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Abstract:  

Aims: CD133 is considered as a marker for brain tumour initiating cells. However, 

most data about CD133 is derived from animal or in vitro studies. The aim of our 

study was to characterize CD133 expression, distribution and morphological features 

of CD133+ cells in primary and secondary human CNS neoplasms.  

Methods and results: Tumours were analyzed by realtime RT-PCR, western blot, flow 

cytometry and immunohistochemistry. Our results show that only small round blue 

cell tumours (SRBCT) exhibit strong and consistent CD133 expression. Interestingly, 

glioblastomas, large cell carcinomas or sarcomas were negative for CD133. Only 

single glioblastomas with focal small cell component exhibited CD133 

immunoreactivity in the SRBCT component. In addition, CD133 expression did not 

correlate with the expression of other markers associated with stem cell 

differentiation including CD15 or nestin.  

Conclusions: This indicates that CD133 expression in human CNS neoplasms may 

be independent from the grade of malignancy but strongly correlates with SRBCT 

morphology. Together with recent findings showing that CD133 is regulated by 

hypoxia and CD133- cells exhibiting also stem cell properties, our data strongly 

questions the suitability of CD133 as a brain tumour stem cell marker in vivo. 
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Introduction: 

Over 20 years ago, first evidence supported the hypothesis that neoplasms might 

arise from common stem cells capable to give rise to tumours of various 

differentiation.1 Since human stem cells possess the capacity for self-renewal as well 

as unlimited growth and current treatment strategies mostly fail to eradicate tumour 

stem cell.2 Therefore, the actual aim is not only to treat the tumour bulk, but also to 

focus on cancer stem cells.3 Cancer stem cells are functionally defined by assays of 

self-renewal, multilineage differentiation and sphere formation and it was claimed that 

these cells are could be selected by the five-transmembrane protein CD133 

(prominin-1).4 After stimulation with either epidermal growth factor (EGF) or basic 

fibroblast growth factor (bFGF) multipotent, self-renewing neural stem cells 

proliferate within the spheres and are considered as candidate cells for autologous 

transplantation after neuronal loss. 5,6  

The CD133 antigen was detected on germ cells and on progenitor cells of all germ 

layers, including ectoderm, mesoderm and entoderm as well as neuroectoderm.7-11 

More recently, different splice isoforms of the CD133 antigen were described.7,12 

While CD133-1 was stronger expressed in the fetal brain and adult skeletal muscle, 

CD133-2 (the 9 amino acid shorter variant of CD133-1) showed higher expression 

levels on hematopoietic stem cells and was inversely correlated with the terminal 

differentiation marker involucrin pointing to a spatio-temporal down-regulation of 

CD133-2 with the grade of cell maturation.12 The AC133/AC141 epitopes bound by 

the widely used monoclonal CD133 antibodies are glycosylated and regulated 

independently of the much more widespread expression of their mRNAs.13 

While the number of CD133+ cells increased with the grade of malignancy in some 

tumours like melanocytic neoplasms, others such as prostate cancer failed to show a 
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correlation of the amout of CD133+ cells and tumour grade.14,15 Very recently, CD133 

expressing tumour cells were shown to be responsible for radio- and 

chemoresistance in gliomas.16,17  

Another study revealed that CD133 positive progenitor cells considerably contribute 

to tumour neo-vascularization.18 One way to overcome the long-term propagation of 

CD133 positive stem cells in neoplasms is the blockade of the Notch signaling 

pathway finally leading to cell cycle exit, apoptosis and cellular differentiation via its 

downstream target Hes1.19 The amount of circulating CD133 positive cells seems to 

be regulated by chemotactic factors such as interleukin-8 which on the other hand is 

significantly upregulated in various neoplasms.20-23 In an epithelial cell model, one 

feature of both CD133 isoforms seems to consist in organizing plasma membrane 

protrusions. 24 Since morphological features are potentially mediated by CD133 under 

normal conditions, the aim of our study was not to use functional assays which may 

alter number and expression level of CD133-positive cells but rather to analyze 

morphological properties and the distribution pattern of the so-called CD133- positive 

tumour cells within various human neoplasms under conditions that more closely 

resemble the in vivo conditions in the human brain. In the present study we analyze 

tumours not only in vitro but also fresh viable tumour tissue and paraffin embedded 

specimens, since many cell culture conditions may irrevocably alter the cells. 25 This 

might be important for further therapeutical approaches focussing on the detection of 

tumour stem cells. Herein, we demonstrate that CD133+ expression is strongly 

associated with a small round blue cell tumour (SRBCT) phenotype representing 

neoplasms with a very primitive morphological differentiation. In contrast, other than 

