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MACROSCOPIC ENERGY DIFFUSION FOR A CHAIN OF

ANHARMONIC OSCILLATORS

STEFANO OLLA AND MAKIKO SASADA

Abstract. We study the energy diffusion in a chain of anharmonic os-
cillators where the Hamiltonian dynamics is perturbed by a local energy
conserving noise. We prove that under diffusive rescaling of space-time,
energy fluctuations diffuse and evolve following an infinite dimensional
linear stochastic differential equation driven by the linearized heat equa-
tion. We also give variational expressions for the thermal diffusivity and
some upper and lower bounds.

1. Introduction

The deduction of the heat equation or the Fourier law for the macroscopic
evolution of the energy through a diffusive space-time scaling limit from a
microscopic dynamics given by Hamilton or Schrödinger equations, is one of
the most important problem in non-equilibrium statistical mechanics ([5]).
One dimensional chains of oscillators have been used as simple models for
this study. In the context of the classical (Hamiltonian) dynamics, it is
clear that non-linear interactions are crucial for the diffusive behavior of the
energy. In fact, in a chain of harmonic oscillators the energy evolution is
ballistic ([18]). In this linear system, the energy of each mode of vibration is
conserved. Non-linearities introduce interactions between different modes
and destroy these conservation laws and give a certain ergodicity to the
microscopic dynamics.

In order to describe the mathematical problem, let us introduce some
notation we will use in the rest of the paper. We study a system of anhar-
monic oscillators, each is denoted by an integer i. We denote by (qi, pi) the
corresponding position and momentum (we set the mass equal to 1). Each
pair of consecutive particles (i, i+1) are connected by a spring which can be
anharmonic. The interaction is described by a potential energy V̄ (qi+1−qi).
We assume that V̄ is a nonnegative smooth function satisfying

Zβ :=

∫

R

e−βV̄ (r)dr <∞
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for all β > 0. Let a be the equilibrium inter-particle distance, where V̄
attains its minimum that we assume to be 0 : V̄ (a) = 0. It is convenient
to work with inter-particle distances as coordinates, rather than absolute
particle positions, so we define rj = qj − qj−1 − a. We denote the trans-
lated function V̄ (· + a) by V (·) hereafter. Namely, we assume V (0) = 0.
The configuration of the system is given by {pj, rj}j , and energy function
(Hamiltonian) defined for each configuration is formally given by

H =
∑

j

Ej, Ej =
1

2
p2j + V (rj).

The choice of Ej as the energy of each oscillator is a bit arbitrary, because we
associate the potential energy of the bond V (rj) to the particle j. Different
choices can be made, but this one is notationally convenient.

The corresponding Hamiltonian dynamics is given by the equations of
motion:

r′j(t) = pj(t)− pj−1(t),

p′j(t) = V ′(rj+1(t))− V ′(rj(t)).
(1.1)

We are interested in the macroscopic evolution of the empirical energy pro-
file under a diffusive macroscopic space-time scaling. More precisely the
limit, as N → ∞, of the energy distribution on R defined by

1

N

∑

i

Ei(N2t)δi/N (dy). (1.2)

Energy is not the only conserved quantity under the dynamics (1.1). For-
mally length and momentum are also integral of the motion. In one di-
mensional system, even for anharmonic interaction, generically we expect a
superdiffusion of the energy, essentially because of the momentum conser-
vation ([17, 1]). Adding a pinning potential U(qi) on each particle, it will
break the translation invariance of the system and the momentum conserva-
tion, and we expect a diffusive behavior for the energy, i.e. the energy profile
defined by (1.2) would converge to the solution e(t, y) of a heat equation

∂te = ∂y (D(e)∂ye) (1.3)

under specific conditions on the initial configuration. The diffusivity D =
D(e) is defined by the Green-Kubo formula associated to the correspond-
ing infinite dynamics in equilibrium at average energy e (see below for the
definition).

As the deterministic problem is out of reach mathematically, it has been
proposed an approach that models the chaotic effects of the non-linearities
by stochastic perturbations of the dynamics that conserves energy. In the
harmonic case, random exchanges of momentum of nearest neighbor par-
ticles that conserve total energy but not momentum have been studied
([4, 8, 3]). Stochastic exchanges that also conserve total momentum have
been considered in [1, 2], where a divergence of the diffusivity is proven
for unpinned harmonic chains. The stochastic perturbations considered in
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these papers are very degenerate (of hypoelliptic type), since they act only
on the momenta of the particles, and not on the positions. In particular
these stochastic dynamics conserve also the total length

∑
j rj.

In this article we want to deal with anharmonic chains with noise that con-
serves only energy. For reasons we will explain in a moment, we need more
elliptic stochastic perturbations that act also on the positions. In the case
of one-dimensional unpinned chains, there is a way to define these pertur-
bations locally (see the next section for details) just using squares of vector
fields that appear in the Liouville operator that generates the Hamiltonian
dynamics. With these perturbations, we have a dynamics that conserves
only the total energy. As a result, the dynamics has a one-parameter family
of invariant measures given by the grand canonical measures {νβ, β > 0}
defined by

νβ =
∏

j

e−βEi√
2πβ−1Zβ

dpjdrj.

Notice that {rj , pj}j are independently distributed under these probability
measures.

So we can consider the system starting with the equilibrium distribution
νβ at temperature T = β−1. We can prove the diffusive scaling limit by the
results in this article in the following linearized sense: define the space time
energy covariance in equilibrium at temperature β−1:

C(i, j, t) = E (Ei(t)Ej(0))− e2(β)

where E denotes the expectation for the stochastic dynamics starting with
the grand-canonical measure at temperature β−1 and e(β) is the expectation
value of E0 under νβ. In the following we will denote simply by e the
corresponding value. Clearly C(i, j, 0) = δi,jχ(β), where χ(β) is the variance
of E0 under νβ. Then it follows by our results that

lim
N→∞

NC([Ny], [Nx], N2t) =
1√
2πDt

e−(x−y)2/2Dt

weakly, in the sense of the convergence ofN−1
∑

i,j G(i/N)F (j/N)C(i, j, N2t)

for good test functions G and F of R. Here D = D(e) which is formally
given by

D = lim
t→∞

1

t

∑

i∈Z
i2C(i, 0, t).

We actually prove a stronger result at the level of fluctuation fields. If
the system is in equilibrium at temperature β−1, then standard central
limit theorem for independent variables tells us that as N → ∞ energy has
Gaussian fluctuations, i.e. the energy fluctuation field

Y N =
1√
N

∑

i

δi/N {Ei(0)− e}
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converges in law to a delta correlated centered Gaussian field Y

E [Y (F )Y (G)] = χ

∫
F (y)G(y)dy.

In this article we prove that these macroscopic energy fluctuations evolve
diffusively in time (after a diffusive space-time scaling) , i.e. that the time
dependent distribution

Y N
t =

1√
N

∑

i

δi/N
{
Ei(N2t)− e

}

converges in law to the solution of the linear SPDE

∂tY = D ∂2yY dt+
√
2Dχ ∂yB(y, t)

where B is the standard normalized space-time white noise. In this sense,
in equilibrium, energy fluctuation evolves macroscopically following the lin-
earized heat equation.

The main point in the proof of this result is the following. Since total
energy is conserved, locally the energy of each particle is changed by the
energy currents with its neighbors, i.e. applying the generator L of the
process to the energy Ei we obtain

LEi = Wi−1,i −Wi,i+1 (1.4)

where Wi,i+1 = −piV ′(ri+1) +W S
i,i+1. Here −piV ′(ri+1) is the instantaneous

energy current associated to the Hamiltonian mechanism, while W S
i,i+1 is

the instantaneous energy current due to the stochastic part of the dynam-
ics. While (1.4) provides automatically one space derivative already at the
microscopic level, Wi,i+1 is not a space-gradient. In this sense this model
falls in the class of the non-gradient models. Some of these non-gradient
models have been studied with a method introduced by Varadhan [20]. The
main point of this method is to prove that Wi,i+1 can be approximated by
a fluctuation-dissipation decomposition

Wi,i+1 ∼ D∇Ei + LF

for a properly chosen sequence of local functions F . In the harmonic case
of our model, this decomposition is exact for every configuration, i.e. there
exists a local second order polynomial F such that Wi,i+1 = D∇Ei+LF for
a constant D (cf. Remark 11.1 that contains an equivalent decomposition).
In the anharmonic case, such decomposition can be only approximated by
a sequence of local functions FK in the sense that the difference has a small
space-time variance with respect to the dynamics in equilibrium at given
temperature (consequently D is a function of this temperature).

