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The Denjoy alternative for computable functions

Laurent Bienvenu, Rupert Hölz∗, Joseph S. Miller, André Nies

September 26, 2011

Abstract

The Denjoy-Young-Saks Theorem from classical analysis states that for an arbitrary
function f : R → R, the Denjoy alternative holds outside a null set. This means that for
almost every real x, either the derivative of f exists at x, or the derivative fails to exist
in the worst possible way: the limit superior of the slopes around x equals +∞, and
the limit inferior −∞. Algorithmic randomness allows us to define randomness notions
giving rise to different concepts of almost everywhere. It is then natural to wonder which
of these concepts corresponds to the almost everywhere notion appearing in the Denjoy-
Young-Saks theorem. To answer this question Demuth investigated effective versions
of the theorem. In his first variation, the function f is stipulated to be computable,
and in the second one the function f is only Markov computable. For this second
version, Demuth introduced a strong notion of randomness (stronger for example than
Martin-Löf randomness) now known as Demuth randomness, which he proved to be
sufficient to satisfy the Denjoy alternative for all Markov computable functions. In
this paper, we in turn investigate these two effective theorems. We first show that the
set of points that fulfill the Denjoy alternative for computable functions coincides with
the set of computably random reals. We then show that the set of points that fulfill
the Denjoy alternative for Markov computable functions is strictly bigger than the set
of Demuth random reals — showing that Demuth’s sufficient condition was too strong
— and moreover is incomparable with Martin-Löf randomness (meaning in particular
that it does not correspond to any known set of random reals).

To prove these two theorems, we study density-type theorems, such as the Lebesgue
density theorem and obtain results of independent interest. We show for example that
the classical notion of Lebesgue density can be characterized in an interesting way
by the only very recently defined notion of difference randomness: x being difference
random is equivalent to it being Martin-Löf random and having positive density in
every effectively closed class in which x is contained. This is to our knowledge the first
analytical characterization of difference randomness. We also consider the concept of
porous points, a special type of Lebesgue non-density points that are well-behaved in
the sense that the “density holes” around the point are continuous intervals whose
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length follows a certain systematic rule. An essential part of our proof will be to argue
that porous points of effectively closed classes can never be difference random.

1 Introduction

The aim of the theory of algorithmic randomness is to give a precise definition of what it
means for a single object (usually a finite or infinite binary sequence) to be random. For infi-
nite binary sequences (or reals, as any real can be represented by an infinite binary sequence)
a satisfactory definition was given by Martin-Löf [10]. Informally an infinite sequence x is
Martin-Löf random if it does not belong to any set which can computably be shown to have
measure 0. Even though Martin-Löf’s definition is still believed to be the best one (at least
the most well-behaved), many alternative notions of randomness have appeared in the lit-
erature over the years, some weaker than Martin-Löf randomness, some stronger. We refer
the reader to the two recent books [7, 11] for an extensive survey of these notions.

An interesting line of research is to study the connections between algorithmic random-
ness and computable analysis. The latter is concerned with effective versions of classical
theorems in analysis, i.e. analytical theorems where the objects involved (functions, sets,
points, etc.) are effective, i.e., computable in some sense. Now take a classical theorem
of type “for any function f , for almost every x, . . . ”. Its effective version will look like
“for any effective function f , for almost every x, . . . ”. Now, since there are only countably
many effective functions (no matter what meaning is given to effective), one can reverse the
quantifiers, and get a statement of type: “for almost every x, for every effective function f ,
...”. Therefore, a sufficiently random x will satisfy the conclusion of the theorem. For each
such theorem, we can thus look at the following question: How much randomness is needed
for x to satisfy the conclusion of the theorem? A recent example is a result proven in [1]
and [9] showing that Martin-Löf randomness is precisely the level of randomness needed to
satisfy the most natural effective version of Birkhoff’s ergodic theorem. Another is a result
of Brattka, Miller and Nies [3], which is closely connected to study conducted in this paper.
They considered the effective version of the following theorem. If f is a non-decreasing func-
tion from R to R, then f is differentiable almost everywhere. Following the above scheme,
they studied the class of reals x such that every computable non-decreasing function f is
differentiable at x and were able to show that this class precisely coincides with the class
of computably random reals. This was surprising as computable randomness — a weaken-
ing of Martin-Löf randomness that in many ways behaves quite pathologically — had very
few known characterizations other than its original definition, and in particular no known
analytical characterization.

Demuth [6] studied an effective version of a related theorem, the so-called Denjoy-Young-
Saks theorem, which asserts that any function f : R → R satisfies the Denjoy alternative
at almost all points. The Denjoy alternative at a point x states that either the function is
differentiable at x or the derivative fails to exists in the most dramatic way, i.e. the function f
has around x arbitrarily large positive slopes and negative slopes. Demuth mainly studied the
Denjoy alternative for Markov computable functions (which we will define in the moment)
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and studied the set DA of points x such that any Markov computable function satisfies
the Denjoy alternative at x. Demuth introduced a randomness notion, now called Demuth
randomness, which he proved to be sufficient to be in DA. The main result of this paper is
that Demuth randomness is in fact too strong a condition, and that the class DA is strictly
larger that the class of Demuth random reals.

We show that difference randomness (a notion of randomness strictly stronger than
Martin-Löf randomness and strictly weaker than Demuth randomness) constitutes a suffi-
cient condition for the Denjoy alternative to hold for Markov computable functions.

Theorem 1. Every difference random real belongs to DA.

We then show that this result cannot be strengthened to Martin-Löf randomness: in fact,
Martin-Löf randomness is neither sufficient nor necessary to ensure the Denjoy alternative
for Markov computable functions.

Theorem 2. The set DA of reals which satisfy the Denjoy alternative for all Markov com-
putable functions is incomparable under inclusion with the set of Martin-Löf random reals.

These results will be proven in Section 3.

1.1 Preliminaries

We provide notation, recall the definitions of computable and Markov computable functions
on the real numbers, and recall the definitions of Martin-Löf randomness, difference random-
ness, and computable randomness.

Basic notation. The set of finite binary sequences (we also say strings) is denoted by
2<ω, and the set of infinite binary sequences, called Cantor space, is denoted by 2ω. For a
string σ, |σ| is the length of σ. If σ is a string, and x is either a string or an infinite binary
sequence, we say that σ is a prefix of x, which we write σ � x, if the first |σ| bits of x are
exactly the string σ. Given an binary sequence, infinite or finite with length at least n, x↾n
denotes the string made of the first n bits of x.

