

2
θ,tXr

+ fyx (Xr, Yr) (DθYrDtXr +DθXrDtYr)

+ fyy (Xr, Yr)DθYrDtYr + fy (Xr, Yr)D
2
θ,tYr

}
dr.
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Since D2
θ,tYs solves a linear equation and is Fs-measurable, we have that, for 0 ≤ θ < t ≤

s ≤ T ,

D2
θ,tYs =E

(
e
∫ T

s
fy(Xr,Yr)dr

{
φ′ (XT )D

2
θ,tXT + φ′′(XT )DθXTDtXT

}∣∣∣Fs

)

+E
(∫ T

s

e
∫ r

s
fy(Xu,Yu)du

{
fxx (Xr, Yr)DθXrDtXr + fx (Xr, Yr)D

2
θ,tXr

+ fyx (Xr, Yr) (DθYrDtXr +DθXrDtYr) + fyy (Xr, Yr)DθYrDtYr

}
dr
∣∣∣Fs

)
.

Since σ ≥ c > 0, (4.8) proves DuXv ≥ 0 for u ≤ v. Furthermore, (4.4) and (H10)–(H11)
prove that DuYv ≥ 0 for u ≤ v. Since (H8)–(H11) imply (H5)–(H7), the results in (4.2)
and (4.8) remain valid. Thus, we immediatly obtain the positivity and an upper bound
for D2

θ,tYs. This concludes the proof. �

Proof of Theorem 4.6: The outline of the proof is as follows: using a representa-
tion of Z, we compute its Malliavin derivative and show that under the hypotheses of
Subsection 4.4.1, it is strictly bounded away from zero. This allows us to conclude using
Proposition 2.1. We begin by giving a representation of Z. However, we do not use the
one from [7] in terms of gradient, that is Zt = σ (Xt) (∇Xt)

−1 ∇Yt, but rather use the fact
that Zt can be represented by use of the Clark-Ocone formula. Indeed, by the uniqueness
of the solution (Y,Z), Zt can be written as

Zt = E

(
Dtφ (XT ) +Dt

∫ T

0
f (Xs, Ys) ds

∣∣∣Ft

)
∈ D

1,2. (4.18)

Using this fact, we get for t ∈ [0, T ]

Zt =E

(
φ′ (XT )DtXT +

∫ T

t

{fx (Xs, Ys)DtXs + fy (Xs, Ys)DtYs} ds|Ft

)
.

Let θ ≤ t. We use both points of Lemma 4.7 and Proposition 4.8 in order to calculate the
first order Malliavin derivative of Zt. This leads, for θ ≤ t:

DθZt =E
(
φ′′ (XT )DθXTDtXT + φ′ (XT )D

2
θ,tXT

+

∫ T

t

{
fxx (Xs, Ys)DθXsDtXs + fyx (Xs, Ys) (DθYsDtXs +DθXsDtYs)

+ fyy (Xs, Ys)DθYsDtYs + fx (Xs, Ys)D
2
θ,tXs + fy (Xs, Ys)D

2
θ,tYs

}
ds
∣∣∣Ft

)
.

(4.19)

We now need to bound from above each summand of this expression; in what follows,
c and C denote strictly positive constants that may vary from line to line. Recall that
under the assumptions (H8)–(H11) using (4.7) and (4.4), we deduce that DuXv ≥ c > 0
and DuYv ≥ 0 for u ≤ v. The hypothesis (H10) on φ (along with (H8) and (H9)
on the diffusion X), (4.7) and Proposition 4.8 ensure that there exist strictly positive
constants such that 0 < c ≤ φ′′ (XT )DθXTDtXT ≤ C and 0 ≤ φ′ (XT )D

2
θ,tXT ≤ C.

Using hypothesis (H11) on f and its derivatives and Proposition 4.8 again allows us to
bound the remaining terms in (4.19) by positive constants, i.e.

0 ≤ fx (Xs, Ys)D
2
θ,tXs ≤ C, 0 ≤ fy (Xs, Ys)D

2
θ,tYs ≤ C,

0 ≤ fxx (Xs, Ys)DθXsDtXs ≤ C, 0 ≤ fyy (Xs, Ys)DθYsDtYs ≤ C,

0 ≤ fxy (Xs, Ys)DθXsDtYs ≤ C, 0 ≤ fyx (Xs, Ys)DθYsDtXs ≤ C.
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Gathering all of these immediatly gives us the existence of two strictly positive constants
mDZ and MDZ such that for 0 < θ < t ≤ T , P− a.s,

0 < mDZ ≤ DθZt ≤MDZ . (4.20)

Write D•Zt = Φ•
Zt
(W ) with a measurable function Φ•

Zt
: RL2([0,T ]) −→ L2([0, T ]). Then

(4.20) yields, for θ < t, 0 < mDZ ≤ Φθ
Zt
(W ) ≤ MDZ . As previously done, define

Φ̃•,u
Zt

(W ) = Φ•
Zt
(e−uW +

√
1− e−2uW ′) for u ∈ [0,+∞[. Using (4.20), it is clear that,

for θ < t, we have for u ∈ [0,+∞), 0 < mDZ ≤ Φ̃θ,u
Zt

(W ) ≤ MDZ . Combining the bounds

on Φθ
Zt

and Φ̃θ,u
Zt

yields, for θ < t and u ∈ [0,+∞),

0 < m2
DZ ≤ Φθ

Zt
(W )Φ̃θ,u

Zt
(W ) ≤M2

DZ . (4.21)

Finally, let

g(z) =

∫ ∞

0
e−uE

(
E′(〈Φ•

Zt
(W ), Φ̃•,u

Zt
(W )〉L2([0,T ])

)∣∣∣Zt −E(Zt) = z
)
du

=

∫ ∞

0
e−uE

(
E′
(∫ t

0
Φθ
Zt
(W )Φ̃θ,u

Zt
(W )dθ

) ∣∣∣Zt −E(Zt) = z

)
du.

The bounds obtained in (4.21) immediatly yield 0 < m2
DZt ≤ g(z) ≤M2

DZt. Thus, Propo-
sition 2.1 concludes the proof of Theorem 4.6. �

Remark 4.10. Theorem 4.6 has been proved under a set of hypotheses (those of Subsection
4.4.1) based on the fact that σ is positive. The case where σ is negative was included neither
in the proof nor in the hypotheses for the sake of clarity and readability of the paper.
However, as already mentioned in Remark 3.1, this case can be addressed (without any

further difficulties) by using the following transformations: σ → σ̃ := −σ and W → W̃ :=

−W . After performing those tranformations, it suffices to consider (X̃, Ỹ , Z̃) = (X,Y,−Z)
to be the solution of




dX̃t = b
(
X̃t

)
dt+ σ̃

(
X̃t

)
dW̃t

dỸt = φ
(
X̃T

)
+
∫ T

t
f
(
X̃r, Ỹr

)
dr −

∫ T

t
Z̃rdW̃r

This brings the problem back to the set of hypotheses of Subsection 4.4.1 and it can be
dealt with using the techniques presented in the last section.

Acknowledgments: We would like to thank F.G. Viens for introducing us to this topic
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