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In this paper we extend the existing literature on the asymptotic behaviour of the partial sums and the sample covariances of long memory stochastic volatility models in the case of infinite variance. We also consider models with leverage, for which our results are entirely new in the infinite variance case. Depending on the interplay between the tail behaviour and the intensity of dependence, two types of convergence rates and limiting distributions can arise. In particular, we show that the asymptotic behaviour of partial sums is the same for both LMSV and models with leverage, whereas there is a crucial difference when sample covariances are considered.

Introduction

One of the standardized features of financial data is that returns are uncorrelated, but their squares, or absolute values, are (highly) correlated, a property referred to as long memory (which will be later defined precisely). A second commonly accepted feature is that log-returns are heavy tailed, in the sense that some moment of the log-returns is infinite. The last one we want to mention is leverage. In the financial time series context, leverage is understood to mean negative dependence between previous returns and future volatility (i.e. a large negative return will be followed by a high volatility). Motivated by these empirical findings, one of the common modeling approaches is to represent log-returns {Y i } as a stochastic volatility sequence Y i = Z i σ i where {Z i } is an i.i.d. sequence and {σ 2 i } is the conditional variance or more generally a certain process which stands as a proxy for the volatility. In such a process, long memory can only be modeled through the sequence {σ i }, and the tails can be modeled either through the sequence {Z i } or through {σ i }, or both. The well known GARCH processes belong to this class of models. The volatility sequence {σ i } is heavy tailed, unless the distribution of Z 0 has finite support, and leverage can be present. But long memory in squares cannot be modeled by GARCH process. The FIGARCH process was introduced by [START_REF] Baillie | Fractionally integrated generalized autoregressive conditional heteroskedasticity[END_REF] to this purpose, but it is not known if it really has a long memory property, see e.g. [START_REF] Douc | On the existence of some ARCH(∞) processes[END_REF].

To model long memory in squares, the so-called Long Memory in Stochastic Volatility (LMSV) process was introduced in [START_REF] Breidt | The detection and estimation of long memory in stochastic volatility[END_REF], generalizing earlier short memory version of this model. In this model, the sequences {Z i } and {σ i } are fully independent, and {σ i } is the exponential of a Gaussian long memory process. Tails and long memory are easily modeled in this way, but leverage is absent.

Throughout the paper, we will refer to this process as LMSV, even though we do not rule out the short memory case.

In order to model leverage, [START_REF] Daniel | Conditional heteroskedasticity in asset returns: a new approach[END_REF] introduced the EGARCH model (where E stands for exponential), later extended by [START_REF] Bollerslev | Modeling and pricing long memory in stock market volatility[END_REF] to the FIEGARCH model (where FI stands for fractionally integrated) in order to model also long memory. In these models, {Z i } is a Gaussian white noise, and {σ i } is the exponential of a linear process with respect to a function of the Gaussian sequence {Z i }. [START_REF] Surgailis | Long memory properties and covariance structure of the EGARCH model[END_REF] extended the type of dependence between the sequences {Z i } and {X i } and relaxed the Gaussian assumption for both sequences, but assumed finite moments of all order. Thus long memory and leverage are possibly present in these models, but heavy tails are excluded.

A quantity of other models have been introduced, e.g. models of Robinson and Zaffaroni [START_REF] Robinson | Modelling nonlinearity and long memory in time series[END_REF], [START_REF] Robinson | Nonlinear time series with long memory: a model for stochastic volatility[END_REF] and their further extensions in [START_REF] Robinson | The memory of stochastic volatility models[END_REF]; LARCH(∞) processes [START_REF] Giraitis | A model for long memory conditional heteroscedasticity[END_REF] and their bilinear extensions [START_REF] Giraitis | ARCH-type bilinear models with double long memory[END_REF], and LARCH + (∞) [START_REF] Surgailis | A quadratic ARCH(∞) model with long memory and Lévy stable behavior of squares[END_REF]; to mention a few. All of these models have long memory and some have leverage and allow for heavy tails. The theory for these models is usually extremely involved, and only the asymptotic properties of partial sums are known in certain cases. We will not consider these models here. In [START_REF] Giraitis | LARCH, leverage and long memory[END_REF] the leverage effect and long memory property of a LARCH(∞) model was studied thoroughly.

The theoretical effect of long memory is that the covariance of absolute powers of the returns {Y i } is slowly decaying and non summable. This induces non standard limit theorems, such as convergence of the partial sum process to the fractional Brownian motion or finite variance non Gaussian processes or even Lévy processes. In practice, long memory is often evidenced by sample covariance plots, showing an apparent slow decay of the covariance function. Therefore, it is of interest to investigate the asymptotic behaviour of the sample mean or of the partial sum process, and of the sample variance and covariances.

In the case where σ i = σ(X i ), {X i } is a stationary Gaussian process with summable covariances and σ(x) = exp(x), the asymptotic theory for sample mean of LMSV processes with infinite variance is a straightforward consequence of a point process convergence result in [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF]. The limit is a Lévy stable process. [START_REF] Surgailis | Long memory properties and covariance structure of the EGARCH model[END_REF] considered the convergence of the partial sum process of absolute powers of generalized EGARCH processes with finite moments of all orders and showed convergence to the fractional Brownian motion. To the best of our knowledge, the partial sum process of absolute powers has never been studied in the context of heavy tails and long memory and possible leverage, for a general function σ.

The asymptotic theory for sample covariances of weakly dependent stationary processes with finite moments dates back to Anderson, see [START_REF] Anderson | The statistical analysis of time series[END_REF]. The case of linear processes with regularly varying innovations was studied in [START_REF] Davis | More limit theory for the sample correlation function of moving averages[END_REF] and [START_REF] Davis | Limit theory for the sample covariance and correlation functions of moving averages[END_REF], for infinite variance innovation and for innovations with finite variance but infinite fourth moment, respectively. The limiting distribution of the sample covariances (suitably centered and normalized) is then a stable law. These results were obtained under conditions that rule out long memory. For infinite variance innovation with tail index α ∈ (1, 2), these results were extended to long memory linear processes by [START_REF] Kokoszka | Parameter estimation for infinite variance fractional ARIMA[END_REF]. The limiting distributions of the sample covariances are again stable laws. However, if α ∈ (2, 4), [START_REF] Horváth | Sample autocovariances of long-memory time series[END_REF] showed that as for partial sums, a dichotomy appears: the limiting distribution and the rate of convergence depend on an interplay between a memory parameter and the tail index α. The limit is either stable (as in the weakly dependent or i.i.d. case) or, if the memory is strong enough, the limiting distribution is non Gaussian but with finite variance (the so-called Hermite-Rosenblatt distributions). If the fourth moment is finite, then the dichotomy is between Gaussian or finite variance non Gaussian distributions (again of Hermite-Rosenblatt type); see [START_REF] Jonathan | Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series[END_REF], [START_REF] Horváth | Sample autocovariances of long-memory time series[END_REF]Theorem 3.3] and [START_REF] Biao Wu | Covariances estimation for long-memory processes[END_REF].

The asymptotic properties of sample autocovariances of GARCH processes have been studied by [START_REF] Basrak | Regular variation of GARCH processes[END_REF]. Stable limits arise as soon as the marginal distribution has an infinite fourth moment. [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF] studied the sample covariance of a zero mean stochastic volatility process, under implicit conditions that rule out long memory, and also found stable limits. [START_REF] Mcelroy | Self-normalization for heavy-tailed time series with long memory[END_REF] (generalized by [START_REF] Jach | Subsampling inference for the mean of heavy-tailed long memory time series[END_REF]) studied partial sums and sample variance of a possibly nonzero mean stochastic volatility process with infinite variance and where the volatility is a Gaussian long memory process (in which case it is not positive but this is not important for the theoretical results). They obtained a dichotomy between stable and finite variance non Gaussian limits, and also the surprising result that when the sample mean has a long memory type limit, then the studentized sample mean converges in probability to zero.

The first aim of this article is to study asymptotic properties of partial sums, sample variance and covariances of stochastic volatility processes where the volatility is an arbitrary function of a Gaussian, possibly long memory process {X i } independent of the sequence {Z i }, which is a heavy tailed i.i.d. sequence. We refer to these processes as LMSV processes. The interest of considering other functions than the exponential function is that it allows to have other distributions than the log-normal for the volatility, while keeping the convenience of Gaussian processes, without which dealing with long memory processes becomes rapidly extremely involved or even intractable. The results we obtain extend in various aspects all the previous literature in this domain.

Another important aim of the paper is to consider models with possible leverage. To do this, we need to give precise assumptions on the nature of the dependence between the sequences {Z i } and {X i }, and since they are related in the process {Y i } through the function σ, these assumptions also involve the function σ. We have not looked for the widest generality, but the functions σ that we consider include the exponential functions and all symmetric polynomials with positive coefficients. This is not a severe restriction since the function σ must be nonnegative. Whereas the asymptotic theory for the partial sums is entirely similar to the case of LMSV process without leverage, asymptotic properties of sample autocovariances may be very different in the presence of leverage. Due to the dependence between the two sequences, the rates of convergence and asymptotic distribution may be entirely different when not stable.

The article is organized as follows. In Section 2 we formulate proper assumptions, as well as prove some preliminary results on the marginal and multivariate tail behaviour of the sequence {Y i }. In Section 3, we establish the limit theory for a point process based on the rescaled sequence {Y i }. This methodology was first used in this context by [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF] and our proofs are closely related to those in this reference. Section 4 applies these results to obtain the functional asymptotic behaviour of the partial sum process of the sequences {Y i } and of powers. In Section 5 the limiting behaviour of the sample covariances and autocorrelation of the process {Y i } and of its powers is investigated. Proofs are given in Section 6. In the Appendix we recall some results on multivariate Gaussian processes with long memory.