SRBCTs – even though being very malignant – were almost devoid of CD133+ cells. 
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 Materials and Methods:  

Cell lines 

CD34-positive stem cells, burkitt lymphoma cells, the malignant glioma cell lines 

A172, LNT-229, LN-308, TG98G, U373MG (kind gift of Dr. N. Tribolet, Lausanne), 4 

different neuroblastoma cell lines (N-Myk single copy, N-Myk 25, N-Myk 30, N-Myk 

100), the retinoblastoma cell line WERI-Rb1, the medulloblastoma cell line DAOY 

(kind gift of Dr. K. Schilbach, Tübingen) were maintained in DMEM supplemented 

with 2 mM L-glutamine (Gibco Life Technologies, Paisley, UK), 10% FCS (Biochrom 

KG) and penicillin (100 IU/ml) / streptomycin (100 µg/ml) (Gibco). CD34+ stem cell 

were mobilized in healthy donors. Regimen for mobilization of donor stem cells was 

10µg/kg/g G-CSF s.c. 5 days prior to leucaphereses, performed on days 5 and 6. 

CD34+ progenitors were positively selected from leucapheresis products by 

magnetic-activated cell sorting using Clinimax CD34 reagent and Clinimacs device 

from Miltenyi Biotec (Bergisch Gladbach, Germany). Purity of CD34+ population was 

> 99.99%. Progenitor cells were suspended in DMSO and stored in liquid nitrogen 

until use. Informed consent was obtained from all CD34+ cell donors in accordance 

with the Declaration of Helsinki. In addition, several primary glioblastoma cells were 

cultured under different media conditions. 

 

Patients and tissue samples  

We investigated a total of 641 paraffin tumour samples obtained from the brain 

tumour bank of the Institute of Brain Research, University of Tuebingen. These 

consisted of 295 samples of 213 glioblastoma cases (including 13 cases with known 

small cell component), 173 samples of 132 astrocytoma cases (including 27 WHO 

grade I, 44 WHO grade II and 61 WHO grade III tumours), 12 primary cerebral B-cell 
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lymphomas, 67 medulloblastomas (including 11 desmoplastic variants), 10 CNS-

PNET, 19 small cell lung carcinoma metastases, 30 non-small cell carcinoma 

metastases, 10 melanomas, 10 sarcoma metastases, 6 neuroblastomas (2 

peripheral abdominal, 1 central spinal, 3 esthesioneuroblastomas), 5 pineoblastomas 

and 4 retinoblastomas (Supplementary Table 1). In addition 79 samples of 24 

autopsy cases with normal human brain belonging to an established brain bank 

(Brain Bank Tübingen) and 26 specimens of cases with biopsies of non-neoplastic 

CNS lesions (Supplementary Table 2) were also included. In all cases mentioned 

above full mount sections were stained with the exception of astrocytoma samples 

where additional samples were partially constructed as tissue microarray (Manual 

Tissue Mircroarrayer, Beecher Instruments, Sun Prairie, USA; two representative 

cores measuring 600µm for each tumour; n=78 WHO grade IV, n=75 WHO grade III, 

n=35 WHO grade II and n=24 WHO grade I). For western blot and RT-PCR frozen 

tissue of selected CD133-positive and negative cases (n=25) was studied. Utilization 

of the human specimens was in accordance with the University’s ethics commission. 

Pathological diagnoses were made by at least two experienced neuropathologists 

according to the WHO criteria.26 

 

Preparation of RNA and reverse transcription to cDNA 

Total RNA was isolated from the various cryo-preserved tissues and cell lines after 

homogenisation using Trizol Reagent (Invitrogen, Karlsruhe, Germany). All samples 

were subjected to treatment with RNase free DNase I (Roche Diagnostics, 

Mannheim, Germany). Consecutively, 500 µg of each RNA sample was reverse- 

transcribed with 200 U of Moloney Murine Leukemia Virus Reverse Transcriptase (M-

MLV-RT, Promega, Mannheim, Germany), using 0.5 µg of Random Primer 

Deleted:  

Deleted: were also included.

Deleted: available

Page 6 of 38

Published on behalf of the British Division of the International Academy of Pathology

Histopathology



For Peer Review

 7 

(Promega). Glyceraldehyde-3-phosphate-dehydrogenase (gapdh) served as 

housekeeping-gene. 