In order to do such decomposition, we have to use Varadhan’s approach to
non-gradient systems [20] and the generalization to non-reversible dynamics
[21, 13]. The main ingredients of the methods are a spectral gap for the
stochastic part of the dynamics, and a sector condition for the generator L
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of the dynamics. It is in order to prove these properties that we need such
elliptic noise acting also on the positions.

The proof of the spectral gap, contained in section 12, is based on a
corresponding spectral gap for an energy exchange model, of Ginzburg-
Landau type, but where the known results do not apply (cf. [16]). We
instead use a result by Caputo [6] for a special mean field model, extending
it to a nearest neighbor case by a special telescopic trick, and then comparing
it to our energy exchange model.

The proof of the sector condition, contained in section 8, is based on a
parity argument. Similar idea was developed in [19].

We have to limit ourselves to these results for the fluctuations in equi-
librium, and we are not able to prove the full non-linear equation (1.3)
starting from a global non-stationary profile. Unfortunately most of known
techniques to prove such hydrodynamic limits in diffusive scaling are based
on relative entropy techniques (cf. [10], [22], [9], [12]) that do not work for
the energy diffusion in this model.

The article is organized as follows: In Section 2 we introduce our model
and state main results. In Section 3, we give the strategy for proving the
convergence of the finite dimensional distribution. The complete proof is
divided into several sections 4, 5, 6, 9 and 13, with sector condition proved
in Section 8, and the spectral gap in Section 12. The tightness shown
in Section 7 concludes the proof. Variational expressions for the thermal
diffusivity are obtained in Section 10 and some bounds on it are proven in
Section 11.

2. Model and results

We will now give a precise description of the dynamics. We consider a
system of N anharmonic oscillators in one-dimensional space, whose hamil-
tonian dynamics is perturbed by a random dynamics that conserves total
energy. We consider a periodic boundary condition, but the results can be
generalized to different boundary conditions or also to the infinite system.

Let T := (0, 1] be the 1-dimensional torus, and for a positive integer
N denote by TN the lattice torus of length N : TN = {1, . . .N}. The
configuration space is denoted by ΩN = (R2)TN and a typical configuration
is denoted by ω = (pi, ri)i∈TN where ri = qi − qi−1 represents the inter-
particle distance between the particles i − 1 and i (here we assume a = 0
without loss of generality), and pi represents the velocity of the particle i.
All particles have mass equal to 1. The configuration changes with time and,
as a function of time evolves as a Markov process in R2N with infinitesimal
generator given by

LγN = AN + γSN

where

AN =
∑

i∈TN
(Xi − Yi,i+1), SN =

1

2

∑

i∈TN
{(Xi)

2 + (Yi,i+1)
2},
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Yi,j = pi∂rj − V ′(rj)∂pi, Xi = Yi,i,

and N + 1 ≡ 1. Notice that AN is the generator of the Hamiltonian dy-
namics (the Liouville operator) while SN is the generator of the stochastic
perturbation. Here γ > 0 is the strength of the stochastic perturbation. We
do not need any condition on γ, as long as it is strictly positive.

We assume that the function V : R → R+ satisfies the following three
properties:

(i) V (r) is a smooth symmetric function.
(ii) 0 < δ− ≤ V ′′(r) ≤ δ+ < +∞.
(iii) δ−/δ+ > (3/4)1/16.

Remark 2.1. The assumption (iii) is quite technical and required only in
the proof of the spectral gap estimate in Section 12.

We denote the energy associated to the particle i by

Ei =
p2i
2

+ V (ri)

and the total energy defined by E =
∑

i∈TN Ei which denotes the Hamilton-
ian of the original deterministic dynamics.

Remark 2.2. The total energy satisfies LγN (E) = 0, i.e. total energy is a
conserved quantity.

Remark 2.3. The other important conservation laws of the Hamiltonian
dynamics, for the total length

∑
i∈TN ri and the total momentum

∑
i∈TN pi,

are destroyed by the stochastic noise SN . In fact LN (
∑

i ri) = γSN(
∑

i ri) =
−γ∑i V

′(ri), and LN(
∑

i pi) = γSN(
∑

i pi) = −γ
2

∑
i(pi−1 + pi)V

′′(ri).

We define a probability measure νNβ on ΩN by

νNβ (dpdr) =
N∏

i=1

exp
(
−β
(
p2i
2
+ V (ri)

))

√
2πβ−1Zβ

dpidri

where

Zβ :=

∫

R

e−βV (r)dr <∞.

Denote by L2(νNβ ) the Hilbert space of functions f on ΩN such that

νNβ (f 2) < ∞. SN is formally symmetric on L2(νNβ ) and AN is formally

antisymmetric on L2(νNβ ). In fact, it is easy to see that for smooth functions
f and g in a core of the operators SN and AN , we have for all β > 0

∫

R2N

SN(f)g ν
N
β (dpdr) =

∫

R2N

fSN(g) ν
N
β (dpdr),

and ∫

R2N

AN(f)g ν
N
β (dpdr) = −

∫

R2N

fAN(g) ν
N
β (dpdr).
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In particular, the diffusion is invariant with respect to all the measures
νNβ . The distribution νNβ is called canonical Gibbs measure at temperature

T = β−1. Notice that r1, ..., rN , p1, ..., pN are independently distributed
under this probability measure.

On the other hand, for every β > 0 the Dirichlet form of the diffusion
with respect to νNβ is given by

DN,β(f) =
γ

2

∫

R2N

∑

i∈TN
{[Xi(f)]

2 + [Yi,i+1(f)]
2}νNβ (dpdr).

We will use the notation νβ for the product measures on the configuration
space Ω := (R2)Z, namely on the infinite lattice with marginal given by
νβ|{1,2,...,N} = νNβ . The expectation with respect to νβ will be sometimes
denoted by ∫

Ω

fνβ(dpdr) = 〈f〉β.

Denote by {ω(t) = (p(t), r(t)); t ≥ 0} the Markov process generated
by N2LγN (the factor N2 corresponds to an acceleration of time). Let
C(R+,Ω

N) be the space of continuous trajectories on the configuration
space. For any fiexed time T > 0 and for a given measure µN on ΩN ,
the probability measure on C([0, T ],ΩN) induced by this Markov process
starting from µN will be denoted by PµN . As usual, expectation with re-
spect to PµN will be denoted by EµN . The diffusion generated by N2LγN can
also be described by the following system of stochastic differential equations

dpi(t) = N2[V ′(ri+1)− V ′(ri)−
γpi
2

{V ′′(ri) + V ′′(ri+1)}]dt
+
√
γN{V ′(ri+1)dB

1
i − V ′(ri)dB

2
i },

dri(t) = N2[pi − pi−1 − γV ′(ri)]dt+
√
γN{−pi−1dB

1
i−1 + pidB

2
i }

where {B1
i , B

2
i }i∈TN are 2N -independent standard Brownian motions.

Since total energy is conserved, the movement is constrained on the mi-
crocanonical surface of constant energy

ΣN,E =

{
ω ∈ ΩN ;

N∑

i=1

Ei = NE

}
. (2.1)

Our conditions on V assure that these surfaces are always connected. The
vector fields {Xi, Yi,i+1, i = 1, . . . , N} are tangent to this surface, and as we
show in Section 13, Lie{Xi, Yi,i+1, i = 1, . . . , N} generates the all tangent
space. Consequently the microcanonical measures

νN,E(·) = νNβ (·|ΣN,E)
are ergodic for our dynamics. We could have chosen νN,E as initial distri-
bution, but since by the equivalence of ensembles it converges to νβ(E) as
N → ∞, it would have been irrelevant. Here β(E) is defined as the inverse
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function of

E(β) =

∫
E0dνβ =

1

2β
+ Ṽ (β) (2.2)

where Ṽ (β) = 〈V (r0)〉β.
By Ito’s formula, we have

dEi(t) = N2[Wi−1,i −Wi,i+1]dt +N{σi−1,idB
1
i−1 − σi,i+1dB

1
i } (2.3)

where

Wi,i+1 =WA
i,i+1 +W S

i,i+1,

WA
i,i+1 = −piV ′(ri+1),

W S
i,i+1 =

γ

2
{p2iV ′′(ri+1)− V ′(ri+1)

2},
σi,i+1 = −√

γpiV
′(ri+1).