The Cantor space is classically endowed with the product topology. A basis of this
topology is the set of cylinders: given a string σ ∈ 2<ω, the cylinder [[σ]] is the set of elements
of 2ω having σ as a prefix. If A is a set of strings, [[A]] is the union of the cylinders [[σ]]
with σ ∈ A. The Lebesgue measure λ (or uniform measure) on the Cantor space is the
probability measure assigning to each bit the value 0 with probability 1/2 and the value 1
with probability 1/2, independently of all other bits. Equivalently it is the measure λ such
that λ([[σ]]) = 2−|σ| for all σ. We abbreviate λ([[σ]]) by λ(σ). Given two subsets X and Y ,
the second one being of positive measure, the conditional measure λ(X |Y) of X knowing Y
is the quantity λ(X ∩ Y)/λ(Y). As before, if X or Y is a cylinder [[σ]], we will simply write
it as σ.

Computable real-valued functions. Most of the paper will focus on functions from
[0, 1] to R. The set [0, 1] is typically identified with 2ω, where a real x ∈ [0, 1] is identified with
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its binary expansion. This extension is unique, except for dyadic rationals (of the form a2−b

with a, b positive integers) which have two. A cylinder [[σ]] will be commonly identified with
the open interval (0.σ, 0.σ + 2−n), where 0.σ is the dyadic rational whose binary extension
is 0.σ000 . . ..

We say that a function f : [0, 1] → R is computable (over the reals) if it can be effectively
approximated with arbitrary precision. More precisely, f is computable (over the reals) if

there exists a computable function f̂ : Q × N → Q and a computable ψ : N → N such
that for all x ∈ [0, 1], |x − q| < 2−ψ(n) ⇒ |f(x) − f̂(q, n)| < 2−n. Note that a computable
function over the reals is by this definition necessarily continuous. A real x is computable
if the constant function x is computable. Equivalently, a real is computable if its binary
expansion, seen as a function from N to {0, 1} is computable.

We denote the set of computable reals by Rc. The image of a computable real by a
computable function is itself a computable real. Since the computable reals form a dense
subset of the reals, a computable function is uniquely determined by its restriction Rc → Rc.
The class of Markov computable functions is a larger class of functions Rc → Rc. As we just
said, a real x is computable if there is a computable function β which computes its binary
expansion. Any index i of β in an uniform enumeration (φi)i of partial computable functions
is called a name for x. A function f : Rc → Rc is said to be Markov computable if from a
name of x ∈ Rc, one can effectively compute a name for f(x). More precisely, f is Markov
computable if there exists a partial computable function f̌ : N → N such that for all x ∈ Rc,
if i is a name for x, then f̌(i) is defined and is a name for f(x). Given a Markov computable
function f , x ∈ [0, 1] and s ∈ N, we write sometimes use the notation f(x)s to denote the
approximation of f(x) at stage s. Unless specified otherwise, a Markov computable function
is always assumed to be total on [0, 1]∩Rc. An important theorem of Tseitin [12] states that
a total Markov computable function is always continuous on its domain.

We define the following analytical notations: for a function f , the slope at a pair a, b of
distinct reals in its domain is

Sf (a, b) =
f(a)− f(b)

a− b
.

Recall the following definitions for the case that z is in the domain of f .

Df(z) = lim sup
h→0

Sf(z, z + h) and Df(z) = lim inf
h→0

Sf(z, z + h)

The derivative f ′(z) exists if and only if these values are equal and finite.
In this article we will work with functions that are not necessarily defined on all reals,

e.g. Markov computable functions. When working with these functions Df(z) and Df(z)
are not defined for all z. Nonetheless, in case the set dom(f) is a dense subset of [0, 1], one
can consider the lower and upper pseudo-derivatives defined by:

D
˜
f(z) = lim inf

h→0+
{Sg(a, b) : a, b ∈ dom(f) ∧ a ≤ x ≤ b ∧ 0 < b− a ≤ h}.

D̃f(z) = lim sup
h→0+

{Sg(a, b) : a, b ∈ dom(f) ∧ a ≤ x ≤ b ∧ 0 < b− a ≤ h}.
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It is not true in general that if a function f is defined at a point z, then D
˜
f(z) = Df(z)

and D̃f(z) = Df(z). This is true however when the function f is continuous on its (dense)
domain, which is the case for computable and Markov computable functions. Note also that
in this special case, one can replace, in the definition of D

˜
f and D̃f , dom(h) by any dense

subset of dom(h) (for Markov computable functions, one could for example take Q instead).

We also later need the following technical lemma.

Lemma 3. Let h : ⊆ [0, 1] → R+
0 be a computable function that is defined and non-decreasing

on an effectively closed class C. Then h↾C can be extended to a function g : [0, 1] → R+
0 that

is computable and non-decreasing on [0, 1].

Proof. Before we can prove Lemma 3 we prove the following easy claim. Claim Let C be
an effectively closed class. Let h : ⊆ [0, 1] → R+

0 be a computable function with domain
containing C. Then supx∈C{h(x)} is right-c.e. and infx∈C{h(x)} is left-c.e. uniformly in an
index for C.
Proof. We prove the statement for the supremum; the proof for the infimum is analogous.
We use the signed digit representation of reals, that is every real is represented by an infinite
sequence in {−1, 0, 1}∞.

We run in parallel an enumeration of Cc and for all x ∈ [0, 1] (given by a Cauchy name
(xn)n∈N) the computations of h(x) up to precision 2−n. That is, we want to compute (h(x))n,
the n-th entry of a Cauchy name for h(x).

Due to uniform continuity, for each n there is a number n′ such that for all x in order to
accomplish the computation it suffices to have access to the initial segment (x0, . . . , xn′) of
the Cauchy name of x. When the computation of (h(x))n halts for some x it also halts for
all other x′ which have a Cauchy name that begins with (x0, . . . , xn′), since the computation
is clearly the same. We do not know n′, so we build a tree of computations that branches
into three directions (−1, 0 and 1) whenever we access a new entry of the Cauchy name of
the input. We remove a branch of the tree when it gets covered by Cc. Due to the existence
of n′ the tree will remain finite.

Write supx∈C{h(x)}[n] for the approximation to the value supx∈C{h(x)} that we achieve
when we proceed as described with precision level 2−n. If we increase the precision, more of
Cc may get enumerated before halting has occurred everywhere on the tree; so we see that
the sequence (supx∈C{h(x)}[n]+2−n)n→∞ is a right-c.e. approximation to supx∈C{h(x)}. The
claim is proved. ⋄

Now, since C is compact and closed, h is uniformly continuous on C, that is, for every
ε > 0 there exists a single δ(ε) > 0 such that for any point x ∈ E the continuity condition

|y − x| < δ(ε) ⇒ |h(y)− h(x)| < ε

is satisfied.
Idea. We do not know δ(ε) for a given ε, but we can search for it using in parallel the

following construction for different candidate δ’s:
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We split the unit interval into intervals (Ik)k of length δ and write lk for the left border
point of Ik. Write ik for inf{h(x) | x ∈ Ik ∩ E} and sk for sup{h(x) | x ∈ Ik ∩ E} if these
values exist. We use the above claim to approximate ik and sk for all intervals, and at the
same time we enumerate Cc, the complement of C.