 

Quantitative real-time RT-PCR 

Quantitative real-time RT-PCR including primer-design and control of the specificity 

and efficiency of the primer pairs was done as described previously. 27,28 The 

sequences of the PCR primers used in this study are listed in table 1. All primers 

were chosen to span an intron in order to control for and avoid priming of gDNA 

contaminations. The sense primers were constructed to contain an intron spanning 

internal to the respective sense primer, which was specific for the respective splice 

variant of CD133 (see Figure 1 for details). This procedure enabled us to avoid any 

priming of gDNA, since the sense primer are cDNA specific and to ensure maximum 

comparability of differential CD133_1 and CD133_2 expression by reducing technical 

artefacts using the same reverse primer and generating similar amplicon lengths. 

Quantitative real time RT-PCR was linear over the expression range. For the 

evaluation of all PCR runs, ‘Cycle Threshold’ values (CTs) obtained for the different 

amplicons were processed to Mean Normalized Expression (MNE) as described 

previously.29 Replicates within one plate were used for statistical analysis. MNE 

values and the respective 99%-confidence intervals (CI) of the means are reported. 

 

Immunoblotting 

For immunoblotting, 12 tumour samples, 5 established cell lines and 4 primary 

glioblastoma cell cultures were used. Tissue specimens were homogenized and 

placed overnight on ice in Tris-HCl-buffer pH 7.6 containing 125mM NaCl, 2.5% Brij 

96/98 and a protease inhibitor cocktail (Complete™, Roche). After centrifugation the 
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remaining pellet was resuspended in 50mM Tris; 150mM NaCl, 1% Triton X100 and 

1% NP-40 placed on ice for 6 h. Protein concentration was determined 

photometrically at OD280 against lysis buffer. The protein lysates were stored at -80°C 

pending immunoblotting. Whole-cell extracts for SDS-PAGE were prepared by 

solubilizing washed cells in hot SDS-sample buffer and incubating at 95°C for 5 

minutes. Proteins were separated by 10% SDS-PAGE and subsequently transferred 

onto nitrocellulose membranes. MBI Fermentas Prestained Protein Ladder was used 

as molecular weight standard. Following electrophoresis, the samples were 

transferred to a polyvibylidene difluoride (PVDF) membrane (Hybond, Amersham) 

and blocked overnight with 5% bovine serum albumin BSA in Tris-buffered-saline-

Tween (TBST; 50 mM Tris-HCl pH 7.6, 150 mM NaCl, 0.1% (v/v) Tween-20). The 

membranes were incubated with primary antibodies in TBST (1µg/ml) against CD133 

clones W6B3C1 (recognizing CD133-1) and 293C3 (recognizing CD133-2, both from 

Miltenyi, Bergisch-Gladbach, DE), Synaptophysin (Biogenex, San Ramon, USA), 

pan-cytokeratin (Dako, Glostrup, DK) and glial fibrillary acidic protein GFAP 

(Neomarkers, Freemont, USA). Exposition times were 3 to 5 mins. A subsequent 

incubation with an antibody against beta-actin (Santa Cruz) was performed to 

determine equal protein loading of each lane.  

Flow Cytometry 

Immunocytofluorescence staining for CD133 monoclonal antibodies W6B3C1 

(recognizing CD133-1) and 293C3 (recognizing CD133-2, both from Miltenyi) was 

performed on cultured cells. 1x 106 cells were collected, washed in PBS, and 

incubated with 100µl 3.7% formaldehyde for 30mins. After addition of 1ml PBS with 

2mM EDTA and 0.5% bovine serum albumin (PEB), cells were permeabilized in 

100µl 0.5 saponin buffer (20mins) before incubation with the primary antibodies for 
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15mins (5µg/ml in saponin buffer). After a second washing step, cells were incubated 

with isotype-matching rat anti-mouse IgG fluorochrome-conjugated secondary 

antibodies at optimal dilutions for another 15mins (Miltenyi). Finally cells were 

washed again with PEB. One color analysis was performed on a FACS 

(FACSCalibur, BD, NJ, USA) using scatter gate with a minimum of 5,000 events 

counted. Isotype controls were performed for each antibody. 

 

Immunohistochemistry 

Immunohistochemistry was performed as described previously.30 Briefly, samples 

were put in 4% formalin (pH 7.4) after surgery and routinely embedded in paraffin. 