A note on the terminology

We consider in this paper sequences {Y i } which can be expressed as

Y i = Z i σ(X i ) = Z i σ i ,
where {Z i } is an i.i.d. sequence and Z i is independent of X i for each i. Originally, SV and LMSV processes refer to processes where the sequences {Z i } and {σ i } are fully independent, σ i = σ(X i ), {X i } is a Gaussian process and σ(x) = exp(x); see e.g. [START_REF] Breidt | The detection and estimation of long memory in stochastic volatility[END_REF], [START_REF] Breidt | Extremes of stochastic volatility models[END_REF], [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF]. The names EGARCH and FIEGARCH, introduced respectively by [START_REF] Daniel | Conditional heteroskedasticity in asset returns: a new approach[END_REF] and [START_REF] Bollerslev | Modeling and pricing long memory in stock market volatility[END_REF], refer to the case where σ(x) = exp(x) and where {X i } is a non Gaussian process which admits a linear representation with respect to an instantaneous function of the Gaussian i.i.d. sequence {Z i }, with dependence between the sequences {Z i } and {X i }. [START_REF] Surgailis | Long memory properties and covariance structure of the EGARCH model[END_REF] still consider the case σ(x) = exp(x), but relax the assumptions on {Z i } and {X i }, and retain the name EGARCH. The LMSV processes can be seen as border cases of EGARCH type processes, where the dependence between the sequences {Z i } and {X i } vanishes.

In this article, we consider both LMSV models, and models with leverage which generalize the EGARCH models as defined by [START_REF] Surgailis | Long memory properties and covariance structure of the EGARCH model[END_REF]. In order to refer to the latter models, we have chosen not to use the acronym EGARCH or FIEGARCH, since these models were defined with very precise specifications and this could create some confusion, nor to create a new one such as GEGARCH (with G standing twice for generalized, which seems a bit too much) or (IV)LMSVwL (for (possibly) Infinite Variance Long Memory Stochastic Volatility with Leverage). Considering that the main feature which distinguishes these two classes of models is the presence or absence of leverage, we decided to refer to LMSV models when leverage is excluded, and to models with leverage when we include the possibility thereof.

Model description, assumptions and tail behaviour

Let {Z i , i ∈ Z} be an i.i.d. sequence whose marginal distribution has regularly varying tails:

lim x→+∞ P(Z 0 > x) x -α L(x) = β , lim x→+∞ P(Z 0 < -x) x -α L(x) = 1 -β , (1) 
where α > 0, L is slowly varying at infinity, and β ∈ [0, 1]. Condition (1) is referred to as the Balanced Tail Condition. It is equivalent to assuming that P(|Z 0 | > x) = x -α L(x) and

β = lim x→+∞ P(Z 0 > x) P(|Z 0 | > x) = 1 -lim x→+∞ P(Z 0 < -x) P(|Z 0 | > x) .
We will say that two random variables Y and Z are right-tail equivalent if there exists c ∈ (0, ∞)

such that lim x→+∞ P(Y > x) P(Z > x) = c .
If one of the random variables has a regularly varying right tail, then so has the other, with the same tail index. 

P(Z 0 > x) P(Z 0 Z 1 > x) = 0 , lim x→+∞ P(Z 1 Z 2 > x) P(|Z 1 Z 2 | > x) = β 2 + (1 -β) 2 .
For example, if (1) holds and the tail of |Z 0 | has Pareto-type tails, i.e.

P(|Z 0 | > x) ∼ cx -α as x → +∞ for some c > 0, then E [|Z 0 | α ] = ∞.
We will further assume that {X i } is a stationary zero mean unit variance Gaussian process which admits a linear representation with respect to an i.i.d. Gaussian white noise {η i } with zero mean and unit variance, i.e.

X i = ∞ j=1 c j η i-j (2) 
with ∞ j=1 c 2 j = 1. We assume that the process {X i } either has short memory, in the sense that its covariance function is absolutely summable, or exhibits long memory with Hurst index H ∈ (1/2, 1), i.e. its covariance function {ρ n } satisfies

ρ n = cov(X 0 , X n ) = ∞ j=1 c j c j+n = n 2H-2 ℓ(n) , (3) 
where ℓ is a slowly varying function.

Let σ be a deterministic, nonnegative and continuous function defined on R.

Define σ i = σ(X i )
and the stochastic volatility process {Y i } by

Y i = σ i Z i = σ(X i )Z i . (4) 
At this moment we do not assume independence of {η i } and {Z i }. Two special cases which we are going to deal with are:

• Long Memory Stochastic Volatility (LMSV) model: where {η i } and {Z i } are independent.

• Model with leverage: where {(η i , Z i )} is a sequence of i.i.d. random vectors. For fixed i, Z i and X i are independent, but X i may not be independent of the past {Z j , j < i}.

Both cases are encompassed in the following assumption which will be in force throughout the paper.

Assumption 1. The Stochastic Volatility process {Y i } is defined by

Y i = σ i Z i ,
where σ i = σ(X i ), {X i } is a Gaussian linear process with respect to the i.i.d. sequence {η i } of standard Gaussian random variables such that (2) holds, σ is a nonnegative function such that P(σ(aη 0 ) > 0) = 1 for all a = 0, {(Z i , η i )} is an i.i.d. sequence and Z 0 satisfies the Balanced Tail

Condition [START_REF] Anderson | The statistical analysis of time series[END_REF] with

E[|Z 0 | α ] = ∞.
Let F i be the sigma-field generated by η j , Z j , j ≤ i. Then the following properties hold.

• Z i is F i -measurable and independent of F i-1 ;

• X i and σ i are F i-1 -measurable.

We will also impose the following condition on the continuous function σ. There exists q > 0 such that

sup 0≤γ≤1 E [σ q (γX 0 )] < ∞ . ( 5 
)
It is clearly fulfilled for all q, q ′ if σ is a polynomial or σ(x) = exp(x) and X 0 is a standard Gaussian random variable. Note that if (5) holds for some q > 0, then, for q ′ ≤ q/2, it holds that sup 0≤γ≤1 E σ q ′ (γX 0 )σ q ′ (γX s ) < ∞ , s = 1, 2, . . .

Marginal tail behaviour

If (5) holds, then clearly E[σ q (X 0 )] < ∞. If moreover q > α, since X i and Z i are independent for fixed i, Breiman's Lemma (see e.g. [START_REF] Resnick | Heavy-tail phenomena[END_REF]Proposition 7.5]) yields that the distribution of Y 0 is regularly varying and

lim x→+∞ P(Y 0 > x) P(Z 0 > x) = lim x→+∞ P(Y 0 < -x) P(Z 0 < -x) = E[σ α (X 0 )] . (6) 
Thus we see that there is no effect of leverage on marginal tails. Define

a n = inf{x : P(|Y 0 | > x) < 1/n} . (7) 
Then the sequence a n is regularly varying at infinity with index 1/α. Moreover, since σ is nonnegative, Z 0 and Y 0 have the same skewness, i.e.

lim n→+∞ nP(Y 0 > a n ) = 1 -lim n→+∞ nP(Y 0 < -a n ) = β .

Joint exceedances

One of the properties of heavy tailed stochastic volatility models is that large values do not cluster. Mathematically, for all h > 0,

P(|Y 0 | > x, |Y h | > x) = o(P(|Y 0 | > x)) . (8) 
For the LMSV model, conditioning on σ 0 , σ h yields

lim x→+∞ P(|Y 0 | > x, |Y h | > x) P 2 (|Z 0 | > x) = E[(σ 0 σ h ) α ] , (9) 
if ( 5) holds for some q > 2α. Property (8) still holds when leverage is present. Indeed, let F Z denote the distribution function of Z 0 and FZ = 1 -F Z . Recall that F h-1 is the sigma-field generated by η j , Z j , j ≤ h -1. Thus, Y 0 and X h are measurable with respect to F h-1 , and

Z h is independent of F h-1 . Conditioning on F h-1 yields P(Y 0 > x, Y h > x) = E[ FZ (x/σ h )1 {Y0>x} ] .
Next, fix some ǫ > 0. Applying Lemma 6.2, there exists a constant C such that for all x ≥ 1,

P (Y 0 > x, Y h > x) P(Z 0 > x) = E FZ (x/σ h ) FZ (x) 1 {Y0>x} ≤ CE (1 ∨ σ h ) α+ǫ 1 {Y0>x} .
If (5) holds for some q > α, and ǫ is chosen small enough so that α + ǫ < q, then by bounded convergence, the latter expression is finite and converges to 0 as x → +∞.

Products

For the LMSV model, another application of Breiman's Lemma yields that Y 0 Y h is regularly varying for all h. If (5) holds for some q > 2α, then

lim x→+∞ P(Y 0 Y h > x) P(Z 0 Z 1 > x) = E[(σ 0 σ h ) α ] , lim x→+∞ P(Y 0 Y h < -x) P(Z 0 Z 1 < -x) = E[(σ 0 σ h ) α ] . (10) 
For further reference, we gather in a Lemma some properties of the products in the LMSV case, some of which are mentioned in [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF] in the case σ(x) = exp(x).

Lemma 2.1. Let Assumption 1 hold and let the sequences {η i } and {Z i } be mutually independent.

Assume that ( 5) holds with q > 2α. Then Y 0 Y 1 is tail equivalent to Z 0 Z 1 and has regularly varying and balanced tails with index α. Moreover, for all h ≥ 1, there exist real numbers

d + (h), d -(h)
such that

lim x→∞ P(Y 0 Y h > x) P(|Y 0 Y 1 | > x) = d + (h) , lim x→∞ P(Y 0 Y h < -x) P(|Y 0 Y 1 | > x) = d -(h) . ( 11 
)
Let b n be defined by

b n = inf{x : P(|Y 0 Y 1 | > x) ≤ 1/n} . ( 12 
)
The sequence {b n } is regularly varying with index 1/α and

a n = o(b n ) . ( 13 
)
For all i = j > 0, it holds that

lim n→∞ nP(|Y 0 | > a n x , |Y 0 Y j | > b n x) = 0 , (14) 
lim n→∞ nP(|Y 0 Y i | > b n x , |Y 0 Y j | > b n x) = 0 . ( 15 
)
The quantities d + (h) and d -(h) can be easily computed in the LMSV case.

d + (h) = {β 2 + (1 -β) 2 } E[σ α (X 0 )σ α (X h )] E[σ α (X 0 )σ α (X 1 )] , d -(h) = 2β(1 -β) E[σ α (X 0 )σ α (X h )] E[σ α (X 0 )σ α (X 1 )] .
When leverage is present, many different situations can occur, obviously depending on the type of dependence between Z 0 and η 0 , and also on the function σ. We consider the exponential function σ(x) = exp(x), and a class of subadditive functions. In each case we give an assumption on the type of dependence between Z 0 and η 0 that will allow to prove our results. Examples are given after the Lemmas.