We do this until we have found a δ (called ε-fit) such that every interval has been dealt
with; by this we mean that for every interval Ik we have either covered Ik with Cc, or we
have found that sk − ik < ε, that is we already know h up to precision ε. In the latter case
we set our approximation to h to be the line from point (lk, ik) to point (lk+1, sk); on the
remaining intervals (the former case) we interpolate linearly. Call the new function g0. We
can then output g0(x) up to precision ε at any point x ∈ [0, 1].

A problem with this construction. The following problem can occur with g0: Assume we
have for some ε found a δ that is ε-fit. We construct g0 as described and interpolate linearly
on, say, the maximal connected sequence Ik, . . . , Ik+n, all contained in Cc. But if we look
at the same construction for g0 at a better precision ε′ < ε, we might actually enumerate
more of Cc until we find an ε′-fit δ′, and this might extend the sequence Ik, . . . , Ik+n to, say,
Ik−i, . . . , Ik+n+j, all contained in Cc. The linear interpolation on this sequence of intervals
would then be significantly flatter than at level ε. So for some x ∈ Ik−i ∪ · · · ∪ Ik+n+j we
might have that the approximation to g0 with precision ε differs by more than ε from the
approximation to g0 with precision ε′, which is not allowed.

To fix this problem we need to define g inductively over all precision levels, and “commit”
to all linear interpolations that have happened at earlier precision levels, as will be described
now.

Formal construction. Assume we want to compute the n-th entry of a Cauchy name for
g(x), that is we want to compute g(x) up to precision 2−n. We say that we are at precision
level n. We do not know δ(2−n) so we do the following with δ = 2−p in parallel for all p until
we find a δ that is n-fit, defined as follows:

Split the interval [0, 1] into intervals of length δ and write

Ik = [(k − 1) · 2−p, k · 2−p)

for the k-th interval and lk = (k − 1) · 2−p for the left border point of Ik. For
mathematical precision set Ip := [1 − 2−p, 1]. Call an interval Ik n-treated if
there exists a smaller precision level n′ < n where Ik has been covered by Cc and
therefore a linear interpolation on Ik has been defined. We say that δ is n-fit if

• for every interval Ik we have that

1. Ik is n-treated or

2. Ik ∩ E = ∅ or

3. sk − ik < 2−n

• and if for all k, where both Ik and Ik+1 fulfill condition 3, we have ik+1 < sk;
that is, we have that intervals that directly follow each other have a “vertical
overlap” in their approximations.
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The following linear interpolation is an 2−n-close approximation to g:
First, inductively replay the construction for all precision levels n′ < n to find all n-

treated intervals. For the remaining intervals, run in parallel the right-c.e. and left-c.e.
approximations to sk and ik, respectively, and the enumeration of Cc, until for every interval
either condition 2 or 3 are satisfied.

Build the following piecewise linear function: For all intervals that are already n-treated,
keep the linear interpolations from the earlier precision level n−1. In all remaining intervals
Ik that fulfill condition 3 we set g to be the line from point (lk, ik) to (lk+1, sk), that is, for
x ∈ Ik we let

g(x) = ik + (x− lk) ·
(sk − ik)

lk+1 − lk
= ik + (x− lk)

(sk − ik)

δ
.

Now look at the remaining intervals that have not yet been assigned a linear interpolation.
In every maximal connected sequence Ik, . . . , Ik+n of such intervals every interval must fulfill
condition 2. We interpolate linearly over Ik, . . . , Ik+n in the straightforward way, that is we
draw a line from point (sk, g(lk)) to point (sk+n+1, g(lk+n+1)) (strictly speaking g(lk) is not
yet defined, so use limx→lk g(x) instead).

Verification. It is clear that g is everywhere defined and non-decreasing. Whenever h
was defined on a point x ∈ Ik inside E, g gets assigned a value between ik and sk and since
sk > h(x) > ik and sk − ik < 2−n we have |h(x)− g(x)| < 2−n. To see that g is computable
note that sk and ik are defined on any interval that is not entirely contained in Cc and that
these values can be approximated in a right-c.e. and left-c.e. way, respectively, by using the
claim proved earlier in this proof.

Randomness notions. As we have seen above, an open set U ⊆ 2ω is a union of cylinders.
If it is a union of a computably enumerable (c.e.) family of cylinders, it is said to be effectively
open (or c.e. open). A set is called effectively closed set if its complement is effectively open.
If (Un) is a sequence of open sets, it is said a to be a uniformly c.e. sequence of open sets if
there is a sequence (Wn) of uniformly c.e. sets of strings such that each Un is the union of
the cylinders generated by the strings in Wn.

A Martin-Löf test is a uniformly c.e. sequence (Un)n of open sets such that for all n,
λ(Un) < 2−n. A difference test is a pair ((Un)n,C ) of a uniformly c.e. sequence (Un)n of open
classes and a single effectively closed class C such that for all n, λ(Un ∩C ) < 2−n. A strong
test is a sequence of uniformly c.e. sequence (Un)n of open sets with the weaker condition
that limn λ(Un) = 0.

Definition 4. A sequence x ∈ 2ω is called Martin-Löf random if there is no Martin-Löf test
covering it, i.e., for any Martin-Löf test (Un)n we have x 6∈

⋂
n Un. A sequence x ∈ 2ω is

called weak-2-random if there is no strong test covering it, i.e., for any strong test (Un)n we
have x 6∈

⋂
n Un. A sequence x ∈ 2ω is called difference random if there is no difference test

covering it, i.e., if for any difference test ((Un)n,C ) we have x 6∈
⋂
n(Un ∩ C ).

The notion of difference randomness was introduced by Franklin and Ng [8]. They proved
that the set of difference random reals in fact coincides with the set of Martin-Löf random
reals that are Turing incomplete.
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Proposition 5. For both Martin-Löf randomness and difference randomness, it is equivalent
(see for example [7]) to require “almost avoidance”: a sequence x ∈ 2ω is Martin-Löf ran-
dom (resp. difference random) if and only if for every Martin-Löf test (Un) (resp. difference
test ((Un),C )), x only belongs to finitely many Un (resp. finitely many Un ∩ C ).

Note that this type of “almost avoidance” variation of definitions is not admissible for
weak 2-randomness.

Another strengthening of Martin-Löf randomness is Demuth randomness. A Demuth test
is a sequence (Un) of effectively open sets, which is not necessarily uniformly c.e. but instead
enjoys the following weak form of uniformity: there exists an ω-c.e. function f : N → N which
for each n gives a c.e. index for a set of strings generating Un.

Definition 6. A sequence x ∈ 2ω is said to be Demuth random if for every Demuth test
(Un), x belongs to only finitely many Un.

The last notion of randomness we will discuss in the paper is computable randomness.
Its definition involves the notion of martingale.

Definition 7. A martingale is a function d : 2<ω → [0,∞) such that for all σ ∈ 2<ω

d(σ) =
d(σ0) + d(σ1)

2
.