Four-micron-thick sections were stained routinely with hematoxylin and eosin and in 

adjacent serial sections, immunohistochemistry was performed with mouse 

immunoaffinity-purified IgG1 antibodies against CD133 clones W6B3C1 (dilution 

1:50) and AC133 (1:10, both from Miltenyi). Deparaffinized and rehydrated sections 

were immunostained by using the Benchmark Immunohistochemistry System 

(Ventana, Tucson, AZ, USA). A standard protocol including a cell conditioning 

pretreatment for 60mins was used. I-View-Inhibitor (Ventana) was applied for 4min 

and endogenous peroxidase of the tissue sections was blocked with 3% H2O2 in 

methanol for 14min. CD133 antibodies were applied with an incubation time of 32 

min. Incubation of amplifier A and B for 8min each were followed by avidin and biotin 

blockers for 4 mins respectively and I-View-Biotin-Ig for 8mins (all Ventana). Before 

diaminobenzidine/H202 visualization (8min), incubation with I-View SA-HRP (8min) 

was applied. Finally, secions were incubated with a copper enhancer (4min) 

andcounterstained with haematoxylin. Positive control (WERI-Rb1 cell culture slides) 
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and negative controls (omission of the primary antibody from the diluent) were run 

with each batch of staining  

 

 

 

 

 

 

 

 

 

 

 

 

Results: 

Both CD133 splice variants are differentially regulated in vivo and in vitro. 
 
CD133_1 as well CD133_2 showed the highest mean normalized expression levels 

in CD34-positive stem cells and  in the retinoblastoma cell line WERI-Rb1 (Figure 2). 

While both variants were detectable in four different neuroblastoma cell lines (N-Myk 

single copy, N-Myk 25, N-Myk 30, N-Myk 100) and in a medulloblastoma cell line 

(DAOY), the CD133_2 splice variant was not detectable in two malignant glioma cell 

lines (A172, LN308) or showed levels just above the treshold (LNT-229). In a burkitt 

lymphoma cell line only CD133_1 mRNA expression was detectable but not 

CD133_2. Similiar levels of both CD133 mRNA splice variants were observed in vivo 

in small round and blue cell tumours (medulloblastoma, PNET and pineoblastoma 
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tumour samples). In contrast CD133_1 expression levels in astrocytic neoplasms 

were either not detectable or displayed levels just above treshold, while CD133_2 

expression was always present in higher levels. 

 

In vitro and in vivo expression of CD133 is consistent only in small round blue cell 

tumours.  

Immunoblot analysis using two different CD133 antibodies (W6B3C1 and 293C3) 

allowed the detection of 120 kDa bands in WERI-Rb1 and DAOY cell-lines (Figure 

3a) but were lacking in U373, T98G and LNT-229 glioma cell lines (data not shown). 

Presence of 43 kDa beta-actin or 49 kDa GFAP bands in the latter served as control 

for protein integrity. Flow cytometry revealed membrane-associated CD133 

(W6B3C1 and 293C3) in WERI-Rb1 (Figure 3b) and DAOY (Figure 3c) while only a 

small minority of glioma cell lines could be considered to express membranous 

CD133 (Figure 3d). Both lineage specific markers (e.g. CD56, Figure 3b) and CD133 

were strongly expressed on SBRCT, while non SRBCT entities showed an absence 

or only very weak frequency of CD133 positive cells compared to isotype and lineage 

specific positive controls. The results of flow cytometry and immunoblotting nicely 

correlated with CD133 expression on cultured cells (Supplementary Figure 2). In vivo 

results were similar showing strongest CD133 expression patterns in pineoblastomas 

and medulloblastomas, while all glioblastomas and most primary glioblastoma cell 

cultures showed no distinct bands for CD133 (Figure 3a and Supplementary Figure 

1).  
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CD133 immunoreactivity is mainly restricted to small round blue cell tumours in vivo. 

The CD133 antibody 293C3, which recognizes the CD133-2 antigen was not suitable 

for immunohistochemistry. Two different CD133 clones directed against CD133-1 

(W6B3C1 and AC133) showed similar results in test rows, with slightly nicer staining 

results for AC133. Therefore, AC133 was used for further evaluation. We examined 

79 different normal brain samples of 24 autopsy cases including the cerebrum, the 

cerebellum and the brainstem. No AC133-immunoreactive cells were found in normal 

control CNS tissue specimens (Supplementary Figure 3). Six out of 56 

medulloblastomas (Fig.4a-c) and 2 of 11 desmoplastic medulloblastoma variants 

showed strong expression of AC133 on the majority of tumour cells. In addition 3 out 

of 5 pineoblastomas (Fig. 4d and e), 4 out of 4 retinoblastomas (Fig. 4f), 1 out of 6 

neuroblastomas (an esthesioneuroblastoma) (Fig. 4g) were immunopositive for 

AC133. Further, formalin-fixed and paraffin embedded cell pellets of different cell 

lines exhibiting CD133-positive (W6B3C1 and 293C3) phenotype in both FACS and 

WB analysis such as DAOY or WERI-Rb1 (Fig. 4i) kept their immunoreactivity also in 

AC133 immunocytochemistry (Supplementary Figure 2). All AC133 positive tumour 

cells exibited the typical morphology of small round and blue cells with large nucleus 

and small cytoplasm. In addition all 295 samples of 200 classical glioblastomas (Fig. 