Lemma 2.2. Assume that σ(x) = exp(x) and exp(kη 0 )Z 0 is tail equivalent to Z 0 for all k ∈ R.
Then all the conclusions of Lemma 2.1 hold.

Lemma 2.3. Assume that the function σ is subadditive, i.e. there exists a constant C > 0 such that for all x, y ∈ R, σ(x + y) ≤ C{σ(x) + σ(y)}. Assume that for any a, b > 0, σ(aξ + bη 0 )Z 0 is tail equivalent to Z 0 , where ξ is a standard Gaussian random variable independent of η 0 , and

σ(bη 0 )Z 0 is either tail equivalent to Z 0 or E[{σ(bη 0 )|Z 0 |} q ] < ∞ for some q > α. Then all the conclusions of Lemma 2.1 hold. Example 1. Assume that Z 0 = |η 0 | -1/α U 0 with α > 0, where U 0 is independent of η 0 and E[|U 0 | q ] < ∞ for some q > α.
Then Z 0 is regularly varying with index -α.

• Case σ(x) = exp(x). For each c > 0, Z 0 exp(cη 0 ) is tail equivalent to Z 0 . See Lemma 6.1

for a proof of this fact.

• Case σ(x) = x 2 . Let q ′ ∈ (α, q ∧ {α/(1 -2α) + }). Then E[σ q ′ (bη 0 )|Z 0 | q ′ ] = b 2q ′ E[|η 0 | q ′ (2-1/α) |U 0 | q ′ ] < ∞ .
Furthermore, let ξ be a standard Gaussian random variable independent of η 0 and Z 0 . Then,

σ(aξ + bη 0 )Z 0 = a 2 ξ 2 Z 0 + 2abξsign(η 0 )|η 0 | 1-1/α U 0 + b 2 |η 0 | 2-1/α U 0 .
Since ξ is independent of Z 0 and Gaussian, by Breiman's lemma, the first term on the righthand side of the previous equation is tail equivalent to Z 0 . The last two terms have finite moments of order q ′ for some q ′ > α and do not contribute to the tail. Thus the assumptions of Lemma 2.3 are satisfied.

Example 2. Let Z ′ 0 have regularly varying balanced tails with index -α, independent of η 0 . Let Ψ 1 (•) and Ψ 2 (•) be polynomials and define Z 0 = Z ′ 0 Ψ 1 (η 0 ) + Ψ 2 (η 0 ). Then, by Breiman's Lemma, Z 0 is tail equivalent to Z ′ 0 , and it is easily checked that the assumptions of Lemma 2.2 are satisfied and the assumptions of Lemma 2.3 are satisfied with σ being any symmetric polynomial with positive coefficients. We omit the details.

Point process convergence

For s = 0, . . . , h, define a Radon measure

λ s on [-∞, ∞] \ {0} by λ 0 (dx) = α βx -α-1 1 (0,∞) (x) + (1 -β)(-x) -α-1 1 (-∞,0) (x) dx , λ s (dx) = α d + (s)x -α-1 1 (0,∞) (x) + d -(s)(-x) -α-1 1 (-∞,0) (x) dx ,
where d ± (s) are defined in [START_REF] Davis | Limit theory for the sample covariance and correlation functions of moving averages[END_REF]. For s = 0, . . . , h, define the Radon measure

ν s on [0, 1] × [-∞, ∞] \ {0} by ν s (dt, dx) = dt λ s (dx) . Set Y n,i = (a -1 n Y i , b -1 n Y i Y i+1 , . . . , b -1 n Y i Y i+h )
, where a n and b n are defined in ( 7) and ( 12) respectively, and let N n be the point process defined on [0

, 1] × ([-∞, ∞] h+1 \ {0}) by N n = n i=1 δ (i/n,Yn,i) ,
where δ x denotes the Dirac measure at x.

Our first result is that for the usual univariate point process of exceedances, there is no effect of leverage. This is a consequence of the asymptotic independence (8). Proposition 3.1. Let Assumption 1 hold and assume that σ is a continuous function such that [START_REF] Nicholas | Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications[END_REF] holds with q > α. Then n i=1 δ (i/n,Yi/an) converges weakly to a Poisson point process with mean measure ν 0 .

For the multivariate point process N n , we consider first LMSV models and then models with leverage.

3.1. Point process convergence: LMSV case Proposition 3.2. Let Assumption 1 hold and assume that the sequences {η i } and {Z i } are independent. Assume that the continuous volatility function σ satisfies [START_REF] Nicholas | Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications[END_REF] for some q > 2α.

Then

N n ⇒ h i=0 ∞ k=1 δ (t k ,j k,i ei) , (16) 
where

∞ k=1 δ (t k ,j k,0 ) , . . . , ∞ k=1 δ (t k ,j k,h
) are independent Poisson processes with mean measures ν 0 , . . . , ν h , and e i ∈ R h+1 is the i-th basis component. Here, ⇒ denotes convergence in distribution in the space of Radon point measures on (0, 1]×[-∞, ∞] h+1 \{0} equipped with the vague topology. 

(x + y) -σ(x + z)| ≤ C(σ(x) ∨ 1){(σ(y) ∨ 1) + (σ(z) ∨ 1)}|y -z| . ( 17 
)
Assume that condition [START_REF] Nicholas | Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications[END_REF] holds for some q > 2α. Then the convergence ( 16) holds.

The condition ( 17) is an ad-hoc condition which is needed for a truncation argument used in the proof. It is satisfied by all symmetric polynomials with positive coefficients. (The proof would not be simplified by considering polynomials rather than functions satisfying this assumption.)

4. Partial Sums Define S n (t) = [nt] i=1 Y i , S p,n (t) = [nt] i=1 |Y i | p .
For any function g such that E[g 2 (η 0 )] < ∞ and any integer q ≥ 1, define

J q (g) = E[H q (η 0 )g(η 0 )] ,
where H q is the q-th Hermite polynomial. The Hermite rank τ (g) of the function g is the smallest positive integer τ such that J τ (g) = 0. Let R τ,H be the so-called Hermite process of order τ with self-similarity index 1 -τ (1 -H). See [START_REF] Arcones | Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors[END_REF] or Appendix A for more details. Let D ⇒ denote convergence in the Skorokhod space D([0, 1], R) of real valued right-continuous functions with left limits, endowed with the J 1 topology, cf. [START_REF] Whitt | Stochastic-process limits[END_REF].

Theorem 4.1. Let Assumption 1 hold and assume that the function σ is continuous and ( 5) holds for some q > 2α.

(i) If 1 < α < 2 and E[Z 0 ] = 0, then a -1 n S n converges weakly in the space D([0, 1), R) endowed with Skorokhod's J 1 topology to an α-stable Lévy process with skewness 2β -1.

Let τ p = τ (σ p ) be the Hermite rank of the function σ p .

(ii) If p < α < 2p and 1 -τ p (1 -H) < p/α, then a -p n (S p,n -nE[|Y 0 | p ]) D ⇒ L α/p , (18) 
where L α/p is a totally skewed to the right α/p-stable Lévy process.

(iii) If p < α < 2p and 1 -τ p (1 -H) > p/α, then n -1 ρ -τp/2 n (S p,n -nE[|Y 0 | p ]) D ⇒ J τp (σ p )E[|Z 1 | p ] τ p ! R τp,H . ( 19 
) (iv) If p > α, then a -p n S p,n D ⇒ L α/p
, where L α/p is a positive α/p-stable Lévy process.

Note that there is no effect of leverage. The situation will be different for the sample covariances.

The fact that when the marginal distribution has infinite mean, long memory does not play any role and only a stable limit can arise was observed in a different context by [START_REF] Davis | Stable limits for partial sums of dependent random variables[END_REF].

Sample covariances

In order to explain more clearly the nature of the results and the problems that arise, we start by considering the sample covariances of the sequence {Y i }, without assuming that E[Z 0 ] = 0.

For notational simplicity, assume that we observe a sample of length n + h. Assume that α > 1.

Let Ȳn = n -1 n j=1 Y j denote the sample mean, m = E[Z 0 ], µ Y = E[Y 0 ] = mE[σ 0 ]
and define the sample covariances by

γn (s) = 1 n n i=1 (Y i -Ȳn )(Y i+s -Ȳn ) , 0 ≤ s ≤ h ,
For simplicity, we have defined all the sample covariances as sums with the same range of indices 1, . . . , n. This obviously does not affect the asymptotic theory. For s = 0, . . . , h, define furthermore

C n (s) = 1 n n i=1 Y i Y i+s .
Then, defining γ(s) = cov(Y 0 , Y s ), we have, for s = 0, . . . , h,

γn (s) -γ(s) = C n (s) -E[Y 0 Y s ] + µ 2 Y -Ȳ 2 n + O P (1/n) .
Under the assumptions of Theorem 4.1, Ȳ 2 n -µ 2 Y = O P (a n ). This term never contributes to the limit. Consider now C n (s). Recall that F i is the sigma-field generated by (η j , Z j ), j ≤ i and define

Xi,s = E[X i+s | F i-1 ] var(E[X i+s | F i-1 ]) = ς -1 s ∞ j=s+1 c j η i+s-j , with ς 2 s = ∞ j=s+1 c 2 j . Let K be the function defined on R 2 by K(x, x) = E[Z s ]E   Z 0 σ(x)σ   s j=1 c j η s-j + ς s x    -E[Y 0 Y s ] . (20) 
Then, for each i ≥ 0, it holds that

E[Y i Y i+s | F i-1 ] -E[Y 0 Y s ] = K(X i , Xi,s ) .
We see that if m = E[Z s ] = 0, then the function K is identically vanishing. We next write

C n (s) -E[Y 0 Y s ] = 1 n n i=1 {Y i Y i+s -E[Y i Y i+s | F i-1 ]} + 1 n n i=1 K(X i , Xi,s ) = 1 n M n,s + 1 n T n,s .
The point process convergence results of the previous section will allow to prove that b -1 n M n,s has a stable limit. If m = E[Z] = 0, then this will be the limit of b 

-1 n (C n (s) -E[Y 0 Y s ]),
nb -1 n (γ n (1) -γ(1), . . . , γn (h) -γ(h)) d → (L 1 , . . . , L h ) ,
where L 1 , . . . , L h are independent α-stable random variables.

This result was obtained by [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF] in the (LM)SV case for the function σ(x) = exp(x) and under implicit conditions that rule out long memory.