Intuitively, a martingale represents a betting strategy where a player successively bets
money on the values of the bits of an infinite binary sequence (doubling its stake when guess
is correct); d(σ) then represents the capital of the player after betting on initial segment σ.
With this intuition, a martingale succeeds against a sequence x if lim supn d(x↾n) = +∞. A
computably random sequence is a sequence against which no computable betting strategy
succeeds. In other words:

Definition 8. A sequence x ∈ 2ω is computably random if and only if for every computable
martingale d, lim supn d(x↾n) < +∞

We denote by MLR, W2R, DiffR, DemR, CR the classes of Martin-Löf random, weak-2-
random, difference random, Demuth random and computably random sequences respectively.

Given a sequence x ∈ 2ω, the following implications

x ∈ W2R

ց
x ∈ DiffR −→ x ∈ MLR −→ x ∈ CR

ր
x ∈ DemR

hold and no other implication holds in general (other than those which can be derived by
transitivity from the above diagram). See for example [11] for a detailed exposition.
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2 Density and porosity

In this section, we initiate the study of effective aspects of Lebesgue density, which will be
crucial in the proofs of Theorems 1 and 2. In this section, we mostly focus on what is needed
for the proofs of these theorems. In Section 4 we will provide further results on density.

Let us first recall the concept of Lebesgue density:

Definition 9. We define the (Lebesgue) density ρ of a set C ⊆ R at a point x to be the
quantity

ρ(x|C ) := lim inf
δ→0+

λ([x− δ, x+ δ] ∩ C )

λ([x− δ, x+ δ])
,

where λ is the Lebesgue measure.

Intuitively, this measures what fraction of the space is filled by C around x if we “zoom
in” arbitrarily close. Note that the density of a set at a point is between 0 and 1.

Again, in the rest of the paper, we will freely identify 2ω and [0, 1] and will therefore be
able to talk about density of a set C ⊆ 2ω at a point.

Theorem 10 (Lebesgue density theorem). Let C ⊆ R be a measurable set. Then ρ(x|C ) = 1
for all points x ∈ C outside a set of measure 0.

The concept of porosity of a set at a point forms a cornerstone of the proofs of Theorems 1
and 2. The following definition is due to E.P. Dolzhenko, 1967 (see for instance [2, 5.8.124],
but note the typo in the definition there).

Definition 11. We say that C is porous at x via ε > 0 if for each α > 0 there exists β with
0 < β ≤ α such that (x − β, x + β) contains an open interval of length εβ that is disjoint
from C. We say that C is porous at x if it is porous at x via some ε. We call non-porosity
point a real x such that every effectively closed class to which it belongs is non-porous at x.

Clearly porosity of C at x implies ρ(x|C) < 1. Therefore, given an effectively closed
class C, for almost every point x of this class, C is not porous at x. Since there are only
countably many effectively closed sets, it follows that the set of non-porosity points has
measure 1. Our next proposition makes this more precise.

Lemma 12. Let C ⊆ [0, 1] be an effectively closed class. If z ∈ C is difference random, then
C is not porous at z.

Proof. In this proof, we say that a string σ meets C if [[σ]] ∩ C 6= ∅.
Fix c ∈ N. We build a difference test covering the points x at which C is porous via 2−c+2.

For each string σ consider the set of minimal “porous” extensions at stage t,

Nt(σ) =

{
ρ � σ

∣∣∣∣ ∃τ
[

|τ | = |ρ| ∧ |0.τ − 0.ρ| ≤ 2−|ρ|+c∧
[[τ ]] ∩ Ct = ∅ ∧ ρ is minimal with this property

]}
.
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Note that by the formal details of this definition even the “holes” τ are ρ’s, and therefore
contained in the sets Nt(σ). This will be essential for the proof of the first of the following
two claims. In contrast to this, note that if ρ meets C then ρ 6= τ , which implies

∑

ρ∈Nt(σ)
ρ meets C

2−|ρ| ≤ (1− 2−c)2−|σ|. (1)

At each stage t of the construction we define recursively a sequence of anti-chains as follows.

B0,t = {∅}, and for n > 0: Bn,t =
⋃

{Nt(σ) : σ ∈ Bn−1,t}

Claim. If a string ρ is in Bn,t then it has a prefix ρ′ in Bn,t+1.
This is clear for n = 0. Suppose inductively that it holds for n− 1. Suppose further that ρ
is in Bn,t via a string σ ∈ Bn−1,t. By the inductive hypothesis there is σ′ ∈ Bn−1,t+1 such
that σ′ � σ. Since ρ ∈ Nt(σ), ρ is a viable extension of σ′ at stage t + 1 in the definition of
Nt+1(σ

′), except maybe for the minimality. Thus there is ρ′ � ρ in Nt+1(σ
′). This establishes

the claim. 3

Claim. For each n, t, we have
∑

{2−|ρ| : ρ ∈ Bn,t ∧ ρ meets C} ≤ (1− 2−c)n.
This is again clear for n = 0. Suppose inductively it holds for n− 1. Then, by (1),

∑

ρ∈Bn,t

ρ meets C

2−|ρ| =
∑

σ∈Bn−1,t

σ meets C

∑

ρ∈Nt(σ)
ρ meets C

2−|ρ|

≤
∑

σ∈Bn−1,t

σ meets C

2−|σ|(1− 2−c) ≤ (1− 2−c)n.

This establishes the claim. 3

Now let Un = [[
⋃
tBn,t]]. Clearly the sequence (Un)n∈N is uniformly effectively open. By

the first claim we have Un =
⋃
t[[Bn,t]], so the second claim implies that λ(C∩Un) ≤ (1−2−c)n.

Every interval (a, b) ⊆ [0, 1] contains an interval of the form [[ρ]] for a dyadic string ρ
such that the length of [[ρ]] is no less than (b − a)/4. Therefore, if C is porous at x via
2−c+2 then x ∈

⋂
n Un for each n. Take a computable subsequence (Ug(n))n∈N such that

λ(C ∩ Ug(n)) ≤ 2−n to obtain a difference test that x fails.

3 Effective forms of the Denjoy-Young-Saks Theorem

We begin with the formal definition of the Denjoy alternative.

Definition 13. Let f :⊆ [0, 1] → R be a partial function whose domain is dense. We say
that f satisfies the Denjoy alternative at x if

• either the pseudo-derivative of f at x exists (meaning that D̃f(x) = D
˜
f(x))

• or D̃f(x) = +∞ and D
˜
f(x) = −∞

10



Intuitively this means that there are two ways for the alternative to hold: either the
function behaves well on x by having a derivative at this place, or, if it behaves badly, it
does so in the worst possible way, that being the fact that the limit superior and the limit
inferior diverge as much as possible. The Denjoy-Young-Saks theorem (see, e.g., Bruckner [4])
states that the Denjoy alternative holds at almost all points for any function f .