4j, k), all 173 samples of 27 WHO grade I, 44 WHO grade II and 61 WHO grade III 

astrocytomas remained negative for AC133. We further examined non-

neuroepithelial tumours. All 12 primary cerebral B-cell lymphomas, 10 malignant 

sarcomas and 10 melanomas were devoid of AC133 expression. 9 out of 19 small 

cell lung carcinomas were immunoreactive for AC133 (Fig. 4h) while in the group of 

30 non-small cell carcinomas two metastases of breast cancer focally displayed 

granular immunoreactivity in the cytoplasm of few tumour cells for AC133. None of 
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the 16 non-small cell lung carcinoma metastases included in this group showed 

positivity for AC133. CD133 did not at all correlated with the expression of other 

putative stem cell markers such as CD15 or nestin (Supplementary Figure 4). 

 

CD133 expression in glioblastomas are restricted to GBM with small cell component. 

Since all conventional glioblastomas examined were immunonegative and AC133 

expression was restricted mainly to tumour cells with small round and blue 

phenotype we further examined 13 glioblastomas with more undifferentiated tumour 

areas – a so called small cell component. These samples only included cases with 

no known history of prior radiotherapy. In one case we observed 

immunohistochemical expression of AC133 in a minority of such cells (Fig. 4l). All 

other normal astrocytic differentiated tumour cells within this glioblastoma remained 

immunonegative for AC133.  
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Discussion: 

Depending on the tissue of origin, putative cancer stem cells (CSC) have been 

identified by an array of different markers including CD34 for acute myeloid 

leukaemia and non small cell lung cancer, CD44 for breast and prostrate cancer, 

while colorectal cancer and brain tumour CSC are considered to express the cell 

surface marker CD133 (Prominin-1).10,15,31-34 CD133 positive brain tumour-initiating 

cells are capable to proliferate in serum-restricted medium by forming tumourigenic 

neurospheres and differentiate into mature cells under normal serum-conditions.35 

These cells may exhibit increased radio- and chemoresistance through increased 

DNA repair mechanisms.16,17,36,37 CD133-positive brain tumour cells have also been 

reported in retinoblastomas and medulloblastomas - tumours known to exhibit a 

poorly differentiated morphology. Therefore, these tumours are also named small 

round blue cell tumours. 34,38 In addition, it has been noted that CD133 positive cells 

isolated from glioblastomas show absence or very low expression of glial fibrillary 

acidic protein suggesting that they might not be fully differentiated astrocytic tumour 

cells. 37,39 

In the current study we aimed to determine the expression levels of CD133 in various 

brain tumours with emphasis on immunohistochemistry to identify the morphology of 

CD133-positive tumour cells. Surprisingly, neither immunoblotting nor 

immunohistochemistry revealed a considerable expression of CD133 in commonly 

used glioma cell lines and in a large number of glioblastomas in contrast to high 

expression levels in many SRBCTs. These results were supported by absent or low-

level CD133_1 expression in realtime quantitative PCR and CD133 expression data 

in flow cytometry being almost similar to isotype controls. This contrasts with data of 
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other studies that have reported CD133 to be present in gliomas.34,40,41 These 

differences may be in part explained by the fact, that data in other studies were 

obtained on serum-free cultured neurospheres, while our cell lines were mainly 

grown under serum conditions. Even the minimal CD133-positive expression in 

astrocytic cell lines in our flow cytometry analysis could not be detected by 

immunohistochemistry although we screened a large number of glioblastoma tumour 

samples. Our observation is further corroborated by an independent flow cytometry 

study reporting less than 1% viable CD133+ cells in astrocytomas and 

oligodendrogliomas independent of their WHO grades.42 CD133 

immunohistochemistry is considered to be difficult, therefore many groups only use 

frozen tissue. The use of strong signal amplification techniques results in high 

numbers of CD133-positive cells also in astrocytomas. 43-45 Since these numbers are 

higher than flow cytometry results suggests, this indicates a possible overstaining. 

Our carefully adjusted immunohistochemical protocol permits a strong and 

unambiguously interpretable staining pattern without background staining on paraffin 

sections using the AC133 clone. 