(2.4)

We can think of Wi,i+1 as being the instantaneous microscopic current
of energy between the oscillator i and the oscillator i + 1. Observe that
the current Wi,i+1 cannot be written as the gradient of a local function,
neither by an exact fluctuation-dissipation equation, i.e. as the sum of a
gradient and a dissipative term of the form LγN(τih). That means, we are in
the nongradient case. The macroscopic collective behavior of the system is
described thanks to empirical distribution. With this purpose let us define
the empirical energy distribution associated to the process by

πNt (ω, du) =
1

N

∑

i∈TN
Ei(t)δ i

N
(du), 0 ≤ t ≤ T, u ∈ T,

and 〈πNt , f〉 stands for the integration of f with respect to πNt .
Notice that we use the index i/N of the oscillators as space variable,

and not the physical position qi. I.e. we are describing the movement of
the energy in Lagrangian coordinates, not in Euler coordinates. These two
descriptions are equivalent but in our model the Lagrangian coordinates
simplify notations.

It is easy to prove that, starting with the equilibrium measure νNβ (or

with νN,E(β)), we have πNt −→ E(β)du as weak convergence in probability.
We want to investigate the fluctuation of the empirical measure πN with

respect to this limit. Denote by Y N
t the empirical energy fluctuation field

acting on a smooth function H : T → R as

Y N
t (H) =

1√
N

∑

i∈TN
H(

i

N
){Ei(t)−E(β)}.

The limit process will be described by {Yt}t≥0, the stationary generalized
Ornstein-Uhlenbeck process with zero mean and covariances given by

E[Yt(H1)Y0(H2)] =
χ(β)√
4πtD(β)

∫∫

R2

dudvH̄1(u)e
− (u−v)2

4tD(β) H̄2(v)
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for every t ≥ 0. Here χ(β) stands for the variance of the energy (the thermal
capacity in this context) given by

χ(β) = 〈E2
0 〉β − 〈E0〉2β =

1

2β2
− Ṽ ′(β)

and H̄1(u) (resp. H̄2(u)) is the periodic extension of the smooth function H1

(resp. H2) to the real line, and D(β) is the diffusion coefficient determined
later.

Consider for k > 5
2
the Sobolev space H−k of the distributions Y on T

such that they have finite norm

‖Y ‖2−k =
∑

n≥1

(πn)−2k|Y (en)|2

with en(x) =
√
2 sin(πnx). Denote by QN the probability measure on

C([0, T ],H−k) induced by the energy fluctuation field Y N
t and the Markov

process {ωN(t), t ≥ 0} defined at the beginning of this section, starting from
the equilibrium probability measure νNβ . Let Q be the probability mea-
sure on the space C([0, T ],H−k) corresponding to the generalized Ornstein-
Uhlenbeck process Yt defined above. We are now ready to state the main
result of this work.

Theorem 1. The sequence of the probability measures {QN}N≥1 converges
weakly to the probability measure Q.

Remark 2.4. For each H ∈ C∞(T),

MD,H
t := Yt(H)− Y0(H)−

∫ t

0

Ys(D(β)∆H)ds, (2.5)

and

ND,H
t := (MD,H

t )2 − 2tχ(β)D(β)〈(H ′)2〉L2(T) (2.6)

are L1(Q)-martingale.

3. Strategy of the proof of the main theorem

We follow the argument in Section 11 in [12]. Theorem 1 follows from
the following three statements:

(i) {QN}N≥1 is tight,
(ii) the restriction of any limit point Q∗ of convergent subsequence of

{QN}N≥1 to F0 is Gaussian fields with covariances given by

E[Y (H1)Y (H2)] = χ(β)〈H1, H2〉L2(T),

(iii) all limit points Q∗ of convergent subsequence of {QN}N≥1 solves the
martingale problems (2.5) and (2.6).

The proof of (ii) is obtained by a direct consequence of the central limit
theorem for independent variables. We will prove (i) in section 7. We prove
here the main point, i.e. (iii).
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For a given smooth function H : T → R, we begin by rewriting Y N
t (H)

as

Y N
t (H) = Y N

0 (H) +

∫ t

0

√
N
∑

i∈TN
∇NH(

i

N
)Wi,i+1ds+MH,N(t) (3.1)

where ∇NH represents the discrete derivative of H :

(∇NH)(
i

N
) = N [H(

i+ 1

N
)−H(

i

N
)]

and the martingale MH,N (t) is

MH,N(t) =

∫ t

0

1√
N

∑

i∈TN
∇NH(

i

N
)σi,i+1dB

1
i .

Define C the set of all smooth local functions F on Ω = (R2)Z with
compact support, and define the formal sum

ΓF =
∑

j∈Z
τjF (3.2)

where τj is the shift on Z. Observe that XiΓF and Yi,i+1ΓF are always
well-defined.

Then, we can decompose (3.1) with any fixed F ∈ C as follows:

Y N
t (H) = Y N

0 (H) +

∫ t

0

Y N
s (D(β)∆NH)ds+M1

N,F,t(H) (3.3)

+ I1N,F,t + I2N,F,t +M2
N,F,t +D(β)χ(β)β2I3N,t

where

I1N,F,t(H) =

∫ t

0

√
N
∑

i∈TN
∇NH(

i

N
)[Wi,i+1 +D(β)χ(β)β2(p2i+1 − p2i )− LγN (τiF )]ds,

I2N,F,t(H) =

∫ t

0

√
N
∑

i∈TN
∇NH(

i

N
)LγN (τiF )ds,

I3N,t(H) =

∫ t

0

1√
N

∑

i∈TN
∆NH(

i

N
)[(p2i −

1

β
)− 1

χ(β)β2
{Ei −E(β)}],

M1
N,F,t(H) =

∫ t

0

1√
N

∑

i∈TN
∇NH(

i

N
)[(σi,i+1 +

√
γYi,i+1(ΓF ))dB

1
i −

√
γXi(ΓF )dB

2
i ],

M2
N,F,t(H) =

∫ t

0

1√
N

∑

i∈TN
∇NH(

i

N
)[−√

γYi,i+1(ΓF )dB
1
i +

√
γXi(ΓF )dB

2
i ].

The proof of (iii) is reduced to the following lemmas:

Lemma 3.1. For every smooth function H : T → R and every function
F ∈ C,

lim
N→∞

EνN
β

[
sup

0≤t≤T
(I2N,F,t(H) +M2

N,F,t(H))2
]
= 0.
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Lemma 3.2. For every smooth function H : T → R,

lim
N→∞

EνN
β

[
sup

0≤t≤T
(I3N,t(H))2

]
= 0.

Lemma 3.3. There exists a sequence of functions {FK}K∈N ∈ C such that,
for every smooth function H : T → R,

lim
K→∞

lim
N→∞

EνN
β

[
sup

0≤t≤T
(I1N,FK ,t(H))2

]
= 0.

Moreover, for this sequence {FK}K∈N,

lim
K→∞

Eνβ [(σ0,1 +
√
γY0,1(ΓFK ))

2 + (
√
γX0(ΓFK ))

2] = 2D(β)χ(β) =
2D̃(β)

β2

where D̃(β) := D(β)χ(β)β2. Note that

I1N,F,t(H) =

∫ t

0

√
N
∑

i∈TN
∇NH(

i

N
)[Wi,i+1 + D̃(β)(p2i+1 − p2i )− LN (τiF )]ds.

As a consequence of Lemma 3.3, the martingale M1
N,FK ,t

(H) will con-

verge, as N → ∞ and K → ∞ to a martingale MD,H
t of quadratic varia-

tion 2tD(β)χ(β)
∫
T
H ′(u)2du, and the limit Yt(H) of Y N

t (H) will satisfy the
equation

Yt(H) = Y0(H) +

∫ t

0

Ys(D(β)∆H) ds+MD,H
t . (3.4)

Now we proceed to give a proof of Lemma 3.1. Lemma 3.2 will be proven
in Section 6, while Lemma 3.3 will be the content of the rest of the article.

Proof of Lemma 3.1. Let us define

ζN,F (t) =
1

N
3
2

∑

i∈TN
∇NH(

i

N
)τiF (ω

N
t ).

From Ito’s formula, we obtain

ζN,F (t) = ζN,F (0) + I2N,F,t(H)

+

∫ t

0

1√
N

∑

i∈TN
∇NH(

i

N
)
√
γ
∑

j∈TN
[−Yj,j+1(τiF )dB

1
j +Xj(τiF )dB

2
j ].