We continue the discussion under the assumption that m = 0. Then the term T n,s is the partial sum of a sequence which is a function of a bivariate Gaussian sequence. It can be treated by applying the results of [START_REF] Arcones | Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors[END_REF]. Its rate of convergence and limiting distribution will depend on the Hermite rank of the function K with respect to the bivariate Gaussian vector (X 0 , X0,s ), which is fully characterized by the covariance between X 0 and X0,s ,

cov(X 0 , X0,s ) = ς -1 s ∞ j=1 c j c j+s = ς -1 s ρ s .
LMSV case Since in this context the noise sequence {Z i } and the volatility sequence {σ i } are independent, we compute easily that

K(x, y) = m 2 σ(x)E[σ(κ s ζ + c s η 0 + ς s y)] -m 2 E[σ(X 0 )σ(X s )] ,
where κ 2 s = s-1 j=1 c 2 j and ζ is a standard Gaussian random variable, independent of η 0 . Thus, the Hermite rank of the function K depends only on the function σ (but is not necessarily equal to the Hermite rank of σ).

Case of leverage

In that case, the dependence between η 0 and Z 0 comes into play. We now have

K(x, y) = mσ(x)E[σ(κ s ζ + c s η 0 + ς s y)Z 0 ] -mE[σ(X 0 )σ(X s )Z 0 ] ,
and now the Hermite rank of K depends also on Z 0 . Different situations can occur. We give two examples.

Example 3. Consider the case σ(x) = exp(x). Then

E[Y 0 Y s | F -1 ] = E[Z 0 Z s exp(X 0 ) exp(X s ) | F -1 ] = mE[Z 0 exp(c s η 0 )]E   exp   s-1 j=1 c j η s-j     exp X 0 + ς s X0,s . Denote m = E[Z 0 exp(c s η 0 )] and note that E exp s-1 j=1 c j η s-j = exp κ 2 s /2 . Thus K(x, y) = m m exp κ 2 s /2 exp (x + ς s y) -E exp X 0 + ς s X0,s . 
If E[Z 0 ] = 0 or E[Z 0 exp (c s η 0 )] = 0, then the function K is identically vanishing and T n,s = 0.

Otherwise, the Hermite rank of K with respect to (X 0 , X0,s ) is 1. Thus, applying [2, Theorem 6] (in the one-dimensional case) yields that n -1 ρ -1/2 n T n,s converges weakly to a zero mean Gaussian distribution. The rate of convergence is the same as in the LMSV case but the asymptotic variance

is different unless E[Z 0 exp(c s η 0 )] = E[Z 0 ]E[exp(c s η 0 )]. Example 4. Consider σ(x) = x 2 . Denote Xi,s = κ -1 s s-1 j=1 c j η i+s-j . Then E[Y 0 Y s | F -1 ] = E[Z 0 Z s X 2 0 (κ s X0,s + ς s X0,s + c s η 0 ) 2 | F -1 ] = mX 2 0 κ 2 s m + c s E[Z 0 η 2 0 ] + ς s m( X0,s ) 2 + 2ς s c s E[Z 0 η 0 ] X0,s . Thus K(x, y) = ς s m 2 (x 2 y 2 -E[X 2 0 ( X2 0,s ]) + 2ς s c s mE[Z 0 η 0 ]{x 2 y -E[X 2 0 X0,s ]} + (κ 2 s m 2 + c s mE[Z 0 η 2 0 ])(x 2 -1)
and it can be verified that the Hermite rank of K with respect to (X 0 , X(s) 0 ) is 1, except if E[Z 0 η 0 ] = 0, which holds in the LMSV case. Thus we see that the rate of convergence of T n,s depends on the presence or absence of leverage. See Example 6 for details.

Let us now introduce the notations that will be used to deal with sample covariances of powers.

For p > 0 define m p = E[|Z 0 | p ]. If p ∈ (α, 2α
) and Assumption (1) holds, m p is finite and

E[|Z 0 | 2p ] = ∞. Moreover, under the assumptions of Lemma 2.1 or 2.2, for s > 0, E[|Y 0 Y s | p ] < ∞ and E[|Y 0 Y s | 2p ] = ∞ for p ∈ (α/2, α). Thus the autocovariance γ p (s) = cov(|Y 0 | p , |Y s | p ) is well defined. Furthermore, define Ȳp,n = n -1 n i=1 |Y i | p and γp,n (s) = 1 n n i=1 (|Y i | p -Ȳp,n )(|Y i+s | p -Ȳp,n ) .
Define the functions K * p,s (LMSV case) and K † p,s (case with leverage) by

K * p,s (x, y) = m 2 p σ p (x)E[σ p (κ s ζ + c s η 0 + ς s y)] -m 2 p E[σ p (X 0 )σ p (X s )] , (21) 
K † p,s (x, y) = m p σ p (x)E[σ p (κ s ζ + c s η 0 + ς s y)|Z 0 | p ] -m p E[σ p (X 0 )σ p (X s )|Z 0 | p ] . (22) 
5.1. Convergence of the sample covariance of powers: LMSV case Theorem 5.2. Let Assumption 1 hold and assume that the sequences {η i } and {Z i } are independent. Let the function σ be continuous and satisfy [START_REF] Nicholas | Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications[END_REF] with q > 4α. For a fixed integer s ≥ 1, let τ * p (s) be the Hermite rank of the bivariate function K * p,s defined by [START_REF] Horváth | Sample autocovariances of long-memory time series[END_REF], with respect to a bivariate Gaussian vector with standard marginal distributions and correlation ς -1 s γ s .

• If p < α < 2p and 1 -τ * p (s)(1 -H) < p/α, then nb -p n γp,n (s) -γ p (s) d → L s ,
where L s is a α/p-stable random variables.

• If p < α < 2p and 1 -τ * p (s)(1 -H) > p/α, then ρ -τ * p (s)/2 n (γ p,n (s) -γ p (s)) d → G * s ,
where the random variable

G * s is Gaussian if τ * p (s) = 1.
For different values s = 1, . . . , h, the Hermite ranks τ * p (s) of the functions K * p,s may be different. Therefore, in order to consider the joint autovovariances at lags s = 1, . . . , h, we define τ * p = min{τ * p (1), . . . , τ * p (h)} .

Corollary 5.2. Under the assumptions of Theorem 5.2,

• If 1 -τ * p (1 -H) < p/α, then nb -p n (γ p,n (1) -γ p (1), . . . , γp,n (h) -γ p (h)) d → (L 1 , . . . , L h ) ,
where L 1 , . . . , L p are independent α/p-stable random variables.

• If 1 -τ * p (1 -H) > p/α, then ρ -τ * p /2 n (γ p,n (1) -γ p (1), . . . , γp,n (h) -γ p (h)) d → ( G * 1 , . . . , G * h ) , where G * s = G * s if τ * p (s) = τ * p and G * s = 0 otherwise.
We see that the joint limiting vector ( G * 1 , . . . , G * h ) may have certain zero components if there exist indices s such that τ * p (s) > τ * p . However, for standard choices of the function σ, the Hermite rank τ * p (s) does not depend on s. For instance, for σ(x) = exp(x), τ * p (s) = 1 for all s, and for σ(x) = x 2 , τ * p (s) = 2 for all s.

Convergence of sample covariance of powers: case of leverage

Theorem 5.3. Let the assumptions of Proposition 3.3 or 3.4 hold and assume that (5) holds for some q > 4α. Let τ † p (s) be the Hermite rank of the bivariate function K † p,s defined by [START_REF] Jonathan | Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series[END_REF], with respect to a bivariate Gaussian vector with standard marginal distributions and correlation

ς -1 s γ s . • If p < α < 2p and 1 -τ † p (s)(1 -H) < p/α, then nb -p n (γ p,n (1) -γ p (1), . . . , γp,n (h) -γ p (h)) d → L s ,
where L s is a α/p-stable random variable.

• If p < α < 2p and 1 -τ † p (s)(1 -H) > p/α, then ρ -τ † p (s)/2 n (γ p,n (1) -γ p (1), . . . , γp,n (h) -γ p (h)) d → G † s ,
where the random vector

G † s is Gaussian if τ † p (s) = 1.
Again, as in the previous case, in order to formulate the multivariate result, we define further

τ † p = min{τ † p (1), . . . , τ † p (h)} .
6. Proofs Lemma 6.1. Let Z be a nonnegative random variable with a regularly varying right tail with index -α, α > 0. Let g be a bounded function on [0, ∞) such that lim x→+∞ g(x) = c g ∈ (0, ∞). Then Zg(Z) is tail equivalent to Z:

lim x→+∞ P(Zg(Z) > x) P(Z > x) = c α g .
Proof. Fix some ǫ > 0 and let x 0 be large enough so that |g(x) -c g |/c g < ǫ for all x > x 0 . The function g is bounded, thus zg(z) > x implies that z > x/ g ∞ and if x > x 0 g ∞ , we have

P(Zg(Z) > x) = P(Zg(Z) > x, Z > x/ g ∞ ) ≤ P(Zc g (1 + ǫ) > x, Z > x/ g ∞ ) ≤ P(Zc g (1 + ǫ) > x) .
This yields the upper bound:

lim sup x→+∞ P(Zg(Z) > x) P(Z > x) ≤ lim sup x→+∞ P(Zc(1 + ǫ) > x) P(Z > x) = c α g (1 + ǫ) α .
Conversely, we have

P(Zg(Z) > x) = P(Zg(Z) > x, Z > x/ g ∞ ) ≥ P(Zc g (1 -ǫ) > x, Z > x/ g ∞ ) = P Z > x max 1 c g (1 -ǫ) , 1 g ∞ = P Z > x c g (1 -ǫ)
where the last equality comes from the fact that (1 -ǫ)c g ≤ c g = lim z→+∞ g(z) ≤ g ∞ . Thus

lim inf x→+∞ P(Zg(Z) > x) P(Z > x) ≥ lim sup x→+∞ P(Zc g (1 -ǫ) > x) P(Z > x) = c α g (1 -ǫ) α .
Since ǫ is arbitrary, we obtain the desired limit.