We were able to demonstrate that CD133 in medulloblastomas is not only expressed 

in vitro36 but also in vitro and that other tumours with a small round blue cell 

phenotypes such as pineoblastoma, neuroblastoma, retinoblastoma and and small 

cell lung cancer specimens often consist of completely CD133-positive tumour cells. 

To our knowledge, CD133 expression in some of the entities in our study (e.g. 

pineoblastomas) has not been reported so far. The role of the the CD133_2 splice 

variant which was present in all tumours examined still needs further investigation. 

Interestingly in epithelial tumours both isoforms seem to be equally distributed at low 

levels.46 CD133 expression was also observered in a significant number of cases of 
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small cell lung cancer but was not fully restricted to a SRBCT phenotype in epithelial 

neoplasms in contrast to all neuroepithelial tumours. However, both CD133-positive 

cases were metastases of breast cancer in which CD133 expression has been 

reported and for which CD44 (and not CD133) is considered to be a putative stem 

cell marker.33,47  

It is noteworthy that multipotent neural stem cells present in the adult brain (located 

within the subgranular zone of the hippocampal dentate gyrus and the subventricular 

zone of the lateral ventricles) morphologically resemble undifferentiated small round 

blue cells and not astrocytes.48 Furthermore CD133+ cells in neuroepithelial SRBCTs 

frequently show a perivascular distribution pattern with signs of clonal expansion 

suggesting that there might be the possibility that these cells are integrated 

hematopoietic stem cells rather than primary tumour intrinsic cells. The recruitment of 

hematopoietic progenitor cells by VEGF expression of tumour cells has been already 

demonstrated.54 A close relationship between CD133 positive cells and adjacent 

endothelial cells was noted in in vitro experiments showing that these cells are able 

to secrete VEGF. 16,49 CD133-positive cells not closely related to tumour vessels 

have been reported to reside in pseudopalisading areas of necroses. 44 These areas 

are mainly subjected to low oxygen concentrations. From cell experiments it is known 

that cultured glioma cells are capable to upregulate CD133 on protein and mRNA 

level when kept unter hypoxic conditions. 13,50,51 

Very recent studies demonstrated that primary glioma cell cultures analysed by flow 

cytometry did also consist of CD133-negative tumour cells that fulfilled stem cell 

criteria. These cells were tumourigenic in nude mice. Furthermore, CD133-positive 

cells could also be obtained from CD133-negative tumourigenic cells.41,52,53 Even 

though the CD133 portion represents undifferentiated cells, only a minority of these 
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cells shows the ability of self-renewal and tumourigenesis.45,53 Furthermore cell 

populations depleted of CD133-positive cells are also capable to form 

glioblastomas.55 These data led to the notion that CD133 expression in freshly 

isolated tumour cells is considerably different and therefore might not be an useful 

approach to detect all tumour stem cells. 42 

In conclusion, our data shows that CD133 expression in human CNS neoplasms is 

independent from the blastodermic layer, malignancy or prognosis, but strongly 

correlates with SRBCT morphology.  
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Figure legends: 

 

Figure 1: Position of sense and antisense primers on the different positions for the  

CD133_1 and CD133_2 splice variants generating similar amplicon lengths. The 

pairs were constructed spanning at least one intron to avoid priming possible 

genomic DNA contaminations. 

 

Figure 2: Realtime RT-PCR results. Course of expression for the different CD_133 

splice variants in cultured cells and excised tumour samples. Means and 99% CIs for 

three measurement repetitions are given. 

   

Figure 3: a) In vivo and in vitro immunoblotting results (CD133, clone W3B6C1: 

120kDa band, control: beta-actin: 43 kDa band) b) FACS analysis of retinoblastoma 

cell line WERI-Rb1 (left: unstained, middle: CD56 as positive control and right: 

CD133, clone W6B3C1), c) FACS data of medulloblastoma cell line DAOY (left: 

unstained, middle: CD133 - 293C3 and right: CD133 – W6B3C1) d: FACS data for 

glioblastoma cell lines T98G, U373, LN 229, left: unstained, middle: GFAP, right: 

CD133 – W6B3C1). 

 

Figure 4: Immunohistochemical results (CD133, clone AC133): Strong membranous 

staining of small round blue cell tumours: a-c): medulloblastomas; d-e) 

pineoblastomas; e) ; f) retinoblastoma; g) neuroblastoma (esthesioneuroblastoma); 

h) metastasis of small cell lung carcinoma; i) retinoblastoma cells (WERI-Rb1). 

Within the CD133-positive small round blue cell tumours, endothelial cells or 

perivascular non-neoplastic cells remain immunonegative. j-k) classical 
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glioblastomas without small round blue cell features were completely 

immunonegative for CD133; l) In contrast only small round and blue cells of a 

glioblastoma partially exhibiting small cell differentiation show a rather diffuse pattern. 