Therefore,

(I2N,F,t(H) +M2
N,F,t(H))2 ≤ 2(ζN,F (t)− ζN,F (0))

2

+2

{∫ t

0

1√
N

∑

i,j∈TN
∇NH(

i

N
)
√
γ[−Yj,j+1(τiF )dB

1
j +Xj(τiF )dB

2
j ]−M2

N,F,t(H)

}2

.

Since F is bounded and H is smooth, it is easy to see that the first term is
(uniformly) of order 1

N
. Using additionally the conditions on F , and Doob’s

inequality we can prove that the expectation of the second term is also of
order 1

N
. �
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4. Space-Time Variance bounds

In the following we will simply denote by 〈·〉 the expectation with respect
to the grand-canonical measure νβ.

In order to prove lemmas 3.2 and 3.3, we will make use of the following
general bound for time variances:

Proposition 4.1. Let F be a smooth function in L2(νNβ ) satisfying EνN,E [F ] =
0 for all E > 0. Then

EνN
β

(
sup

0≤t≤T

[∫ t

0

F (ωNs )ds

]2)
≤ 16T

γN2
〈F (−SN )−1 F 〉. (4.1)

A proof of (4.1) can be found in [7] or in [14].
Observe that, by the spectral gap for SN proven in Section 12, the right

hand side is always well defined. We want to use the bound (4.1) for func-
tions of the type F =

∑
j G(j/N)τjφ, for a certain class of local functions

φ.
First, we introduce some notations. We denote C̃ the set of smooth local

functions f on Ω = (R2)Z satisfying that

f ∈ L2(νβ), Xif(p, r) ∈ L2(νβ), Yi,i+1f ∈ L2(νβ)

for all i ∈ Z. Note that C ⊂ C̃. Here and after, we consider operators Lγ ,
Sγ and A acting on functions f in C as

Lγf = Sγf + Af,

Sγf =
γ

2

∑

i∈Z
{(Xi)

2f + (Yi,i+1)
2f}, Af =

∑

i∈Z
{Xif − Yi,i+1f}.

For a fixed positive integer l, we define Λl := {−l,−l + 1, ..., l − 1, l} and
LγΛl , S

γ
Λl

the restriction of the generator Lγ , Sγ to Λl respectively. For Ψ
in C, denote by sΨ the smallest positive integer s such that Λs contains the
support of Ψ. Let C0 be a subspace of local functions defined as follows:

C0 = { f ; f =
∑

i∈Λ
[Xi(Fi)+Yi,i+1(Gi)] for some Λ ⊂⊂ Z and{Fi}i∈Λ, {Gi}i∈Λ ∈ C̃}.

First, we note some useful properties of the space C0.
Lemma 4.1. (i) For any f ∈ C0, l ≥ sf + 1 and E > 0, Eνl,E [f ] = 0.

(ii) W S
0,1, W

A
0,1 and p21 − p20 are elements of C0.

(iii) For any F ∈ C, LγF , SγF and AF are elements of C0.
Proof. (i) and (iii) are straightforward.
(ii): We have

W S
0,1 =

γ

2
{p20V ′′(r1)− V ′(r1)

2} =
γ

2
Y0,1(p0V

′(r1))

WA
0,1 = −p0V ′(r1) = Y0,1(−V (r1))

p21 − p20 = X1{(p0 + p1)r1} − Y0,1{(p0 + p1)r1}.
�
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Next, we study the variance

(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,
∑

|i|≤lψ

τiψ〉

for ψ ∈ C0 where lψ = l − sψ − 1. We start with introducing a semi-norm
on C0, which is closely related to the central limit theorem variance. For
cylinder functions g, h in C0, let

≪ g, h≫∗=
∑

i∈Z
〈g, τih〉 and ≪ g ≫∗∗=

∑

i∈Z
i〈g, Ei〉. (4.2)

≪ g, h≫∗ and ≪ g ≫∗∗ are well defined because g and h belong to C0 and
therefore all but a finite number of terms vanish.

Notice that if g =
∑

i∈ΛXiFi + Yi,i+1Gi then we can compute

≪ g ≫∗∗ = lim
l→∞

−
∑

i∈Λ

l∑

j=−l
j〈Gi, Yi,i+1Ej〉

= −
∑

i∈Λ
(i〈Gi, Yi,i+1Ei〉+ (i+ 1)〈Gi, Yi,i+1Ei+1〉)

= −
∑

i∈Λ
〈piV ′(ri+1)Gi〉.

For h in C0, define the semi-norm |||h|||−1 by

|||h|||2−1 = sup
g∈C,a∈R

{2 ≪ g, h≫∗ +2a≪ h≫∗∗

− γ

2
〈(ap0V ′(r1) + Y0,1Γg)

2〉 − γ

2
〈(X0Γg)

2〉}. (4.3)

We investigate several properties of the semi-norm |||·|||−1 in the next section,
while in this section we prove the following key proposition:

Proposition 4.2. Consider a local function ψ in C0. Then,
lim
l→∞

(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,
∑

|i|≤lψ

τiψ〉 = |||ψ|||2−1.

The proof is divided into two lemmas.

Lemma 4.2. For ψ in C0
lim inf
N→∞

(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,
∑

|i|≤lψ

τiψ〉 ≥ |||ψ|||2−1.

Lemma 4.3. For ψ in C0
lim sup
N→∞

(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,
∑

|i|≤lψ

τiψ〉 ≤ |||ψ|||2−1.

Proof of Lemma 4.2. Define

Al :=

l−1∑

i=−l
τiW

S
0,1
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and for F ∈ C, let
HF
l :=

∑

|i|≤l−sF−1

τiS
γF.

It is easy to see that

lim
N→∞

(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,Al〉 = − ≪ ψ ≫∗, (4.4)

lim
l→∞

(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,H
F
l 〉 = − ≪ ψ, F ≫∗∗, (4.5)

lim
l→∞

(2l)−1〈(−SγΛl)
−1(aAl +HF

l ), aAl +HF
l 〉

=
γ

2
〈(ap0V ′(r1) + Y0,1ΓF )

2〉+ γ

2
〈(X0ΓF )

2〉. (4.6)

We just prove here (4.4), the other relations are proven in similar way.
Assume for the simplicity that ψ = X0F + Y0,1G, the general case follows

by linearity. Since Al = SγΛl
∑l

j=−l jej

(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,Al〉 = −(2l)−1

l∑

j=−l

∑

|i|≤lψ

j〈ψ, Ej−i〉

= (2l)−1
∑

|i|≤lψ

l∑

j=−l
j〈G, Y0,1Ej−i〉

= (2l)−1
∑

|i|≤lψ

(i〈G, Y0,1E0〉+ (i+ 1)〈G, Y0,1E1〉)

= (2l)−1(2lψ + 1)〈G, p0V ′(r1)〉 −→
l→∞

− ≪ ψ ≫∗

Then, obviously,

lim inf
l→∞

(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,
∑

|i|≤lψ

τiψ〉

≥ lim inf
l→∞

[2(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,−(aAl +HF
l )〉

− (2l)−1〈(−SγΛl)
−1(aAl +HF

l ), (aAl +HF
l )〉]

= 2 ≪ ψ, F ≫∗ + 2a≪ ψ ≫∗∗ −
γ

2
〈(ap0V ′(r1) + Y0,1ΓF )

2〉 − γ

2
〈(X0ΓF )

2〉.

Then, taking the supremum of a ∈ R and F ∈ C we obtain the desired
inequality. �

Proof of Lemma 4.3. Let us assume for simplicity of notation that ψ =
X0F + Y0,1G. The general case will follow straightforwardly. We use the
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variational formula

(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,
∑

|i|≤lψ

τiψ〉

= sup
h



2〈ψ, 1

2l

∑

|i|≤lψ

τih〉 −
γ

4l
Dl(h)





= sup
h



2〈FX0(

1

2l

∑

|i|≤lψ

τih) +GY0,1(
1

2l

∑

|i|≤lψ

τih)〉 −
γ

4l
Dl(h)





where

Dl(h) =
∑

|i|≤l
〈(Xih)

2〉+
l−1∑

i=−l
〈(Yi,i+1h)

2〉.

The supremum can be restrained in the class of functions h that are localized
in Λl and such that Dl(h) ≤ Cψl.