Lemma 6.2. Let Z be a nonnegative random variable with a regularly varying right tail with index -α, α > 0. For each ǫ > 0, there exists a constant C, such that for all x ≥ 1 and all y > 0,

P(yZ > x) P(Z > x) ≤ C(y ∨ 1) α+ǫ . ( 23 
)
Proof. If y ≤ 1, then P(yZ > x) ≤ P(Z > x) so the requested bound holds trivially with C = 1.

Assume now that y ≥ 1. Then, by Markov's inequality,

P(yZ > x) = P(Z > x) + P(Z1 {Z≤x} > x/y) ≤ x -α-ǫ y α+ǫ E[Z α+ǫ 1 {Z≤x} ] . (24) 
Next, by [17, Theorem VIII.9.2] or [5, Theorem 8.

1.2], lim x→+∞ E[Z α+ǫ 1 {Z≤x} ] x α+ǫ P(Z > x) = α ǫ .
Moreover, the function x → P(Z > x) is decreasing on [0, ∞), hence bounded away from zero on compact sets of [0, ∞). Thus, there exists a constant C such that for all x ≥ 1,

E[Z α+ǫ 1 {Z≤x} ] P(Z > x) ≤ Cx α+ǫ . (25) 
Plugging ( 25) into (24) yields, for all x, y ≥ 1,

P(yZ > x) P(Z > x) = 1 + Cy α+ǫ .
This concludes the proof of [START_REF] Jach | Subsampling inference for the mean of heavy-tailed long memory time series[END_REF].

Proof of Lemma 2.1. Under the assumption of independence between the sequences {Z i } and {η i }, as already mentioned, Y 0 is tail equivalent to Z 0 and Y 0 Y h is tail equivalent to Z 0 Z 1 for all h. The properties ( 11), ( 12), ( 13) are straightforward. We need to prove ( 14) and [START_REF] Douc | On the existence of some ARCH(∞) processes[END_REF]. Since Z 0 is independent of σ j and Z j , by conditioning, we have

nP(|Y 0 | > a n x, |Y 0 Y j | > b n x) = E n F|Z| a n x σ 0 ∨ b n x σ 0 σ j |Z j | with F |Z| the distribution function of |Z 0 |. Since a n /b n → 0, for any y > 0, it holds that lim n→+∞ n F|Z| (b n y) = 0. Thus, n F|Z| a n x σ 0 ∨ b n x σ 0 σ j |Z j | ≤ n F|Z| b n x σ 0 σ j |Z j | → 0 , a.s.
Moreover, by Lemma 6.2 and the definition of a n , for any ǫ > 0 there exists a constant C such that

n F|Z| a n x σ 0 ∨ b n x σ 0 σ j |Z j | ≤ n F|Z| a n x σ 0 ≤ Cx -α-ǫ σ α+ǫ 0 .
By assumption, (5) holds for some q > α. Thus, choosing ǫ small enough allows to apply the bounded convergence theorem and this proves [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF]. Next, to prove [START_REF] Douc | On the existence of some ARCH(∞) processes[END_REF], note that

|Y i | ∧ |Y j | ≤ (σ i ∨ σ j )(|Z i | ∧ |Z j |).
Thus, applying Lemma 6.2, we have

P(|Y 0 Y i | > x, |Y 0 Y j | > x) = P(|Z 0 |σ 0 (σ i |Z i | ∧ σ j |Z j |) > x) ≤ CP(|Z 0 | > x)E[σ α+ǫ 0 (σ i ∨ σ j ) α+ǫ ]E[(|Z i | ∧ |Z j |) α+ǫ ] .
The expectation E[σ α+ǫ 0 (σ i ∨ σ j ) α+ǫ ] is finite for ǫ small enough, since Assumption (5) holds with

q > 2α. Since P(|Z 0 | > x) = o(P(|Z 1 Z 2 | > x)
), this yields [START_REF] Douc | On the existence of some ARCH(∞) processes[END_REF] in the LMSV case.

Proof of Lemma 2.2. It suffices to prove the lemma when the random variables Z i are nonnegative. Under the assumption of the Lemma, exp(c h η 0 )Z 0 is tail equivalent to Z 0 . Thus, by the Corollary in [16, p. 245], Z 0 exp(c h η 0 )Z h is regularly varying with index α and tail equivalent 13) and ( 11) hold with

to Z 0 Z h . Since E[Z α 0 ] = ∞, it also holds that P(Z 0 > x) = o(P(exp(c h η 0 )Z 0 Z 1 > x)), cf. [11, Equation (3.5)]. Define Xh = ∞ k=1,k =h c k η h-k . Then Xh is independent of Z 0 , η 0 and Z h . Since Y 0 Y h = exp(X 0 + Xh )Z 0 exp(c h η 0 )Z h , we can apply Breiman's Lemma to obtain that Y 0 Y h is tail equivalent to Z 0 exp(c h η 0 )Z h , hence to Z 0 Z 1 . Thus (
d + (h) = β E[exp(α(X 0 + Xh ))] E[exp(α(X 0 + X1 ))] , d -(h) = (1 -β) E[exp(α(X 0 + Xh ))] E[exp(α(X 0 + X1 ))] ,
where β is the skewness parameter of Z 0 exp(c h η 0 )Z h .

We now prove [START_REF] Douc | On the existence of some ARCH(∞) processes[END_REF]. For fixed i, j such that 0

< i < j, define σi = σ( Xi ) = exp   ∞ k=1,k =i c k η i-k   , σi,j = σ( Xi,j ) = exp   ∞ k=1,k =j,j-i c k η j-k   . Denote Z(k) 0 = Z 0 exp(c k η 0 ) and V i = exp(c j-i η i ). Then P(Y 0 Y i > x, Y 0 Y j > x) = P(σ 0 σi Z(i) 0 Z i > x , σ 0 σi,j Z(i) 0 exp(c j-i η i )Z j > x) ≤ P(σ 0 (σ i ∨ σi,j )( Z(i) 0 + Z(j) 0 )(Z i ∧ V i Z j ) > x) . Now, (Z i ∧ V i Z j ) is independent of σ 0 (σ i ∨ σi,j )( Z(i) 0 + Z(j) 0 )
, which is tail equivalent to Z 0 by assumption and Breiman's Lemma. Thus, in order to prove [START_REF] Douc | On the existence of some ARCH(∞) processes[END_REF], we only need to show that for some δ > α, E[(Z i ∧ V i Z j ) δ ] < ∞. This is true. Indeed, since E[V q i ] < ∞ for all q > 1, we can apply Hölder's inequality with q arbitrarily close to 1. This yields for p -1 + q -1 = 1,

E[(Z i ∧ V i Z j ) δ ] ≤ E[(1 ∨ V i ) δ (Z i ∧ Z j ) δ ] ≤ E 1/p [(1 ∨ V i ) pδ ] E 1/q [(Z i ∧ Z j ) qδ ] .
The tail index of (Z i ∧Z j ) is 2α, and thus E 1/q [(Z i ∧Z j ) qδ ] < ∞ for any q and δ such that qδ < 2α.

Thus E[(Z i ∧ V i Z j ) δ ] < ∞ for any δ ∈ (α, 2α
) and ( 15) holds. The proof of ( 14) is similar.

Proof of Lemma 2.3. We omit the proof of the regular variation and the tail equivalence between Y 0 Y h and Z 0 Z 1 which is a straightforward consequence of the assumption. We prove [START_REF] Douc | On the existence of some ARCH(∞) processes[END_REF].

Using the notation of the proof of Lemma 2.2, by the subadditivity property of σ, we have, for j > i > 0, and for some constant C,

P(Y 0 Y i > x, Y 0 Y j > x) = P(σ 0 σ( Xi + c i η 0 )Z 0 Z i > x , σ 0 σ( Xi,j + c j η 0 + c j-i η i )Z 0 Z j > x} ≤ P(Cσ 0 |Z 0 |{σ( Xi ) + σ(c i η 0 )}{σ( Xi,j ) + σ(c j η 0 ) + σ(c j-i η i )}(|Z i | ∧ |Z j |) > x) ≤ P(Cσ 0 |Z 0 |σ( Xi )σ( Xi,j )(|Z i | ∧ |Z j |) > x) + P(Cσ 0 |Z 0 |σ( Xi )σ(c j η 0 )(|Z i | ∧ |Z j |) > x) + P(Cσ 0 |Z 0 |σ( Xi )σ(c j-i η i )(|Z i | ∧ |Z j |) > x) + P(Cσ 0 |Z 0 |σ(c i η 0 )σ( Xi,j )(|Z i | ∧ |Z j |) > x) + P(Cσ 0 |Z 0 |σ(c i η 0 )σ(c j η 0 )(|Z i | ∧ |Z j |) > x) + P(Cσ 0 |Z 0 |σ(c i η 0 )σ(c j-i η i )(|Z i | ∧ |Z j |) > x) .
Now, under the assumptions of the Lemma, each of the last six probabilities can be expressed as

P( ZU > x)
, where Z is tail equivalent to Z 0 and U is independent of Z and E[|U | q ] < ∞ for some q > α. Thus, by Breiman's Lemma, ZU is also tail equivalent to Z 0 , and thus

P(Y 0 Y i > x, Y 0 Y j > x) = O(P(|Z 0 | > x)) = o(P(|Y 0 Y 1 | > x)
), which proves (15). We omit some details of the proof, since it is a slight modification of the proof of Theorems 3.1 and 3.2 in [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF], adapted to a general stochastic volatility with possible leverage and long memory.

Note that the proof of [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF]Theorem 3.2] refers to the proof of Theorem 2.4 in [START_REF] Davis | Limit theory for moving averages of random variables with regularly varying tail probabilities[END_REF]. The latter proof uses condition (2.6) in [START_REF] Davis | Limit theory for moving averages of random variables with regularly varying tail probabilities[END_REF], which rules out long memory.

The proof is in two steps. In the first step we consider an m-dependent approximation X (m) of the Gaussian process and prove point-process convergence for the corresponding stochastic volatility process Y (m) for each fixed m. The second step naturally consists in proving that the limits for the m-dependent approximations converge when m tends to infinity, and that this limit is indeed the limit of the original sequence.