3.1 Computable randomness means that all computable function

satisfy the Denjoy alternative

Definition 14 (Demuth [5]). A real z ∈ [0, 1] is called Denjoy random (or a Denjoy set) if
for no Markov computable function g we have D

˜
g(z) = +∞.

In a preprint by Demuth [5, p. 6] it is shown that if z ∈ [0, 1] is Denjoy random,
then for every computable f : [0, 1] → R the Denjoy alternative holds at z. By combining
this result with the results in [3] we can achieve the following result that provides a pleasing
characterization of computable randomness through differentiability of computable functions.

Theorem 15 (Demuth, Miller, Nies, Kučera). The following are equivalent for a real z ∈
[0, 1].

1. z is Denjoy random.

2. z is computably random.

3. For every computable f : [0, 1] → R the Denjoy alternative holds at z.

Note that all we needed for the last implication was that g(q) is a computable real uni-
formly in a rational q ∈ [0, 1]∩Q. Thus, in Definition 14 we can replace Markov computability
of g by this weaker hypothesis.

Proof. (1) ⇒ (3) is a result of Demuth [5].

(3) ⇒(2): Let f be a nondecreasing computable function. Then f satisfies the Denjoy
alternative at z. Since D

˜
f(z) ≥ 0, this means that f ′(z) exists. This implies that z is

computably random by Brattka et al. [3, Thm. 4.1].

(2) ⇒ (1): Given a binary string σ, we write Sf (σ) to mean Sf (a, b) where (a, b) = [[σ]].
By hypothesis z is incomputable, and in particular not a rational. Suppose that the

function g is Markov computable and D
˜
g(z) = +∞. Choose dyadic rationals a, b such that

(a, b) = [[σ]] for some string σ, z ∈ (a, b) ⊆ [0, 1] and Sg(r, s) > 4 for each r, s such that
z ∈ (r, s) ⊆ (a, b).

Define a computable martingale M on extensions τ � σ that succeeds on (the binary
expansion of) z. In the following τ ranges over such extensions.

First note that Sg(τ) is a computable real uniformly in τ . Furthermore, the function
τ 7→ Sg(τ) satisfies the martingale equality, and succeeds on z in the sense that its values
are unbounded (even converge to ∞) along z. However, this function may have negative
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values; informally, this is as if we were allowed to “bet with debt” because we can increase
our capital at a string σ0 beyond 2Sg(σ) by incurring a debt, i.e. negative value, at Sg(σ1).
We now define a computable martingale M that succeeds on z and does not bet with debt.

Let M(∅) = Sg(∅). Suppose now that M(τ) has been defined and is positive.

Case 1. There is u ∈ {0, 1} such that, where v = 1 − u, we have S(τv)1 < 1 (this is the
second term in the Cauchy name for the computable real S(τv), which is at most 1/2 away
from that real). Then S(τv) < 2. By choice of a, b we now know that z is not an extension of
τv. Thus, we letM double its capital along τu, letM(ρ) = 0 for all ρ � τv. (The martingale
M stops betting on these extensions.)

Case 2. Otherwise. Then S(τv) > 0 for v = 0, 1. We let M bet with the same betting
factors as Sg:

M(τu) =M(τ)
Sg(τu)

Sg(τ)
for u = 0, 1.

Note that M(τu) > 0.
If Case 1 applies to infinitely many initial segments of the binary expansion of z, then

M doubles its capital along z infinitely often. Since M has only positive values along z, this
means that limnM(z ↾n) fails to exist, whence z is not computably random by the effective
version of the Doob martingale convergence theorem [7, Theorem 7.1.3].

Otherwise, along z, M is eventually in Case 2. So M succeeds on z because Sg does.

3.2 Difference randomness implies that all Markov computable

function satisfy the Denjoy alternative

We now turn to the proof of Theorem 1. Using the results of the previous section, it will be
enough to prove the following.

Proposition 16. Let x ∈ 2ω be a computably random real that is also a non-porosity point.
Then x ∈ DA, i.e., all Markov computable functions satisfy the Denjoy alternative at x.

To get Theorem 1 from this proposition, remember that a difference random point is
always computably random, and, by Lemma 12 a difference random real is also always a
non-porosity point.

Proof. We first prove a lemma, which takes advantage of the special way in which a set is
arranged around its non-porosity points.

Lemma 17. Suppose that f : ⊆ [0, 1] → R is Markov computable. Let C ⊆ [0, 1] be an
effectively closed class such that there is an n with D

˜
f(z) > −n for all z ∈ C. Let the

computably random real x ∈ C be a non-porosity point of C. Then f is differentiable at x.

Proof. We effectivize an argument of Bogachev [2, p. 371]. Replacing f by f(x) + nx, we
may assume that for x ∈ C, we have

∀a, b [r ≤ a ≤ x ≤ b ≤ s→ Sf(a, b)0 > 1].

12



Let f∗(x) = supa≤x f(a). Then f∗ is nondecreasing on C.

Claim. The function f∗ ↾E is computable.
To see this, recall that p, q range over [0, 1] ∩ Q, and let f ∗(x) = infq≥x f(q). If x ∈ C and
f∗(x) < f ∗(x) then x is computable: fix a rational d in between these two values. Then
p < x ↔ f(p) < d, and q > x ↔ f(q) > d. Hence x is both left-c.e. and right-c.e., and
therefore computable. Now a Markov computable function is continuous at every computable
x. Thus f∗(x) = f ∗(x) for each x in C.

To compute f(x) for x ∈ C up to precision 2−n, we can now simply search for rationals
p < x < q such that 0 < f(q)n+2 − f(p)n+2 < 2−n−1, and output f(p)n+2. If during this
search we detect that x 6∈ C, we stop. This shows the claim. 3

By Lemma 3 there is a computable nondecreasing function g defined on [0, 1] that extends
f∗. Then by a classic theorem of Lebesgue, g′(x) exists for a.e. x ∈ [0, 1]. A result by Brattka,
Miller and Nies [3, Thm. 4.1] states that in fact computable randomness of x is enough to
guarantee the existence of g′(x).

It therefore suffices to show that for each x ∈ C such that g′(x) is defined and C is not

porous at x, we have D̃f(x) ≤ g′(x) ≤ D
˜
f(x). Since D

˜
f(x) ≤ D̃f(x), this would establish

the theorem.
To see this, we show D̃f(x) ≤ g′(x), the other inequality being symmetric. Fix ε > 0.