Notice that∣∣∣∣∣∣
〈FX0(

1

2l

∑

lψ≤|i|≤l
τih) +GY0,1(

1

2l

∑

lψ≤|i|≤l
τih)〉

∣∣∣∣∣∣
≤ Cψ

2l
Dl(h)

1/2

so, calling

ξl0(h) = X0(
1

2l

∑

|i|≤l
τih), ξl1(h) = Y0,1(

1

2l

∑

|i|≤l
τih)

and observing that, by Schwarz inequality

〈(ξl0(h))2 + (ξl1(h))
2〉 ≤ 1

2l
Dl(h)

we obtain the upper bound

(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,
∑

|i|≤lψ

τiψ〉

≤ sup
h

{
2〈F, ξl0(h)〉+ 2〈G, ξl1(h)〉 −

γ

2

(
〈(ξl0(h))2 + (ξl1(h))

2〉
)}

+ Cψl
−1/2.

Since for any choice made of a sequence {hl}l satisfying Dl(hl) ≤ Cψl, we
have that the sequence (ξl0(hl), ξ

l
1(hl)) is uniformly bounded in L2(νβ), we

can extract convergent subsequences in L2(νβ). All limit vector (ξ0, ξ1) that
we obtain as limit points of (ξl0(hl), ξ

l
1(hl)) are closed in the sense specified

in Section 9. We call this set of closed functions hc, and we have obtained
that

lim sup
l→∞

(2l)−1〈(−SγΛl)
−1
∑

|i|≤lψ

τiψ,
∑

|i|≤lψ

τiψ〉

≤ sup
(ξ0,ξ1)∈hc

{
2〈F, ξ0〉+ 2〈G, ξ1〉 −

γ

2

(
〈(ξ0)2 + (ξ1)

2〉
)}
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and the desired upper bound follows from the characterization of hc proved
by Theorem 3 in Section 9. �

We are now in the position to state the main result of this section:

Theorem 2. Let ψ ∈ C0, and G a smooth function on T. Then

lim sup
N→∞

EνN
β


 sup

0≤t≤T

[
N1/2

∫ t

0

∑

i∈TN
G(i/N)τiψ(ωs)ds

]2
 ≤ CT

γ
|||ψ|||2−1

∫

T

G(u)2du.

(4.7)

Proof of Theorem 2. We follow the argument in [7], Theorem 4.2.
First we prove the simpler bound

EνN
β


 sup

0≤t≤T

[
N1/2

∫ t

0

∑

i∈TN
G(i/N)τiψ(ωs)ds

]2
 ≤ CψT

γ

1

N

∑

i∈TN
G(i/N)2

(4.8)
for some finite constant Cψ.

By (4.1), the left side of (4.8) is bounded by

16T 〈N1/2
∑

i∈TN
G(i/N)τiψ, (−N2γSN )

−1N1/2
∑

i∈TN
G(i/N)τiψ〉

that can be written with the variational formula

16T sup
f

{
N1/2

∑

i∈TN
G(i/N)〈fτiψ〉 −N2γ〈f, (−SN)f〉

}
.

Since ψ ∈ C0, there exists Ψj and Φj belonging to C, for j ∈ Λ ⊂⊂ Z, such
that ψ =

∑
j∈Λ [Xj(Ψj) + Yj,j+1(Φj)], and we can bound by integration by

parts

〈fτiψ〉 ≤ Cψ〈
∑

j∈Λ
[(X−i−jf)

2 + (Y−i−j,−i−j+1f)
2]〉1/2

and again by Schwarz inequality

N1/2
∑

i∈TN
G(i/N)〈fτiψ〉 ≤

(
1

N

∑

i∈TN
G(i/N)2

)1/2 (
N2Cψ〈f, (−SN)f〉

)1/2

and maximizing on f we obtain (4.8).
Now we have to refine the bound in showing that the constant on the

right hand side is proportional to |||ψ|||2−1. In order to do this, we have to
perform a further microscopic average: given K << N , in (4.7) we want to
substitute √

N
∑

i∈TN
G(i/N)τiψ

with √
N
∑

j∈TN
G(j/N)

1

2K + 1

∑

|i−j|≤K
τiψ.
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Then the difference is estimated by

EνN
β


 sup

0≤t≤T


N1/2

∫ t

0

∑

i,j∈TN ,|i−j|≤K

1

2K + 1
(G(i/N)−G(j/N))τiψ(ωs)ds



2


that by (4.8) is bounded by CGK/N and tends to 0 as N → ∞.
So we are left with

EνN
β


 sup

0≤t≤T

[
N1/2

2K + 1

∫ t

0

∑

j∈TN
G(j/N)τjψ̂K(ωs)ds

]2


where ψ̂K =
∑

|i|≤K τiψ. By (4.1) this is bounded by

CT

2K + 1

∑

j∈TN
sup
f




√
NG(j/N)〈τjψ̂Kf〉 −N2γ

2

∑

|i−j|≤K
〈(Xif)

2 + (Yi,i+1f)
2〉





≤ CT

γN

∑

j∈TN
G(j/N)2

1

2K + 1
〈ψ̂K , (−SΛK )

−1ψ̂K〉.

Taking the limit as N → ∞ and K → ∞ we obtain (4.7). �

Applying Theorem 2 to I1N,F,t(H) we have

lim sup
N→∞

EνN
β

(
sup

0≤t≤T
(I1N,F,t(H))2

)
≤ CT

γ
|||W0,1+D̃(β)(p21−p20)−LγF |||2−1

∫

T

H ′(u)2du.

(4.9)
To conclude the proof of Lemma 3.3, we need to show that there exists a
sequence of local functions FK in C such that

|||W0,1 + D̃(β)(p21 − p20)− LγFK |||−1 → 0

as K → ∞.

5. Hilbert space

In this section, to prove the first statement of Lemma 3.3, we investigate
the properties of the semi norm ||| · |||−1 introduced in the previous section
and the structure of the Hilbert space that it generates.

We first define from ||| · |||−1 a semi-inner product on C0 through polariza-
tion:

≪ g, h≫−1=
1

4
{|||g + h|||2−1 − |||g − h|||2−1}. (5.1)

It is easy to check that (5.1) defines a semi-inner product on C0. Denote
by N the kernel of the semi-norm ||| · |||−1 on C0. Since ≪ ·, · ≫−1 is a semi-
inner product on C0, the completion of C0|N , denoted by H−1, is a Hilbert
space.

In the following, in order to simplify notations, we will set L = Lγ and
S = Sγ.
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By Lemma 4.1, the linear space generated byW S
0,1 and SC := {Sg; g ∈ C}

are subsets of C0. The first main result of this section consists in showing
that H−1 is the completion of SC|N + {W S

0,1}, in other words, that all ele-

ments of H−1 can be approximated by aW S
0,1 + Sg for some a in R and g in

C. To prove this result we derive two elementary identities:

≪ h, Sg ≫−1= − ≪ h, g ≫∗, ≪ h,W S
0,1 ≫−1= − ≪ h≫∗∗ (5.2)

for all h in C0 and g in C.
By Proposition 4.2 and (5.1), the semi-inner product ≪ h, g ≫−1 is the

limit of the covariance (2N)−1〈(−SΛN )
−1
∑

|i|≤Ng τig,
∑

|i|≤Nh τih〉 asN ↑ ∞.
In particular, if g = Sg0, for some g0 in C, the inverse of the operator S
cancels with the operator S. Therefore

≪ h, Sg0 ≫−1= − lim
N→∞

(2N)−1〈
∑

|i|≤Ng0

τig0,
∑

|i|≤Nh

τih〉 = − ≪ g0, h≫∗ .

The second identity is proved by similar way with the elementary relation

SΛN

∑

i∈ΛN
iEi =

∑

i,i+1∈ΛN
W S
i,i+1.

The identities of (5.2) permit to compute the following elementary rela-
tions

≪ W S
0,1, Sh≫−1 = −

∑

i∈Z
i〈EiSh〉 = γ〈p0V ′(r1)Y0,1Γh〉,

≪ p21 − p20, Sh≫−1 = 0

for all h ∈ C, and

≪ W S
0,1,W

S
0,1 ≫−1=

γ

2
〈(p0V ′(r1))

2〉, ≪W S
0,1, p

2
1 − p20 ≫−1= − 1

β2
.

Furthermore,

|||aW S
0,1 + Sg|||2−1 =

γ

2
〈(ap0V ′(r1) + Y0,1Γg)

2〉+ γ

2
〈(X0Γg)

2〉

for a in R and g in C. In particular, the variational formula (4.3) for |||h|||2−1

is reduced to the expression

|||h|||2−1 = sup
a∈R,g∈C

{−2 ≪ h, aW S
0,1 + Sg ≫−1 −|||aW S

0,1 + Sg|||2−1}. (5.3)

Proposition 5.1. Recall that we denote by SC the space {Sg; g ∈ C}.
Then we have

H−1 = SC|N + {W S
0,1}.