First step Let X (m) i = m k=1 c k η i-k , Y (m) i = σ(X (m) i )Z i and define accordingly Y (m)
n,i . Note that the tail properties of the process {Y (m) i } are the same as those of the process {Y i }, since the latter are proved without any particular assumptions on the coefficients c j of the expansion (2) apart from square summability. In order to prove the desired point process convergence, as in the proof of [14, Theorem 3.1], we must check the following two conditions (which are Equations (3.3) and (3.4) in [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF]):

P(Y (m) n,1 ∈ •) v → ν m , (26) 
lim k→+∞ lim sup n→+∞ n [n/k] i=2 E[g(Y (m) n,1 )g(Y (m) 
n,i )] = 0 , (27) 
where ν m is the mean measure of the limiting point process and ( 27) must hold for any continuous bounded function g, compactly supported on

[0, 1] × [-∞, ∞] h \ {0}.
The convergence ( 26) is a straightforward consequence of the joint regular variation and the asymptotic independence properties ( 14), [START_REF] Douc | On the existence of some ARCH(∞) processes[END_REF] of Y 0 , Y 0 Y 1 , . . . , Y 0 Y h . Let us now prove [START_REF] Resnick | Heavy-tail phenomena[END_REF]. Note first that, because of asymptotic independence, for any fixed i,

lim n→+∞ nE[g(Y (m) n,1 )g(Y (m) n,i )] = 0 .
Next, by m-dependence, for each k, as n → +∞, we have

n [n/k] i=2+m+h E[g(Y (m) n,1 )g(Y (m) n,i )] = n [n/k] i=2+m+h E[g(Y (m) n,1 )]E[g(Y (m) n,i )] ∼ 1 k nE[g(Y (m) n,1 )] 2 → 1 k gdν m 2 .
This yields [START_REF] Resnick | Heavy-tail phenomena[END_REF]. Thus, we obtain that

n i=1 δ (i/n,Y (m) n,i ) ⇒ h l=1 ∞ k=1 δ (t k ,j (m) k,l e l ) ,
where

∞ k=1 δ (t k ,j (m) k,0 ) , . . . , ∞ k=1 δ (t k ,j (m) k,h
) are independent Poisson processes with respective mean measures

λ 0,m (dx) = α β m x -α-1 1 (0,∞) (x) + (1 -β m )(-x) -α-1 1 (-∞,0) (x) dx , (28) 
λ s,m (dx) = α d (m) + (s)x -α-1 1 (0,∞) (x) + d (m) -(s)(-x) -α-1 1 (-∞,0) (x) dx , (29) where d (m) + (s) and d (m) 
-(s) depend on the process considered and

β m = βE[σ α (X (m) )]/E[σ α (X)].

Second step

We must now prove that

N m ⇒ N (30) 
as m → and that for all η > 0,

lim m→+∞ lim sup n→+∞ P(̺(N n , N (m) n ) > η) = 0 . ( 31 
)
where ̺ is the metric inducing the vague topology. Cf. (3.13) and (3.14) in [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF]. To prove [START_REF] Robinson | Nonlinear time series with long memory: a model for stochastic volatility[END_REF], it suffices to prove that lim m→+∞

β m = β , (32) lim m→+∞ d (m) 
+ (s) = d + (s) , lim m→+∞ d (m) -(s) = d -(s) . (33) 
To prove [START_REF] Surgailis | A quadratic ARCH(∞) model with long memory and Lévy stable behavior of squares[END_REF], as in the proof of [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF]Theorem 3.3], it suffices to show that for all ǫ > 0,

lim m→+∞ lim sup n→+∞ nP(a -1 n |Y 0 -Y (m) 0 | > ǫ) = 0 , (34) 
lim m→+∞ lim sup n→+∞ nP b -1 n |Y 0 Y s -Y (m) 0 Y (m) s | > ǫ = 0 . (35) 
If (5) holds for some q > α and if σ is continuous, then [START_REF] Surgailis | Long memory properties and covariance structure of the EGARCH model[END_REF] holds by bounded convergence, in both the LMSV case and the case of leverage. We now prove [START_REF] Biao Wu | Covariances estimation for long-memory processes[END_REF]. Since Y 0 and Z 0 are tail equivalent, by Breiman's Lemma, we have

lim sup n→+∞ nP(a -1 n |Y 0 -Y (m) 0 | > ǫ) ≤ Cǫ -α E[|σ(X (m) 0 ) -σ(X 0 )| α ] .
Continuity of σ, Assumption (5) with q > α and the bounded convergence theorem imply that

lim m→+∞ E[|σ(X (m) 0 ) -σ(X 0 )| α ] = 0.
This proves [START_REF] Biao Wu | Covariances estimation for long-memory processes[END_REF] in both the LMSV case and the case of leverage. We now split the proof of ( 33) and ( 35) between the LMSV and leverage cases.

LMSV case. In this case, we have

d (m) + (s) = d + (s) E[σ α (X (m) 0 )σ α (X (m) s )] E[σ α (X 0 )σ α (X s )] , d (m) 
-(s) = d -(s) E[σ α (X (m) 0 )σ α (X (m) s )] E[σ α (X 0 )σ α (X s )]
.

For s = 1, . . . , h, define

W m,s = σ(X (m) 0 )σ(X (m) s ) -σ(X 1 )σ(X 1+s ) .
Continuity of σ implies that W m,s P → 0 as m → +∞. Under the Gaussian assumption, X (m) d = u m X for some u m ∈ (0, 1), thus if (5) holds for some q ′ > α, then it also holds that

sup m≥1 E[σ q ′ (X (m) )] < ∞ ,
hence W m converges to 0 in L q for any q < q ′ . Likewise, since assumption (5) holds for some

q ′ > 2α, W m,s converges to 0 in L q for any q < q ′ . Since |W m | and |W m,s | converge to 0 in L α , we obtain that d (m) + (s) and d (m) 
-(s) converge to the required limits. We now prove (35). Since Z 0 Z s is tail equivalent to Y 0 Y 1 by another application of Breiman's Lemma, we obtain, for s = 1, . . . , h

and ǫ > 0, lim sup n→+∞ P(b -1 n |Y 0 Y s -Y (m) 0 Y (m) s | > ǫ) ≤ lim sup n→+∞ nP b -1 n |Z 0 Z s ||W m,s | > Cǫ ≤ C -α ǫ -α E[|W m,s | α ]
which converges to 0 as m → +∞. This concludes the proof of (35) in the LMSV case.

To prove (35) in the case of leverage, we further split the proof between the cases σ(x) = exp(x) and σ subadditive.

Case of leverage, σ(x) = exp(x) Define Xs = ∞ j=1,j =s c j η s-j , X (m) s 
= m j=1,j =s c j η s-j and Wm,s = | exp(X 0 + Xs ) -exp(X (m) 0 + X(m) s )| .
As previously, we see that Wm,s converges to 0 in L q for some q > α. Thus, we obtain that

n i=1 δ (i/n,Y (m) n,i ) ⇒ h s=0 ∞ k=1 δ (t k ,j (m) k,s es) , (n → +∞) ,
where

∞ k=1 δ (t k ,j (m) k,0 ) , . . . , ∞ k=1 δ (t k ,j (m) k,h
) are independent Poisson processes with respective mean measures λ s,m (dx), s = 0, . . . , h, defined in ( 28)- [START_REF] Robinson | Modelling nonlinearity and long memory in time series[END_REF] with the constants d 

+ (s) = d + (s) E[exp(α(X (m) 0 + X(m) s ))] E[exp(α(X 0 + Xs ))] , d (m) 
-(s) = d -(s) E[exp(α(X (m) 0 + X(m) s ))] E[exp(α(X 0 + Xs ))] . Since | Wm,s | converges to 0 in L q , we obtain ∞ k=1 δ (t k ,j (m) k,s ) ⇒ ∞ k=1 δ (t k ,j k,s ) , (m → +∞) , s = 0, . . . , h .
Then, for s = 1, . . . , h, we obtain, with Z(s) 0 = Z 0 exp(c s η 0 ), for ǫ > 0, lim sup

n→+∞ nP b -1 n |Y 0 Y s -Y (m) 0 Y (m) s | > ǫ = lim sup n→+∞ nP b -1 n |Z 0 Z(s) 0 || Wm,s | > ǫ ≤ Cǫ -α E[| Wm,s | α ]
which converges to 0 as m → +∞. This proves (35) and concludes the proof in the case of leverage with σ(x) = exp(x).

Case of leverage, σ subadditive We have to bound

nP(|Z 0 Z s ||σ(X 0 )σ(X s ) -σ(X (m) 0 )σ(X (m) s )| > ǫb n ) .
It suffices to bound two terms

I 1 (n, m) = nP(|Z 0 Z s ||σ(X 0 ) -σ(X (m) 0 )|σ(X (m) s ) > ǫb n ) , I 2 (n, m) = nP(|Z 0 Z s |σ(X 0 )|σ(X s ) -σ(X (m) s )| > ǫb n ) .
Recall that X )|σ( X(m) )|σ( X(m)

s ) > Cǫb n ) + nP(|Z 0 Z s ||σ(X 0 ) -σ(X (m) 0 )|σ(c s η 0 ) > δǫb n ) . The product Z 0 Z s is independent of |σ(X 0 ) -σ(X (m) 0 )|σ( X (m) 
s ) > δǫb n ) ≤ Cǫ -α E[|σ(X 0 ) -σ(X (m) 0 )| α σ α ( X(m) s )] .
We have already seen that σ(X (m) 0

) converges to σ(X 0 ) in L α , thus the latter expression converges to 0 as m → +∞. By assumption, σ(c

s η 0 )|Z 0 Z s | is either tail equivalent to |Z 0 Z s | or E[σ q (c s η 0 )|Z 0 Z s | q ] < ∞ for some q > α, and since it is independent of |σ(X 0 ) -σ(X (m) 0 )|, we obtain that lim sup n→+∞ nP(σ(c s η 0 )|Z 0 Z s ||σ(X 0 ) -σ(X (m) 0 )| > ǫb n ) ≤ Cǫ -α E[|σ(X 0 ) -σ(X (m) 0 )| α ] ,
where C = 0 in the latter case. In both cases, this yields

lim m→+∞ lim sup n→+∞ nP(σ(c s η 0 )|Z 0 Z s ||σ(X 0 ) -σ(X (m) 0 )| > ǫb n ) = 0 .
Thus we have obtained that lim m→+∞ lim sup n→+∞ I 1 (n, m) = 0.