Choose α > 0 such that

∀u, v ∈ C [(u ≤ x ≤ v ∧ 0 < v − u ≤ α) → Sf∗(u, v) ≤ g′(x)(1 + ε)] (2)

furthermore, since C is not porous at x, for each β ≤ α, the interval (x− β, x+ β) contains
no open subinterval of length εβ that is disjoint from C. Now suppose that a, b ∈ [0, 1] ∩Q,
a < x < b and β = 2(b − a) ≤ α. There are u, v ∈ C such that 0 ≤ a − u ≤ εβ and
0 ≤ v − b ≤ εβ. Since u, v ∈ C we have f∗(u) ≤ f(a) and f(b) ≤ f∗(v). Therefore
v − u ≤ b− a+ 2εβ = (b− a)(1 + 4ε). It follows that

Sf (a, b) ≤
f∗(v)− f∗(u)

b− a
≤ Sf∗(u, v)(1 + 4ε) ≤ g′(x)(1 + 4ε)(1 + ε).

We are now ready to prove Proposition 16. Suppose x is computably random and is a
non-porosity point. Let f be a Markov computable function. Suppose that f does not satisfy
the Denjoy alternative at x by strong failure of the existence of the pseudo-derivative at x.
We therefore are D

˜
f(x) > −∞ or D̃f(x) < +∞. Suppose the first one holds (the proof for

the other case is similar), and take an n such that D
˜
f(x) > −n. By definition of D

˜
, this

means that for some fixed positive rational ε and some fixed t, x belongs to the effectively
closed class:

C = {x ∈ [0, 1] | ∀q1, q2 ∈ Q s.t. x ∈ [q1, q2] ∧ |q2 − q1| < ε, Sf(q1, q2)t > −n}

We can therefore apply Proposition 16 to this class C (every point z ∈ C is such that
D
˜
f(z) > −n, x belongs to C, x is computably random and is a non-porosity point). Therefore,

f is differentiable at x, and thus the Denjoy alternative holds indeed.
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3.3 The class DA is incomparable with the Martin-Löf random

reals

Theorem 18. There exists a real x which is not Martin-Löf random but nonetheless satisfies
the Denjoy alternative for all constructive functions.

Proof sketch. The Denjoy alternative at x can be met in two ways. We will say “the DA for
f is fulfilled by existence” if the (pseudo-)derivative of f at x exists and say that “the DA
for f is fulfilled by failure” in the other case. To prove the statement we construct a set x by
forcing that is CR, not MLR and for every Markov computable function either fulfills the DA
by failure for this function or is a density point (and therefore certainly not a porosity point)
of a certain effectively closed class L such that L and f fulfill the requirements of Lemma 17.
The argument to prove the statement then goes like this: if we fulfill the DA by failure we
are done. Otherwise we will be in the effectively closed class L. Since x ∈ CR we can invoke
Lemma 17 to show that f is differentiable and therefore fulfills the DA by existence.

Assume we have constructed the initial segment σ of x so far, and are given a computable
martingaleM . The most interesting part of the argument is how to ensure that we are density
points of certain effectively closed classes of the form L := {x � σ | M(x↾n) < ε for all n >
|σ|}. To do this we need to make sure that the density of x in L will be 1 in the limit. At
every stage of the construction we will make sure that the density of x is at least 1 − q for
some q by choosing the right extension σ′ of σ. When we later extend σ′ further we will
make q smaller and smaller while forever staying inside L. This way in the limit we reach
density 1 in L.

To achieve density 1 − q as required we look at the quantity m := infτ�σ d(τ). We in-
terpret m as an amount of capital that the martingale M has put on a savings account and
is not touching anymore. Of course this implies that M also has less capital available for
betting and can therefore reach capital ε only on a smaller fraction of the extensions of σ.
By applying the Ville-Kolmogorov inequality for martingales to M − m it is clear that M
can reach capital ε only on a set of extensions of σ of relative measure 1 − M(σ)−m

ε−m
. Or, in

other words, σ has density 1− (M(σ)−m)/(ε−m) in L. By replacing σ with a long enough
extension we can make sure that d(σ) is arbitrarily close to m and thereby raise the density
to the desired level 1− q.

Formal construction. We will use a finite extension argument which we present in the lan-
guage of forcing. Our set of conditions P will have the form 〈M,σ, ε〉 whereM is a computable
martingale, σ a string and ε a rational, and such that M(σ) < ε. We say that 〈M ′, σ′, ε′〉
extends 〈M,σ, ε〉 which we write 〈M ′, σ′, ε′〉 ≤ 〈M,σ, ε〉 if

• M ′ ≥M

• σ � σ′ and M ′(τ) < ε for all σ � τ � σ′

• ε′ ≤ ε

14



To each condition p = 〈M,σ, ε〉 we associate the effectively closed set (of positive measure)

L〈M,σ,ε〉 = {x ∈ 2ω | (∀τ) σ � τ ≺ x→M(τ) < ε}

(notice that 〈M ′, σ′, ε′〉 ≤ 〈M,σ, ε〉 implies L〈M ′,σ′,ε′〉 ⊆ L〈M,σ,ε〉)

We claim that for a sufficiently generic filter G ⊆ P, the closed set

⋂

〈M,σ,ε〉∈G

L〈M,σ,ε〉

is a singleton {x} and x is Martin-Löf random but satisfies the Denjoy alternative for every
Markov computable function.

Claim 1. For any filter G ⊆ P, the set G =
⋂

〈M,σ,ε〉∈G L〈M,σ,ε〉 is non-empty. If G is sufficiently
generic, G is in fact a singleton x which is equal to the union of the strings appearing in the
conditions of G.
Proof. By compactness, if G is empty, then there are finitely many conditions 〈Mi, σi, εi〉
such that

⋂
i L〈Mi,σi,εi〉. Since G is a filter, let 〈M∗, σ∗, ε∗〉 be a condition extending all the

〈Mi, σi, εi〉. We have
⋂
i L〈Mi,σi,εi〉 ⊇ L〈M∗,σ∗,ε∗〉, and the latter is non-empty as it has positive

measure.
Now, for all n, let Dn to be the set of conditions 〈M,σ, ε〉 with |σ| ≥ n. One can see

that Dn is dense: indeed, for a condition 〈M,σ, ε〉, if |σ| < n, then diagonalizing against M
during n− |σ| steps, one can find an extension τ of σ of length at least n such that 〈M, τ, ε〉
extends 〈M,σ, ε〉. Therefore if G is sufficiently generic, it contains conditions 〈M,σ, ε〉 for
arbitrarily long σ. Since G is a filter, all the strings appearing in its elements must be
comparable, hence there is a unique real x that extends them all. Therefore G contains at
most the singleton {x}. Since G is non-empty, it is equal to the singleton {x}. 3

From now on we assume that “sufficiently generic” means in particular that G is a sin-
gleton {x}.
Claim 2. If G is sufficiently generic, and 〈M,σ, ε〉 is a condition in G, then M(x↾n) < ε for
all n ≥ |σ|.
Proof. Trivial by definition of x. 3

Claim 3. If G is sufficiently generic, x is computably random.
Proof. This is the usual argument. Let N be a computable martingale. Let 〈M,σ, ε〉 be a
condition. Let δ be a rational such that M(σ) < ε− δ. Then, setting M ′ =M + 2−|σ|δN , it
is easy to see that 〈M ′, σ, ε〉 is a condition, and that N does not succeed on any element of
L〈M ′,σ,ε〉. 3