Proof. The inclusion H−1 ⊃ SC|N + {W S
0,1} is obvious. Then we have only

to show that if h ∈ H−1 such that ≪ h,W S
0,1 ≫= 0 and ≪ h, Sg ≫= 0

for all g ∈ C, then |||h|||−1 = 0. This follows directly from the variational
formula (5.3). �
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Corollary 5.1. We have

H−1 = SC|N ⊕ {W 0,1
S } = SC|N ⊕ {p21 − p20}.

Proof. Since ≪ p21−p20, Sh≫−1= 0 for all h ∈ C and ≪ W S
0,1, p

2
1−p20 ≫−1=

− 1
β2 , the result follows from Proposition 5.1 straightforwardly. �

Remark 5.1. While the statement of Proposition 5.1 claims that H−1 is
generated by the spaces SC and {W S

0,1}(= {aW S
0,1; a ∈ R}), the statement

of Corollary 5.1 claims also that the intersection of them is the trivial set.
Note that SC and {W S

0,1} are not orthogonal.

Next, to replace the space SC by LC, we show some useful lemmas.

Lemma 5.1. For all g, h ∈ C, ≪ Sg, Ah ≫−1= − ≪ Ag, Sh ≫−1. Espe-
cially, ≪ Sg, Ag ≫−1= 0.

Proof. By the first identity of (5.2),

≪ Sg, Ah≫−1 = − ≪ g, Ah≫∗= −
∑

i∈Z
〈τig, Ah〉

=
∑

i∈Z
〈Aτig, h〉 =

∑

i∈Z
〈τiAg, h〉

=
∑

i∈Z
〈Ag, τ−ih〉 =

∑

i∈Z
〈Ag, τih〉 = − ≪ Ag, Sh≫−1 .

�

Lemma 5.2. For all g ∈ C, ≪ Sg,WA
0,1 ≫−1= − ≪ Ag,W S

0,1 ≫−1.

Proof. By the first identity of (5.2),

≪ Sg,WA
0,1 ≫−1 = − ≪ g,WA

0,1 ≫∗= −
∑

i∈Z
〈τig,WA

0,1〉

= −
∑

i∈Z
〈g,WA

i,i+1〉 = −
∑

i∈Z
i〈g,WA

i−1,i −WA
i,i+1〉

= −
∑

i∈Z
i〈g, AEi〉 =

∑

i∈Z
i〈Ag, Ei〉 = − ≪ Ag,W S

0,1 ≫−1 .

�

Lemma 5.3. For all a ∈ R and g ∈ C,
≪ aW S

0,1 + Sg, aWA
0,1 + Ag ≫−1= 0.

Proof. By the second identity of (5.2), it is easy to see that≪ W S
0,1,W

A
0,1 ≫−1=

0. Then, Lemma 5.1 and Lemma 5.2 conclude the proof straightforwardly.
�

Proposition 5.2. There exists a positive constant C such that for all g ∈ C,
|||Ag|||2−1 ≤ C|||Sg|||2−1.
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Proof. By Proposition 5.1, we have the following variational formula for
|||Ag|||2−1,

|||Ag|||2−1 = sup
a∈R,h∈C

≪ Ag, aW S
0,1 + Sh≫2

−1

|||aW S
0,1 + Sh|||2−1

= max

{
sup
h∈C

≪ Ag, Sh≫2
−1

|||Sh|||2−1

, sup
a6=0,h∈C

≪ Ag, aW S
0,1 + Sh≫2

−1

|||aW S
0,1 + Sh|||2−1

}

= max

{
sup
h∈C

≪ Ag, Sh≫2
−1

|||Sh|||2−1

, sup
h∈C

≪ Ag,W S
0,1 + Sh≫2

−1

|||W S
0,1 + Sh|||2−1

}
.

By Lemma 8.2 in Section 8, there exists a positive constant C such that
≪ Ag, Sh≫2

−1≤ C|||Sh|||2−1|||Sg|||2−1 for all g, h ∈ C. Therefore, we have

sup
h∈C

≪ Ag, Sh≫2
−1

|||Sh|||2−1

≤ C|||Sg|||2−1.

On the other hand, by Lemma 5.2, we have

≪ Ag,W S
0,1 ≫2

−1=≪ Sg,WA
0,1 ≫2

−1≤ |||Sg|||2−1|||WA
0,1|||2−1.

Therefore,

sup
h∈C

≪ Ag,W S
0,1 + Sh≫2

−1

|||W S
0,1 + Sh|||2−1

≤ |||Sg|||2−1 sup
h∈C

2|||WA
0,1|||2−1 + 2C|||Sh|||2−1

|||W S
0,1 + Sh|||2−1

.

Now, we only have to show that

sup
h∈C

1

|||W S
0,1 + Sh|||−1

<∞, sup
h∈C

|||Sh|||−1

|||W S
0,1 + Sh|||−1

<∞.

The first inequality follows from Corollary 5.1. To prove the second identity,
since we have the first inequality, it is enough to show that

sup
t≥2,h∈C

|||Sh|||2
−1=t|||WS

0,1|||2−1

{ |||Sh|||−1

|||W S
0,1 + Sh|||−1

}
<∞.

The triangle inequality shows that

|||W S
0,1 + Sh|||−1 ≥ |||Sh|||−1 − |||W S

0,1|||−1 = (
√
t− 1)|||W S

0,1|||−1

for any h satisfying |||Sh|||2−1 = t|||W S
0,1|||2−1. Then, we obtain that

sup
t≥2,h∈C

|||Sh|||2
−1=t|||WS

0,1|||2−1

{ |||Sh|||−1

|||W S
0,1 + Sh|||−1

}
≤ sup

t≥2
{ t

(
√
t− 1)2

} <∞.

�

Now, we have all elements to show the desired decomposition of the
Hilbert spaces H−1.
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Proposition 5.3. Denote by LC the space {Lg; g ∈ C}. Then, we have

H−1 = LC|N + {p21 − p20}.

Proof. Since {p21−p20} and LC are contained in C0 by definition, H−1 contains
the right hand space. To prove the converse inclusion, let h ∈ H−1 so that
≪ h, p21 − p20 ≫−1= 0 and ≪ h, Lg ≫−1= 0 for all g ∈ C. By Corollary 5.1,
h = limk→∞ Sγgk in H−1 for some sequence gk ∈ C. Namely,

|||h|||2−1 = lim
k→∞

≪ Sgk, Sgk ≫−1= lim
k→∞

≪ Sgk, Lgk ≫−1

since ≪ Sgk, Agk ≫−1= 0 by Lemma 5.1. On the other hand, by the
assumption ≪ h, Lgk ≫−1= 0 for all k. Also, by Proposition 5.2,

sup
k

|||Lgk|||−1 ≤ (C + 1) sup
k

|||Sgk|||−1 := Ch

is finite. Therefore,

|||h|||2−1 = lim
k→∞

≪ Sgk, Lgk ≫−1= lim
k→∞

≪ Sgk−h, Lgk ≫−1≤ lim
k→∞

Ch|||Sgk−h|||−1 = 0.

This concludes the proof. �

Lemma 5.4. We have

H−1 = LC|N ⊕ {p21 − p20}.

Proof. Let a sequence gk ∈ C satisfy limk→∞ Lgk = a(p21 − p20) in H−1 for
some a ∈ R. By a similar argument of the proof of Proposition 5.3,

lim sup
k→∞

≪ Sgk, Sgk ≫−1= lim sup
k→∞

≪ Lgk, Sgk ≫−1

= lim sup
k→∞

≪ Lgk − a(p21 − p20), Sgk ≫−1= 0

since ≪ p21 − p20, Sgk ≫−1= 0 for all k. On the other hand, by Proposition
5.2, |||Lgk|||2−1 ≤ (C + 1)|||Sgk|||2−1, then a = 0. �

Corollary 5.2. For each g ∈ C0, there exists a unique constant a ∈ R such
that

g + a(p21 − p20) ∈ LC in H−1.

By this corollary, it is obvious that there exists a sequence of local func-
tions FK in C such that

|||W0,1 + D̃(β)(p21 − p20)− LγFK |||−1 → 0

as K → ∞ which conclude the first statement of Lemma 3.3. We prove the
rest of the claim of Lemma 3.3 in Proposition 10.2 in Section 10.
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6. Boltzmann-Gibbs principle

In this section, we prove Lemma 3.2. First, recall that for each E > 0,
β(E) is the inverse of the function E(β) = 1

2β
+ Ṽ (β). Then, by simple

calculations, we have

d

dE
〈p21〉β(E) =

d

dE

( 1

β(E)

)
=

−1

β2

(
dE(β)

dβ

)−1

=
−1

β(E)2

{
− 1

2β(E)2
+ Ṽ ′(β(E))

}−1

=
1

χ(β(E))β(E)2
.