 

Supplementary Figure 1: Immunoblotting results (CD133, clone W3B6C1: 120kDa 

band, control: beta-actin: 43 kDa band). WERI-Rb1 cells were used as positive 

control. In addition, fresh frozen tissue of 4 different primary glioblastomas and 

primary cell cultures of 3 different primary glioblastomas under different growth 

conditions were investigated. 

 

Supplementary Figure 2: Immunocytochemical analysis of CD133 expression in cell 

lines. Cells were fixed in 4%-buffered formalin (pH 7.4) and centrifuged for 5 min at 

1700 U/min. This fixed cell pellet was embedded in paraffin and stained for CD133 

expression (AC133): a) WERI-Rb1 retinoblastoma cell line strongly expressed 

CD133 on most cells; b) DAOY medulloblastoma cell line exhibited several CD133-

positive cells (arrows) while glioma cell lines such as T98G (c) remained negative.  

 

Supplementary Figure 3: CD133 expression in biopsies of non-neoplastic CNS 

diseases. In contrast to small round blue cell neoplasms such as medulloblastomas 

(a), non neoplastic CNS diseases including epilepsies (b: Wyler grade 3; c: Wyler 

grade 4) as well as surrounding tissue of arterio-venous malformations (d), epilepsy 

brains without gross morphological changes (e) or cerebellar bleeding (f) remained 

negative for CD133. 
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Supplementary Figure 4: Comparison of CD133, CD15 and nestin expression in CNS 

neoplasms (n=30). (A) WERI-Rb1 for CD133, (B) a brain infarction for CD15, (C) and 

a fetal brain of the for nestin were used as positive controls. Small round blue cell 

neoplasms including pineoblastoma (D-F) and medulloblastoma (G-I) were labelled 

for CD133 (D, G), CD15 (E, H) and nestin (F, I). CD133-negative normal brain (J) 

and astrocytoma ((K) pilocytic astrocytoma WHO grade I, (L) diffuse astrocytoma 

WHO grade II, (M) anaplastic astrocytoma WHO grade III and (N, O) glioblastoma 

WHO grade IV) cases were further investigated for nestin (J-N) and CD15 (N). 
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Tables: 

Table 1: Primer sequences used in this study for real-time RT-PCR. All primers were 

chosen to span at least one intron to control for and exclude the possibility of 

contamination with genomic DNA. 

mRNA Sense Primer Antisense Primer 
Product 
Size 

Cd133_1 
5’TTG ATT ATG ACA 
AGC CAG AAA CTG3’ 

5’ACC CCA CCA GAG GCA 
TCA G3’ 

120 bp 

Cd133_2 
5’GAC AAG ATT GTC 
TAC TAT GAA GCA 
GG3’ 

5’ACC CCA CCA GAG GCA 
TCA G3’ 

85 bp 

GAPDH 
5’GCC TGG AGA AAC 
CTG CCA AG3’ 

5’TGG TCC TCA GTG TAG 
CCC AAG3’ 

96 bp 
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Supplementary Table 1: Epidemiological data. For tumour specimens received from 

other pathological institutes, no epidemiological data were obtained (e.g. 

neuroblastomas, retinoblastomas).  

Diagnosis mean age sex (m/f) 
Glioblastoma 58.4 54/35 
Astrocytoma WHO III 46.0 32/20 
Astrocytoma WHO II 43.7 20/16 
Astrocytoma WHO I 21.1 16/9 
Medulloblastoma 19.7 41/25 
PNET 44.1 9/1 

Neuroblastoma N/A N/A 
Carcinoma 63.4 24/9 

 

 

 

 

 

 

 

 

 

 

 

Deleted: contamination with 
genomic DNA.

Page 29 of 38

Published on behalf of the British Division of the International Academy of Pathology

Histopathology



For Peer Review

 30 

Supplementary Table 2: Epidemiological data of cases with biopsies of non-

neoplastic CNS lesions. 