Claim 4. If G is sufficiently generic, and 〈M,σ, ε〉 is a condition in G, then x is a density
point of L〈M,σ,ε〉.
Proof. Suppose 〈M,σ, ε〉 is a condition, i.e., M(σ) < ε. We want to show that x is a density
point of L〈M,σ,ε〉 i.e. that the conditional measure of L〈M,σ,ε〉 below x↾n tends to 1. Fix δ
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arbitrarily small. Let ε′ < ε be the infimum of the values M can take on extensions of σ,
i.e.,

m = inf{M(τ) | τ � σ}

Then take ε′ a rational between m and ε that is much closer to m than to ε. More precisely,
take it such that

ε′ −m

ε−m
< δ

Now, pick τ � σ such that M(τ) < ε′ (which must exist by definition of m and ε′). It is
clear that 〈M, τ, ε′〉 is an extension of 〈M,σ, ε〉. We claim that if this new condition is in G,
then the conditional measure of L〈M,σ,ε〉 below x↾n for all n ≥ |τ | is at least 1− δ, which will
complete the proof.

To prove this claim, pick some n ≥ |τ | and consider the initial segment x↾n, which
extends τ . Define the martingale N by N(ν) = M(x↾n⌢ν) − m. This is a martingale of
initial capital M(τ) − m which is non-negative by definition of m. Therefore, the Ville-
Kolmogorov inequality yields

µ
{
z | (∀k) N(z↾k) < ε−m

}
≥ 1−

M(τ) −m

ε−m
> 1− δ

Now, notice that by definition of N , the measure µ
{
z | (∀k) N(z↾k) < ε − m

}
is exactly

µx↾n(L〈M,τ,ε〉), but also µx↾n(L〈M,σ,ε〉) as τ is an extension of σ. Therefore, we have

µx↾n(L〈M,σ,ε〉) > 1− δ

for all n ≥ |τ |. 3

Claim 5. If G is sufficiently generic, then every constructive function satisfies the Denjoy
alternative at x.
Proof. Let 〈M,σ, ε〉 be a condition and let f be a constructive function. We distinguish two
cases.

Case 1. The elements of the set L〈M,σ,ε〉 have a uniform bound on their lower derivative.
Formally,

(∃n) ∀z ∈ L〈M,σ,ε〉 D˜
f(z) > −n

In this case, G being sufficiently generic ensures that x is computably random (Claim 3) and
is a density point of L〈M,τ,ε〉 (Claim 4), so we can directly apply Lemma 17, from which we
get that f is differentiable at x.

Case 2. If the above case does not hold, then for any large given n, say n = |σ|+ 1, one
can find some z ∈ L〈M,τ,ε〉 and a, b ∈ Rc with a < b such that

• z ∈ (a, b)

• |b− a| < 2−n
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• f(b)−f(a)
b−a

< −n

In that case, one can extend 〈M,σ, ε〉 to 〈M, τ, ε〉 where [τ ] ⊆ (a, b).
Now, G being sufficiently generic, we ensure that either D

˜
f(x) = −∞ (when there

are conditions 〈M,σ, ε〉 in G with arbitrarily large σ that put us in Case 2) or that f is
differentiable at x (when for all sufficiently large σ, all 〈M,σ, ε〉 in G put us in Case 1). 3

Claim 6. If G is sufficiently generic, x is not Martin-Löf random.
Proof. This part is quite standard. Let 〈M,σ, ε〉 be a condition and let c be a constant. Since
one can computably diagonalize against a computable martingale there exists a computable
sequence z extending σ such that M(z↾n) < ε for all n > |σ|. Since z is computable, it is
possible to take n large enough so that τ = z↾n satisfies K(τ) < |τ | − c. This proves that a
sufficiently generic G will yield a sequence x that is not Martin-Löf random. 3

Theorem 19. There exists a Markov computable function f for which the Denjoy alternative
does not hold at Chaitin’s Ω. Moreover, f can be taken to be uniformly continuous, i.e., it
can be built in such a way that it has a (unique) continuous extension to [0, 1].

Proof. Let (Un) be a universal Martin-Löf test, i.e. a test such that all reals that are not in
MLR are covered by it (the existence of such a Martin-Löf test is well-known). No computable
real can be Martin-Löf random, every x ∈ Rc belongs to U1. Let Ω be the leftmost point
of the complement of U1. Since U1 is a c.e. open set Ω can be approximated from below
by the computable sequence of rationals (Ωs)s, where Ωs is the leftmost point of U1[s] (the
approximation of U1 after s stages). Our function f is defined as the restriction to Rc of the
following function F . Outside U1, F is equal to 0. On U1, it is constructed sequentially as
follows. At stage s + 1, enumerate a new interval (σ) inside U1 (we can assume that it is
disjoint from U1[s]). There are two cases.

1. Either adding this interval does not change the value of Ω (i.e., Ωs+1 = Ωs). In that
case, define the function F to be equal to zero on the whole interval (σ).

2. Or, this interval does change the value of Ω: Ωs+1 > Ωs. In this case, define F on
(a, b) to be the triangular function taking value 0 on the endpoints of (σ) and reaching
the value v at the middle point, where v is defined as follows. Let t be the last stage
at which the previous increase of Ω occurred (i.e., t is maximal such that t < s and
Ωt+1 > Ωt). Let n be the smallest integer such that the real interval [Ωt,Ωt+1] contains
a multiple of 2−n. For that n, set v = 2−n/2.

First, we see that the restriction f of F to Rc is Markov computable: given a code i,
we try to compute the real x coded by i (remember that such an x might not exist) until
we find a sufficiently good estimate a < x < b, a, b dyadic, such that the interval [a, b] is
contained in one of the intervals (σ) appearing in the enumeration of U1. It is then easy to
compute F at x as one can decide which of the above cases hold, and both the zero function
and the triangular function are computable on Rc (for the triangular function, remark that
the value n of the construction can be found computably).
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We claim that the function f does not satisfy the Denjoy alternative at Ω. More precisely,
we have D̃f(Ω) = 0 and D

˜
f(Ω) = −∞. Notice that f is equal to 0 on (Ω, 1] ∩ Rc and non-

negative on [0,Ω) ∩ Rc, taking the value 0 at points arbitrarily close to Ω (at least the

endpoints of intervals (σ) enumerated on the left of Ω), therefore D̃f(Ω) = 0 is clear. To
see that D

˜
f(Ω) = −∞, consider for all k the dyadic real ak which is a multiple of 2−k, is

smaller than Ω and such that Ω − ak < 2−k. Since ak < Ω, there exists a stage t such that
an ∈ [Ωt,Ωt+1]. Let s > t be the next stage at which Ω increases. By definition, F is then
defined to be a triangular function on [Ωs,Ωs+1] of height 2

−n/2, where n has to be greater
than k as [Ωs,Ωs+1] does not contain any multiple of 2−k (ak is the largest such real that
is smaller than Ω, and we have ak < Ω. Thus, calling xk the middle point of [Ωs,Ωs+1], we
have

Sf(xk,Ω) =
f(xk)− f(Ω)

x− Ω
≤

2−k − 0

−2−k/2
≤ −2−k/2

and this happens for all k, hence D
˜
f(Ω) = −∞.