For the term I 2 (n, m) we use assumption ( 17) with x = c s η 0 , y = Xs and z = X(m) s . Thus

I 2 (n, m) ≤ nP(|Z 0 Z s |(σ(c s η 0 ) ∨ 1) Wm,s > ǫb n ) , with Wm,s = σ(X 0 ){(σ( Xs ) ∨ 1) + (σ( X(m) s ) ∨ 1)}| Xs -X(m) s | .
Note that Wm,s is independent of |Z 0 Z s |(σ(c s η 0 ) ∨ 1) and Wm,s converges to 0 when m → +∞ in L q for some q > α. Since |Z 0 Z s |σ(c s η 0 ) is tail equivalent to |Y 0 Y 1 | or has a finite moment of order q ′ for some q ′ > α, we have lim sup

n→+∞ nP(|Z 0 Z s |(σ(c s η 0 ) ∨ 1) Wm,s > ǫb n ) ≤ CE[ W α m,s ] ,
where the constant C can be zero in the latter case. In both cases, we conclude

lim m→+∞ lim sup n→+∞ nP(|Z 0 Z s |(σ(c s η 0 ) ∨ 1) Wm,s > ǫb n ) = 0 .

Proof of Theorem 4.1

We start by studying S p,n . Write

[nt] i=1 (|Y i | p -E[|Y 0 | p ]) = [nt] i=1 (|Y i | p -E[|Y i | p |F i-1 ]) + [nt] i=1 (E[|Y i | p |F i-1 ] -0 | p ]) =: M n (t) + R n (t) . Note that E[|Y i | p |F i-1 ] = E[|Z 0 | p ]σ p (X i
) is a function of X i and does not depend on Z i . Then, by [2, Theorem 6], for τ p (1 -H) < 1/2 we have

n -1 ρ -τp/2 n R n D ⇒ J τp (σ p )E[|Z 1 | p ] τ p ! R τp,H . (36) 
If τ p (1 -H) > 1/2 then by [2, Theorem 4], we obtain

n -1/2 R n D ⇒ ςE[|Z 0 | p ]B , (37) 
where B is the standard Brownian motion and ς 2 = var(σ p (X 0 )) + 2 ∞ i=1 cov(σ p (X 0 ), σ p (X i )). We will show that under the assumptions of Theorem 4.1 we have,

a -p n M n D ⇒ L α/p . (38) 
The convergences (36), (37) and (38) conclude the proof of the theorem. We now prove (38). The proof is very similar to the proof of the convergence of the partial sum of an i.i.d. sequence in the domain of attraction of a stable law to a Lévy stable process. The differences are some additional technicalities. See e.g. [27, Proof of Theorem 7.1] for more details. For 0 < ǫ < 1, decompose it further as

M n (t) = [nt] i=1 |Y i | p 1 {|Yi|<ǫan} -E |Y i | p 1 {|Yi|<ǫan} |F i-1 + [nt] i=1 |Y i | p 1 {|Yi|>ǫan} -E |Y i | p 1 {|Yi|>ǫan} |F i-1 =: M (ǫ) n (t) + M (ǫ) n (t) .
The term M (ǫ) n (•) is treated using the point process convergence. Since for any ǫ > 0, the summation functional is almost surely continuous from the set of Radon measures on [0, 1] × [ǫ, ∞) onto D([0, 1], R) with respect to the distribution of the Poisson point process with mean measure ν 0 (see e.g. [27, p. 215]), from Proposition 3.1 we conclude

a -p n [n•] i=1 |Y i | p 1 {|Yi|>ǫan} D ⇒ t k ≤(•) |j k | p 1 {|j k |>ǫ} . ( 39 
)
Taking expectation in (39) we obtain

lim n→+∞ [nt]a -p n E |Y 0 | p 1 {|Y1|>ǫan} = t {x:|x|>ǫ} |x| p λ 0 (dx) (40) 
uniformly with respect to t ∈ [0, 1] since it is a sequence of increasing functions with a continuous limit. Furthermore, we claim that

a -p n [nt] i=1 E |Y 0 | p 1 {|Y1|>ǫan} -E |Y i | p 1 {|Yi|>ǫan} |F i-1 P → 0 , (41) 
uniformly in t ∈ [0, 1]. We use the variance inequality (48) to bound the variance of the last expression by

a -2p n [nt] 2 ρ [nt] var E[|Y 1 | p 1 {|Y1|>ǫan} |F 0 ] ≤ a -2p n [nt] 2 ρ [nt] E E[|Y 1 | p 1 {|Y1|>ǫan} |F 0 ] 2 .
If p < α < 2p, by Karamata's Theorem (see [27, p. 25]) and Potter's bound,

E[σ p (x)|Z 1 | p 1 {|σ(x)Z1|>ǫan} ] ≤ Cn -1 a p n FZ (ǫa n /σ(x)) FZ (a n ) ≤ Cn -1 a p n σ α+ǫ (x) .
Since by assumption E[σ 2α+2ǫ (X 0 )] < ∞ for some ǫ > 0, for each t, we have var

  a -p n [nt] i=1 E |Y 0 | p 1 {|Y0|>ǫan} -E |Y i | p 1 {|Yi|>ǫan} |F i-1   ≤ Cn -2 [nt] 2 ρ [nt] ≤ Cn 2H-2+ǫ t 2H-ǫ , (42) 
where the last bound is obtained for some ǫ > 0 by Potter's bound. This proves convergence of finite dimensional distribution to 0 and tightness in D([0, 1], R). As in [27, p. 216], we now argue that (39), (40) and (41) imply that

a -p n M (ǫ) n D ⇒ L (ǫ) α/p , (43) 
and it also holds that L 

a -p n [nt] i=1 |Y i | p 1 {|Yi|<ǫan} -E |Y i | p 1 {|Yi|<ǫan} |F i-1   2    ≤ Cna -2p n E |Y 1 | p 1 {|Y1|<ǫan} -E |Y 1 | p 1 {|Y1|<ǫan} |F 0 2 ≤ 4Cna -2p n E |Y 1 | 2p 1 {|Y1|<ǫan} .
Recall that α < 2p. By Karamata's theorem (see [27, p. 25]),

E |Y 1 | 2p 1 {|Y1|<ǫan} ∼ 2α 2p -α (ǫa n ) 2p FY (ǫa n ) ∼ 2α 2p -α ǫ 2p-α a 2p n n -1 . (44) 
Applying this and letting ǫ → 0 we conclude that a -p n M

n is uniformly negligible in L 2 and so in probability, and thus we conclude that a

-p n M n D ⇒ L α/p . For p > α, E[|Y 0 | p ] = ∞.
In that case it is well known (see e.g. [13, Theorem 3.1]) that the convergence of a -p n S p,n to an α/p-stable Lévy process follows directly from the convergence of the point process n i=1 δ Yi/an to a Poisson point process, and that no centering is needed. In the present context, this entirely dispenses with the conditioning argument and the long memory part does not appear. Therefore convergence to stable Lévy process always holds.

As for the sum S n , since E[Y 0 ] = E[Z 0 ] = 0, the long memory part R n is identically vanishing, thus in this case also only the stable limit arises.

Proof of Theorem 5.2

Let U i = |Y i Y i+s |. We now write n i=1 (U p i -E[U p 0 ]) = n i=1 (U p i -E[U p i | F i-1 ]) + n i=1 (E[U p i | F i-1 ] -E[U p 0 ]) = M n,s + n i=1 K * p (X i , Xi,s ) = M n,s + T n,s .
As mentioned above, the second part is the partial sum of a sequence of a function of the bivariate Gaussian sequence (X i , Xi,s ). The proof of the convergence to a stable law mimics the proof of Theorem 4.1. We split M n,s between big jumps and small jumps. Write M

(ǫ) n,s + M (ǫ) n,s , with M (ǫ) n,s = n i=1 U p i 1 {Ui≤bnǫ} -E[U p i 1 {Ui≤bnǫ} | F i-1 ] .
The point process convergence yields the convergence of the big jumps parts by the same argument as in the proof of Theorem 4.1. In order to prove the asymptotic negligibility of the small jumps parts, the only change that has to be made comes from the observation that M (ǫ) n,s is no longer a martingale. However, assuming for simplicity that we have (s + 1)n observations Y i , we write,

with U i,k = U (s+1)i-k = |Y (s+1)i-k Y (s+1)i+s-k |, M (ǫ) n,s = s k=0 n i=1 U p i,k 1 {Ui≤bnǫ} -E U p i,k 1 {Ui≤bnǫ} | F (s+1)i-k-1 =: s k=0 M (ǫ) n,s,k .
Clearly, each M

n,s,k , k = 0, . . . , s, is a martingale with respect to the filtration {F i(s+1) , 1 ≤ i ≤ n}, therefore we can apply Doob's inequality and conclude the proof with the same arguments as previously.

Proof of Theorem 5.3

Again, we mimic the proof of Theorem 4.1, however, some technical modifications are needed.

We use the decomposition between small jumps and big jumps. To prove negligibility of the small jumps, we use the same splitting technique as in the proof of Theorem 5.2. To deal with the big jumps, the only adaptation needed is to obtain a bound for the quantity

b -2p n n 2 ρ n E E[|Y 0 Y s | p 1 {|Y0Ys|>ǫbn} |F -1 ] 2 . ( 45 
)
To show that (41) still holds in the present context, we must prove that the expectation in (45) is of order n -2 b 2p n . The rest of the arguments to prove the convergence of the big jumps part remains unchanged. Note that E[|Y 0 Y s | p 1 {|Y0Ys|>ǫbn} |F -1 ] = G(X 0 , X0,s ), thus we need an estimate for the bivariate function

G(x, y) = σ p (x)E[|Z 0 Z s | p σ p (c s η 0 + ς s ζ + y)1 {|Z0Zs|σ(csη0+ςsζ+y)>ǫbn} ] ,
where ζ is a standard Gaussian random variable, independent of Z 0 , η 0 and Z s . We obtain this estimate first in the case σ(x) = exp(x) and then for subadditive functions.