Now, we can rewrite the term I3N,t(H) as

∫ t

0

1√
N

∑

i∈TN
H ′′
N(

i

N
)[p2i − h(E)− h′(E)(Ei −E)] ds

where h(E) = 1
β(E)

= 〈p21〉β(E), and H
′′
N = ∆NH . Lemma 3.2 follows from

standard arguments (cf. [12]). We sketch it here for completeness.
Here one can introduce a further average in a microscopic block of length

K << N and substitute the following expression

∫ t

0

1√
N

∑

i∈TN
H ′′
N(

i

N
)τiϕK(ωs) ds

with ϕK = 1
2K+1

∑
|j|≤K[p

2
j−h(E)−h′(E)(Ej−E)]. Using Schwarz inequal-

ity, the difference can be estimated to be of order K/N .
Define ϕ̂K = ϕK − 〈ϕK〉ΛK ,ĒK , with ĒK = (2K +1)−1

∑
j∈ΛK Ej. By (4.1)

Eνβ


 sup

0≤t≤T

[∫ t

0

1√
N

∑

i∈TN
H ′′
N(

i

N
)τiϕ̂K(ωs) ds

]2


≤ 16T sup
f

{
1√
N

∑

i∈TN
H ′′
N(

i

N
)〈fτiϕ̂K〉 −N2γ < f, (−SN )f >

}
.

(6.1)

By the spectral gap on −SΛK , we can define UK = (−SΛK )
−1ϕ̂K . Then

1√
N

∑

i∈TN
H ′′
N(

i

N
)〈fτiϕ̂K〉 ≤

(
1

N

∑

i∈TN
H ′′
N (

i

N
)2〈ϕ̂KUK〉

)1/2

(N < f, (−SΛK )f >)
1/2 .

Consequently the right hand side of (6.1) is bounded by

16T sup
f

{( 1

N

∑

i∈TN
H ′′
N(

i

N
)2〈ϕ̂KUK〉

)1/2

(N < f, (−SΛK )f >)
1/2

−N2γ < f, (−SΛK )f >
}
≤ CK

N
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and it follows that

lim
N→∞

Eνβ


 sup

0≤t≤T

[∫ t

0

1√
N

∑

i∈TN
H ′′
N(

i

N
)τiϕ̂K(ωs) ds

]2
 = 0.

We are left to estimate the corresponding term with 〈ϕK〉ΛK ,ĒK . Denote
ϕ̄K = 〈ϕK〉ΛK ,ĒK and observe that it has support on Λk and its variance with
respect to νβ is of order K−2. Then by Schwarz inequality and stationarity
of νβ

Eνβ


 sup

0≤t≤T

[∫ t

0

1√
N

∑

i∈TN
H ′
N(

i

N
)τiϕ̄K(ωs) ds

]2


≤ CT 2〈
[

1√
N

∑

i∈TN
H ′′
N(

i

N
)τiϕ̄K

]2
〉

=
CT 2

N

∑

i,j

H ′′
N(

i

N
)H ′′

N(
j

N
)〈τi−jϕ̄Kϕ̄K〉

≤ CT 2

2N

∑

i,j

(H ′′
N(

i

N
)2 +H ′′

N(
j

N
)2)〈τi−jϕ̄Kϕ̄K〉

=
CT 2

N

∑

i

H ′′
N(

i

N
)2
∑

j

〈τjϕ̄Kϕ̄K〉

≤ C ′T 2

N

∑

i

H ′′
N(

i

N
)2K〈ϕ̄2

K〉

that goes to 0 as K → ∞, uniformly in N .

7. Tightness

The argument exposed above proves the convergence of the finite dimen-
sional distribution of QN . In order to conclude the proof of Theorem 1, we
need to prove the tightness of the sequence in C([0, T ],H−k). The argument
we use is standard. We report it here for completeness.

Compactness follows from the following two statements:

lim
A→∞

lim sup
N→∞

PνN
β

(
sup

0≤t≤T
‖Y N

t ‖−k ≥ A

)
= 0, (7.1)

lim
δ→0

lim sup
N→∞

PνN
β

(
w−k(Y

N , δ) ≥ ǫ
)
= 0 ∀ǫ > 0. (7.2)

where ‖ · ‖−k is the norm in H−k and w−k(Y N , δ) is the corresponding mod-
ulus of continuity in C([0, T ],H−k). We recall that ‖ · ‖−k can be written
as

‖Y ‖2−k =
∑

n≥1

(πn)−2k|Y (en)|2
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with en(x) =
√
2 sin(πnx).

Recall the decomposition of Y N
t given by (3.3):

Y N
t (en) = Y N

0 (en) + (πn)2D

∫ t

0

Y N
s (en)ds+M1

N,FK ,t
(en) + ZN,FK ,t(en)

where EνN
β

(
sup0≤t≤T (ZN,FK ,t(en))

2
)
can be estimated by the proof of Lem-

mas 3.1, 3.2. On the other hand, EνN
β

(
(M1

N,FK ,t
(en))

2
)
can be computed

explicitly. Then, for k > 5/2, (7.1) and (7.2) follows by standard arguments
(cf. [12]).

8. Sector condition in H−1

In this section, we show the sector condition in H−1 which is the key
point to apply the nongradient method for asymmetric processes.

First, we prepare a useful lemma.

Lemma 8.1. For all f, g ∈ C,
≪ Sf,Ag ≫−1= −〈Γf (X0 − Y0,1)Γg〉 = 〈Γg(X0 − Y0,1)Γf 〉.

Proof. By the first identity of (5.2),

− ≪ Sf,Ag ≫−1=≪ f, Ag ≫∗=
∑

i∈Z
〈τif, Ag〉 =

∑

i,j∈Z
〈τif, (Xj − Yj,j+1)g〉

=
∑

i,k∈Z
〈τif, (Xk+i − Yk+i,k+i+1)g〉 =

∑

i,k∈Z
〈τif, τi((Xk − Yk,k+1)τ−ig)〉

=
∑

k∈Z
〈f, (Xk − Yk,k+1)Γg〉 =

∑

k∈Z
〈τkf, (X0 − Y0,1)Γg〉 = 〈Γf(X0 − Y0,1)Γg〉.

�

Define Γ̃f as Γ̃f =
∑

|i|≤sf+1 τif . Observe that in the above expression,

one can restrict the definition of Γf and Γg as finite sums, namely, we can

replace them by Γ̃f and Γ̃g. Decompose now Γ̃f = Γ̃ef +Γ̃of , where Γ̃
e
f is even

in p0 and Γ̃of is odd. Observe that the vector fields X0 and Y0,1 change the
parity of p0, so we have

〈Γ̃f(X0 − Y0,1)Γ̃g〉 = 〈Γ̃of(X0 − Y0,1)Γ̃
e
g〉 − 〈Γ̃og(X0 − Y0,1)Γ̃

e
f〉.

Applying Schwarz inequality, we can bound the above expression by

〈(Γ̃of)2〉1/2〈[(X0 − Y0,1)Γ̃
e
g]

2〉1/2 + 〈(Γ̃og)2〉1/2〈[(X0 − Y0,1)Γ̃
e
f ]

2〉1/2

and applying the spectral gap for X0 plus Schwarz inequality again, the last
term is bounded by

C{〈(X0Γ̃
o
f)

2〉1/2〈(X0Γ̃
e
g)

2+(Y0,1Γ̃
e
g)

2〉1/2+〈(X0Γ̃
o
g)

2〉1/2〈(X0Γ̃
e
f)

2+(Y0,1Γ̃
e
f )

2〉1/2}
with some positive constant C.

Recall that

|||Sf |||2−1 =
γ

2
〈(Y0,1Γ̃f)2+(X0Γ̃f)

2〉 = γ

2
〈(Y0,1Γ̃ef )2+(Y0,1Γ̃

o
f)

2+(X0Γ̃
e
f)

2+(X0Γ̃
o
f )

2〉.
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Then we obtain the sector condition:

Lemma 8.2 (sector condition). There exists a positive constant C such that
for all f, g ∈ C,

| ≪ Sf,Ag ≫−1 | ≤ C|||Sf |||−1|||Sg|||−1.