It remains to show that the function F is continuous on [0, 1]. But this is almost immedi-
ate as one can write F =

∑
n hn where hn is the function equal to 0 except on the intervals

on which F is a triangular function of height 2−n/2, and on that interval hn = F . It is
obvious that the hn are continuous and of magnitude 2−n/2. Therefore

∑
n ||hn|| <∞, so by

the Weierstrass M-test we can conclude that the convergence is uniform hence the function∑
n hn is continuous.

4 Positive density as a randomness notion

We return to the notion of positive density and give an interesting characterization of incom-
plete Martin-Löf random sets.

Theorem 20. The following statements are equivalent for a real x.

1. x is difference random.

2. x is Martin-Löf random and x has incomplete Turing degree.

3. x is Martin-Löf random and a point of positive lower density in every effectively closed
class C with x ∈ C , that is, ρ(x|C ) 6= 0.

Proof. The equivalence between (1) and (2) has been shown by Franklin and Ng [8].
(1) ⇒ (3): Proof by contraposition. Assume that x ∈ MLR and that for all ε there is an

n such that λ(C | x↾n) < ε. Then for all k let

Uk := {z | ∃n λ(C | z↾n) < 2−k}.

Since C is effectively closed, these classes are uniformly effectively open. Let Gk be a minimal
prefix-free set of strings generating Uk. Then the following computation shows that (Uk)k is
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a difference test.

λ(Uk ∩ C ) =
∑

σ∈Gk
λ(C ∩ [σ])

=
∑

σ∈Gk
2−|σ| · λ(C | [σ])

≤
∑

σ∈Gk
2−|σ| · 2−k ≤ 2−k.

Since x ∈ C , by the original assumption, this difference test clearly covers x.

(3) ⇒ (2): Suppose now that x is Martin-Löf random and Turing complete. We are
going to show that x has lower density 0 inside some effectively closed class C . We show
that, given a rational ε, we can effectively construct an effectively closed class Cε such that
x ∈ Cε and λ(Cε | x↾n) < ε for some n. It will then suffice to let C :=

⋂
ε Cε for an effective

list of ε’s that converge to 0.
Idea. Fix ε > 0. In this construction, we will build an auxiliary c.e. set W . By the recursion
theorem, since x is complete, we can assume to know in advance a Turing reduction Γ such
that Γx =W .

In order to lower the density of Cε around x we need to remove many reals from Cε. Since
we don’t know x this comes at the risk of inadvertently removing x as well. The approach of
the proof is then to make use of the fact that we control W . We keep observing the results
of the reduction Γ relative to all possible oracles and wait until we see a certain type of
behavior (reduction outputs 0) on all oracles except fraction ε. As soon as this happens we
change W in such a way that it does exactly not show this behavior. Since x computes W
it certainly cannot be among the 1 − ε fraction of oracles showing the special behavior, so
we can safely remove them from Cε.

Of course it must be avoided that we wait forever, since in that case the measure of Cε

would forever remain equal to 1. It will therefore be necessary to argue why we can be sure
that we will eventually observe the special behavior. To see this, we will argue that if we
never observe that behavior, x is in a descending chain of sets Uk such that Uk always has
measure 1− ε relative to Uk−1, and that this chain actually is a Martin-Löf test covering x.
This of course contradicts x ∈ MLR.

Formal construction. Look at the following effective procedure P (σ, k, ε) that enumerates
the complement of Cε.

1) Pick a fresh integer n = n(σ, k).

2) Enumerate the set V of reals y that extend σ and satisfy Γy(n) = 0. Due to the use
principle this will always happen on whole open cylinders of y’s. Therefore we can
represent V by a c.e. enumeration of finite strings. It is easy to see that we can force
this enumeration to be prefix-free. As long as the conditional measure of V above σ
does not exceed 1 − ε, put every enumerated string τ into Uk and for each of them
start the procedure P (τ, k + 1, ε).

3) If at some stage s some new τ is found such that Γτ (n) = 0 but the conditional measure
Uk[s]∪{τ} above σ exceeds 1−ε, then enumerate n intoW , enumerate all of Uk[s]∪{τ}
in the complement of Cε, and terminate the whole tree of procedures.
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Verification. We need to verify that running P (λ, 0, ε) actually produces Cε as desired.
First, notice that x remains in Cε at all time during the construction. Indeed, when we put a
string τ into the complement of Cε during some procedure P (σ, k, ε) at step 3, this τ satisfies
Γτ (n) = 0, and we precisely make sure at that point that n ∈ W . Since Γx =W , this shows
that τ is not a prefix of x.

Secondly, note that if for some prefix σ of x and some k, the procedure P (σ, k, ε) gets
executed and reaches step 3, then we are done since step 3 ensures that λ(Cε | σ) < ε. So
we need to argue that the conditions for step 3 will eventually be met. Assume that this is
not the case. Then the following claim states that Uk will become defined for all k ∈ N.
Claim. Let σ be a prefix of x and k an integer. If the procedure P (σ, k, ε) is executed but
never reaches step 3, then some longer prefix σ′ of x is put into Uk and procedure P (σ′, k+1, ε)
is executed.
Proof. Indeed, if step 3 is never reached, then n = n(σ, k) never gets enumerated in W ,
therefore Γx(n) = W (n) = 0, which by definition of step 2 shows that some prefix σ′ of x is
put into Uk and procedure P (σ′, k + 1) is executed. 3

Observe that (Uk)k is a Martin-Löf test, by induction: every time a string σ is enumerated
Uk, some of its extensions are enumerated into Uk+1 during procedure P (σ, k + 1, ε). The
relative weight of these strings above σ is at most 1 − ε, therefore we have λ(Uk+1) ≤
(1− ε)λ(Uk) for all k. By induction this proves λ(Uk) ≤ (1− ε)k for all k.

The claim shows that if step 3 is never reached in any of the executed procedures P (σ, k, ε)
with σ a prefix of x, then x ∈ [Uk] for all k. This contradicts the fact that x is Martin-Löf
random.

Together with Lemma 12 we get the following corollary. To the best of our knowledge
there exists no direct proof of this fact.

Corollary 21. For any x ∈ MLR the following implication holds: If for all effectively closed
classes C with x ∈ C it holds that ρ(x|C ) > 0 then for all effectively closed classes C with
x ∈ C we have that C is not porous at x.
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