Let σ(x) = exp(x). As in the proof of point process convergence, we write

Y 0 Y s = Z 0 Z s exp(c s η 0 ) exp X 0 + Xs .
By Lemma 2.2, Z 0 Z s exp(c s η 0 ) is regularly varying and tail equivalent to Z 0 Z s . Since exp(pς s ζ) is independent of Z 0 Z s exp(c s η 0 ) and has finite moments of all orders, we obtain that Z 0 Z s exp(c s η 0 ) exp(pς s ζ) is also tail equivalent to Z 0 Z s , hence to Y 0 Y 1 . Thus, by Karamata's Theorem and Potter's bounds, we obtain, for some δ > 0, Since the log-normal distribution has finite moments of all order, we obtain that E[G 2 (X 0 , X0,s )] = O(n -2 b 2p n ) which is the required bound. This concludes the proof in the case σ(x) = exp(x). Let now the assumptions of Proposition 3.4 be in force. Using the subadditivity of σ p , we obtain G(x, y) ≤ and by the same argument as for I 3 we obtain that E[I 2 3 (X 0 , X0,s )] = O(n -2 b 2p n ).

Appendix A. Gaussian long memory sequences

For the sake of completeness, we recall in this appendix the main definitions and results pertaining to Hermite coefficients and expansions of square integrable functions with respect to a possibly non standard multivariate Gaussian distribution. Expansions with respect to the multivariate standard Gaussian distribution are easy to obtain and describe. The theory for non standard Gaussian vectors is more cumbersome. The main reference is [START_REF] Arcones | Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors[END_REF].

A.1. Hermite coefficients and rank

Let G be a function defined on R k and X = (X (1) , . . . , X (k) ) be a k-dimensional centered Gaussian vector with covariance matrix Γ. The Hermite coefficients of G with respect to X are defined as

J(G, X, q) = E   G(X) k j=1 H qj (X (j) )   ,
where q = (q 1 , . . . , q k ) ∈ N k . If Γ is the k × k identity matrix (denoted by I k ), i.e. the components of X are i.i.d. standard Gaussian, then the corresponding Hermite coefficients are denoted by J * (G, q). The Hermite rank of G with respect to X, is the smallest integer τ such that J(G, X, q) = 0 for all q such that 0 < |q 1 + • • • + q k | < τ .

A.2. Variance inequalities

Consider now a k-dimensional stationary centered Gaussian process {X i , i ≥ 0} with covariance

function ρ n (i, j) = E[X (i) 0 X (j)
n ] and assume either

∀1 ≤ i, j ≤ k , ∞ n=0 |ρ n (i, j)| < ∞ , (46) 
or that there exists H ∈ (1/2, 1) and a function ℓ slowly varying at infinity such that

lim n→+∞ ρ n (i, j) n 2H-2 ℓ(n) = b i,j , (47) 
and the b i,j s are not identically zero. Denote then ρ n = n 2H-2 ℓ(n). Then, we have the following cases.

• 

[n•] i=1 (G(X i ) -E [G(X 0 )]) D ⇒ R G,τ,H . (50) 

3. 2 .

 2 Point process convergence: case of leverage Proposition 3.3. Let Assumption 1 hold. Assume that σ(x) = exp(x) and Z 0 exp(cη 0 ) is tail equivalent to Z 0 for all c. Then the convergence (16) holds. Proposition 3.4. Let Assumption 1 hold. Assume that the distribution of (Z 0 , η 0 ) and the function σ satisfy the assumptions of Lemma 2.3 and moreover |σ

  regardless of the presence of leverage. We can thus state a first result. Let d → denote weak convergence of sequences of finite dimensional random vectors. Theorem 5.1. Assume that α ∈ (1, 2) and E[Z 0 ] = 0. Under the assumptions of Propositions 3.2, 3.3 or 3.4,

6. 1 .

 1 Proof of Propositions 3.1, 3.2, 3.3 and 3.4

+

  c s η 0 and X s = Xs + c s η 0 . By subadditivity of σ, we have, for some constant δ,I 1 (n, m) ≤nP(|Z 0 Z s ||σ(X 0 ) -σ(X (m) 0

s)

  and tail equivalent to Y 0 Y 1 , thus we obtain lim sup n→+∞ nP(|Z 0 Z s ||σ(X 0 ) -σ(X (m) 0

⇒

  L α/p as ǫ → 0. Therefore, to show (38) is suffices to show the negligibility of a -p n M (ǫ) n . By Doob's martingale inequality we evaluate E

G

  (x, y) = exp(p(x + y))E[|Z 0 Z s | p exp(pc s η 0 ) exp(pς s ζ)1 {|Z0Zs| exp(pcsη0) exp(ςsζ))>ǫbn exp(-y)} ] ≤ Cn -1 b p n exp(px) exp((p -α + δ)(y ∨ 0)) .

4 i=1

 4 I i (x, y) withI 1 (x, y) = σ p (x)E[|Z 0 Z s | p σ p (ϑ s )1 {|Z0Zs|σ(ϑs)>ǫbn} ], I 2 (x, y) = σ p (x)E[|Z 0 Z s | p σ p (y)1 {|Z0Zs|σ(y)>ǫbn} ], I 3 (x, y) = σ p (x)E[|Z 0 Z s | p σ p (ϑ s )1 {|Z0Zs|σ(y)>ǫbn} ], I 4 (x, y) = σ p (x)E[|Z 0 Z s | p σ p (y)1 {|Z0Zs|σ(ϑs)>ǫbn} ] ,where for brevity we have denotedϑ s = c s η 0 + ς s ζ. We now give bound E[I 2 j (X 0 , X0,s )], j = 1, 2, 3, 4. Since by the assumptions, |Z 0 Z s |σ(ϑ s ) is tail equivalent to |Z 0 Z s |, Karamata's Theorem yields σ p (x)E[|Z 0 Z s | p σ p (ϑ s )1 {|Z0Zs|σ(ϑs)>ǫbn} ] ≤ Cn -1 b p n σ p (x) ,and since E[σ 2p (X 0 )] < ∞ by assumption, we obtain by integrating thatE[I 2 1 (X 0 , X0,s )] = O(n -2 b 2p n ).For I 2 , using again Karamata's Theorem and Potter's bound, we obtain, for some δ > 0,σ p (x)E[|Z 0 Z s | p σ p (y)1 {|Z0Zs|σ(y)>ǫbn} ] ≤ Cn -1 b p n σ p (x)(σ(y) ∨ 1) p-α+δ .Since |Z 0 |σ(ϑ s ) is tail equivalent to |Z 0 | and Z s is independent of Z 0 σ(ϑ s ), we easily obtain a bound for the tail of |Z 0 Z s |(σ(ϑ s ) ∨ 1):P(|Z 0 Z s |(σ(ϑ s ) ∨ 1) > x) ≤ P(|Z 0 Z s |σ(ϑ s ) > x) + P(|Z 0 Z s | > x) ≤ CP(Z 0 Z s > x) ,for x large. Thus, applying Karamata's Theorem and Potter's bound to |Z 0 Z s | yields, for some arbitrarily small δ > 0,I 3 y) ≤ Cσ p (x)E[|Z 0 Z s | p 1 {σ(y)|Z0Zs|>ǫbn} ] ≤ Cn -1 b p n σ p (x)(σ(y) ∨ 1) α+δ and thus we conclude that E[I 2 3 (X 0 , X0,s )] = O(n -2 b 2p n ). Finally, we write, I 4 (x, y) ≤ σ p (x)σ p (y)E[|Z 0 Z s | p (σ p (ϑ s ) ∨ 1) 1 {|Z0Zs|(σ(ϑs)∨1)>ǫbn} ]

1 nρ

 1 If (47) holds and 2τ (1 -H) < 1, then for any function G with Hermite rank τ with respect to X Cρ τ n var(G(X 0 )) .(48)• If (47) holds and 2τ (1 -H) > 1, then for any function G with Hermite rank τ with respect to X 0 , Cn var(G(X 0 )) .(49)• If (46) holds, then (49) still holds.In all these cases, the constant C depends only on the Gaussian process {X i } and not on the function G. The bounds (48) and (49) are Equation 3.10 and 2.40 in [2], respectively. The bound (49) under assumption (46) is a consequence of Equation 2.18 in [2, Theorem 2]. A.3. Limit theorems We now recall [2, Theorem 6]. Let again {X i } be a stationary sequence of k-dimensional Gaussian vectors with covariance matrix G and such that (47) holds, and let τ be the Hermite rank of G w.r.t. X 0 . If τ (1 -H) < 1/2, there exists a process R G,τ,H such that
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where L 1 , . . . , L p are independent α/p-stable random variables.

The main difference between Theorems 5.2 and 5.3 (or, Corollaries 5.2 and 5.3) is the Hermite rank considered. Under the conditions that ensure convergence to a stable limit, the rates of convergence and the limits are the same in both theorems. Otherwise, the rates and the limits may be different.

Example 5. Consider the case σ(x) = exp(x). For all s ≥ 1 we have τ † p = τ † p (s) = 1. Thus, under the assumptions of Theorem 5.3, we have:

n {γ p,n (s) -γ p (s)} converges weakly to a stable law.

• If H > p/α, then ρ -1/2 n {γ p,n (s) -γ p (s)} converges weakly to a zero mean Gaussian distribution.

The dichotomy is the same as in the LMSV case, but the variance of the limiting distribution in

, thus the dichotomy is not the same as in the LMSV case and the rate of convergence differs in the case H > 1/α.

n {γ n,1 (s) -γ 1 (s)} converges weakly to a stable law.

{γ n,1 (s) -γ 1 (s)} converges weakly to a zero mean Gaussian distribution.

If we assume now that

Thus the dichotomy is the same as in the LMSV case, but the limiting distribution in the non stable case can be different from the one in the LMSV case.

n {γ 1,n (s) -γ 1 (s)} converges weakly to a stable law.

• If 2H -1 > 1/α, then ρ -1 n {γ 1,n (s) -γ 1 (s)} converges weakly to a zero mean non Gaussian distribution.

If moreover E[H 2 (η 1 )|Z 1 |] = 0, then for each s, the functions K * p,s and K † p,s are equal, and thus the limiting distribution is the same as in the LMSV case.

In particular, if k = 1, then

where

] and R τ,H is the so-called Hermite or Rosenblatt process of order τ , defined as a τ -fold stochastic integral

where W is an independently scattered Gaussian random measure with Lebesgue control measure and

In particular, for τ = 1, then the limiting process is the fractional Brownian motion, which is a Gaussian process, so

H(2H -1)

.

On the other hand, if 1 -τ (1 -H) < 1/2, then

where B is the standard Brownian motion and ς 2 = var(G(X 0 )) + 2 ∞ j=1 cov(G(X 0 ), G(X j )), the latter series being absolutely summable.