 

Diagnosis Age Sex 
pineal cyst + adjacent CNS 40 M 
pineal cyst + adjacent CNS 28 M 
pineal gland + adjacent CNS 58 F 
mesial temporal sclerosis Wyler 3 35 F 
mesial temporal sclerosis Wyler 4 28 M 
mesial temporal sclerosis Wyler 3 37 M 

mesial temporal sclerosis Wyler 3 35 F 
pineal cyst + adjacent CNS 7 M 
pineal gland + adjacent CNS 27 M 
CNS + Stroke 54 M 
CNS + CAA 81 M 
CNS + hematoma 55 M 
Cerebellum 84 F 

CNS + AVM 20 M 
PML 64 F 
CNS + cavernoma 52 M 
CNS + AVM 60 M 
CNS + AVM 27 M 
normal CNS 55 F 
Cerebellum + bleeding 70 F 
CNS + cavernoma 21 M 
CNS + cavernoma 19 M 
CAA 83 M 
Stroke 36 F 
mesial temporal sclerosis Wyler 4 36 M 

CNS + cavernoma 38 M 
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Figure 1: Position of sense and antisense primers on the different positions for the  CD133_1 and 
CD133_2 splice variants generating similar amplicon lengths. The pairs were constructed spanning 

at least one intron to avoid priming possible genomic DNA contaminations.  
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Figure 2: Realtime RT-PCR results. Course of expression for the different CD_133 splice variants in 
cultured cells and excised tumour samples. Means and 99% CIs for three measurement repetitions 

are given.  
685x407mm (72 x 72 DPI)  
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Figure 3: a) In vivo and in vitro immunoblotting results (CD133, clone W3B6C1: 120kDa band, 
control: beta-actin: 43 kDa band) b) FACS analysis of retinoblastoma cell line WERI-Rb1 (left: 
unstained, middle: CD56 as positive control and right: CD133, clone W6B3C1), c) FACS data of 
medulloblastoma cell line DAOY (left: unstained, middle: CD133 - 293C3 and right: CD133 – 
W6B3C1) d: FACS data for glioblastoma cell lines T98G, U373, LN 229, left: unstained, middle: 

GFAP, right: CD133 – W6B3C1).  
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Figure 4: Immunohistochemical results (CD133, clone AC133): Strong membranous staining of 
small round blue cell tumours: a-c): medulloblastomas; d-e) pineoblastomas; e) ; f) 

retinoblastoma; g) neuroblastoma (esthesioneuroblastoma); h) metastasis of small cell lung 
carcinoma; i) retinoblastoma cells (WERI-Rb1). Within the CD133-positive small round blue cell 

tumours, endothelial cells or perivascular non-neoplastic cells remain immunonegative. j-k) classical 
glioblastomas without small round blue cell features were completely immunonegative for CD133; l) 

In contrast only small round and blue cells of a glioblastoma partially exhibiting small cell 
differentiation show a rather diffuse pattern.  
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Supplementary Figure 1: Immunoblotting results (CD133, clone W3B6C1: 120kDa band, control: 
beta-actin: 43 kDa band). WERI-Rb1 cells were used as positive control. In addition, fresh frozen 

tissue of 4 different primary glioblastomas and primary cell cultures of 3 different primary 
glioblastomas under different growth conditions were investigated.  
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Supplementary Figure 2: Immunocytochemical analysis of CD133 expression in cell lines. Cells were 
fixed in 4%-buffered formalin (pH 7.4) and centrifuged for 5 min at 1700 U/min. This fixed cell 
pellet was embedded in paraffin and stained for CD133 expression (AC133): a) WERI-Rb1 

retinoblastoma cell line strongly expressed CD133 on most cells; b) DAOY medulloblastoma cell line 
exhibited several CD133-positive cells (arrows) while glioma cell lines such as T98G (c) remained 

negative.  
1064x265mm (72 x 72 DPI)  
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Supplementary Figure 3: CD133 expression in biopsies of non-neoplastic CNS diseases. In contrast 
to small round blue cell neoplasms such as medulloblastomas (a), non neoplastic CNS diseases 
including epilepsies (b: Wyler grade 3; c: Wyler grade 4) as well as surrounding tissue of arterio-

venous malformations (d), epilepsy brains without gross morphological changes (e) or cerebellar 
bleeding (f) remained negative for CD133.  
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Supplementary Figure 4: Comparison of CD133, CD15 and nestin expression in CNS neoplasms 
(n=30). (A) WERI-Rb1 for CD133, (B) a brain infarction for CD15, (C) and a fetal brain of the for 
nestin were used as positive controls. Small round blue cell neoplasms including pineoblastoma (D-

F) and medulloblastoma (G-I) were labelled for CD133 (D, G), CD15 (E, H) and nestin (F, I). 
CD133-negative normal brain (J) and astrocytoma ((K) pilocytic astrocytoma WHO grade I, (L) 

diffuse astrocytoma WHO grade II, (M) anaplastic astrocytoma WHO grade III and (N, O) 
glioblastoma WHO grade IV) cases were further investigated for nestin (J-N) and CD15 (N).  
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