9. Closed forms

In this section, to complete the proof of Lemma 4.3, we introduce the
notion of closed forms and give a characterization of them. We generalize
some ideas developed in the Ph D thesis of Hernandez [11], where micro-
canonical surfaces were given by spheres, following the general setup of the
seminal work of Varadhan [20] (see also [12], appendix ). The nonlinearity of
our interaction reflected in the nonconstant curvature of our microcanonical
manifolds, requires some substantial modification of the original approach.

Let us decompose C = ∪k≥1Ck, where Ck is the space of functions F ∈ C
depending only on the variables (pi, ri)−k≤i≤k. Given F ∈ Ck recall the
definition of the formal sum

ΓF (p, r) =

∞∑

j=−∞
τjF (p, r)

and that for every i ∈ Z the expressions

∂ΓF
∂pi

(p, r) =
∑

i−k≤j≤i+k

∂

∂pi
τjF (p, r)

and
∂ΓF
∂ri

(p, r) =
∑

i−k≤j≤i+k

∂

∂ri
τjF (p, r)

are well defined. The formal invariance ΓF (τi(p, r)) = ΓF (p, r) leads us to
the relation

∂ΓF
∂pi

(p, r) =
∂ΓF
∂p0

(τi(p, r)). (9.1)

Remember that Yi,j = pi∂rj − V ′(rj)∂pi and Xi := Yi,i. Given F ∈ C and
i ∈ Z, Xi(ΓF ) and Yi,i+1(ΓF ) are well defined and satisfy

Xi(ΓF )(p, r) = τiX0(ΓF )(p, r), Yi,i+1(ΓF )(p, r) = τiY0,1(ΓF )(p, r).

Now we consider the following linear space

B = {(X0(ΓF ), Y0,1(ΓF )) ∈ L2(νβ)× L2(νβ) : F ∈ C}.
We denote by H the linear space generated by the closure of B in L2(νβ)×

L2(νβ) and (0, p0V
′(r1))

H = B + {(0, p0V ′(r1))}. (9.2)

First, we observe that defining a vector-valued function ξ = (ξ0, ξ1) as
(X0(ΓF ), Y0,1(ΓF )) for F ∈ C or (0, p0V

′(r1)), the following properties are
satisfied:
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i) Xi(τjξ
0) = Xj(τiξ

0) for all i, j ∈ Z,
ii) Yi,i+1(τjξ

1) = Yj,j+1(τiξ
1) for all i, j ∈ Z,

iii) Xi(τjξ
1) = Yj,j+1(τiξ

0) if {i} ∩ {j, j + 1} = ∅,
iv) pi[Xi(τiξ

1)− Yi,i+1(τiξ
0)] = V ′(ri+1)τiξ

0 − V ′(ri)τiξ1 for all i ∈ Z,
v) V ′(ri+1)[Xi+1(τiξ

1)−Yi,i+1(τi+1ξ
0)] = V ′′(ri+1)pi+1τiξ

1−V ′′(ri+1)piτi+1ξ
0

for all i ∈ Z.

We call a weakly closed form (or germ of a weakly closed form, cf. [12]),
a couple of functions ξ = (ξ0, ξ1) ∈ L2(νβ) × L2(νβ), that satisfy i) to v)
in a weak sense. A smooth approximation of weakly closed form is not
necessarily closed, and some type of Hodge decomposition is needed. This
will be done only after localization in the proof of the following theorem
that is the main result of this section.

Theorem 3. If ξ = (ξ0, ξ1) ∈ L2(νβ) × L2(νβ) satisfies conditions i) to v)
in a weak sense, then ξ ∈ H.

Proof. The goal is to find a sequence (FL)L≥1 in C such that

(ξ0 −X0(ΓFL), ξ
1 − Y0,1(ΓFL)) −→

L→∞
(0, cp0V

′(r1))

in L2(νβ)× L2(νβ) for some constant c.
First, observe that for a function F ∈ Ck we can rewrite, by using (9.1),

X0(ΓF ) =

k∑

i=−k
Xi(F )(τ−i(p, r)) (9.3)

and

Y0,1(ΓF ) =

k−1∑

i=−k
Yi,i+1(F )(τ−i(p, r))−

(
V ′(rk+1)

∂F

∂pk

)
(τ−kp)+

(
p−k−1

∂F

∂r−k

)
(τk+1(p, r)).

(9.4)
We define for m = 0, 1

ξ
m,(L)
i = Eνβ [ξ

m
i |FL]ϕ

(
1

2L+ 1

L∑

i=−L
{p

2
i

2
+ V (ri)}

)

where ξmi (p, r) = τiξ
m(p, r), FL is the sub σ-field of Ω generated by (pi, ri)

L
i=−L

and ϕ is a smooth positive function with compact support such that ϕ(E(β)) =
1 and bounded by 1 (we need this cutoff in order to do uniform bounds later).
Because νβ is a product measure and ϕ satisfies that

Xiϕ

(
1

2L+ 1

L∑

i=−L
{p

2
i

2
+ V (ri)}

)
= 0

for −L ≤ i ≤ L and

Yi,i+1ϕ

(
1

2L+ 1

L∑

i=−L
{p

2
i

2
+ V (ri)}

)
= 0
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for−L ≤ i ≤ L−1, the set of functions {(ξ0,Li )}−L≤i≤L and {(ξ1,Li )}−L≤i≤L−1

even satisfies the conditions i) to v) on the finite set {−L,−L+1, . . . , L} if

we replace τiξ
0 by ξ

0,(L)
i and τiξ

1 by ξ
1,(L)
i . Therefore, they define a closed

form in a weak sense on a finite dimensional space. To obtain a closed form

on each microcanonical manifold
{
ω ∈ (R2)2L+1;

∑L
−L Ei = (2L+ 1)E

}
, we

take a smooth FL-measurable approximation of ξ0,Li and ξ1,Li in L2(νβ).
These smooth approximations may not be closed, but we can apply the
Hodge decomposition with respect to a Riemannian structure associated to
our microcanonical measure. By the assumptions on V , these microcanon-
ical manifolds are diffeomorphic to 4L + 1-dimensional spheres, so 0 is the
only harmonic function on each of them. On the other hand, as shown in
Section 13, Lie{{Xi, i = −L, . . . , L}{Yi,i+1, i = −L, . . . , L − 1}} generates
the all tangent space of each microcanonical manifold. Therefore, we can
choose a FL-measurable function g(L) which is smooth on each microcanon-
ical manifold (with respect to the vector fields of the tangent space) and
satisfies

Xi(g
(L)) = ξ

0,(L)
i + ǫ

0,(L)
i for − L ≤ i ≤ L,

Yi,i+1(g
(L)) = ξ

1,(L)
i + ǫ

1,(L)
i for − L ≤ i ≤ L− 1

(9.5)

where
∑L

i=−LEνβ [(ǫ
0,(L)
i )2] +

∑L−1
i=−LEνβ [(ǫ

1,(L)
i )2] ≤ ǫL for arbitrary given

ǫL. Then, by the spectral gap proved in Section 12, g(L) is in L2(νβ), so we
have a sequence of functions {gn}n∈N in CL such that

gn → g(L) in L2(νβ), Xi(gn) → Xi(g
(L)) in L2(νβ) for − L ≤ i ≤ L

and

Yi,i+1(gn) → Yi,i+1(g
(L)) in L2(νβ) for − L ≤ i ≤ L− 1.

It means, we can choose a function g(L) in CL satisfying (9.5) at the beggining
for arbitrary given ǫL. From now on, we fix a sequence {ǫL}L that ǫL → 0
as L→ ∞. Observe that g(L) −Eνβ [g

(L)|E−L + · · ·+ EL] still satisfies (9.5).
So we can suppose that Eνβ [g

(L)|E−L + · · ·+ EL = (2L+ 1)E] = 0 for every
E > 0.
Define

g(L,k) =
β

2(L+ k)φβ
Eνβ [p

2
−L−k−1V

′(rL+k+1)
2g(2L)|FL+k]

and

ĝL =
4

L

3L/4∑

k=L/2

g(L,k)

where φβ := Eνβ [V
′(r0)2].
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Using (9.3) and (9.4) for g(L,k) and then averaging over k we obtain that

X0

( ∞∑

j=−∞
τj ĝ

L

)
= ξ0 +

β

φβ
[I1L + I2L + I3L + I4L + I5L]

and

Y0,1

( ∞∑

j=−∞
τj ĝ

L

)
= ξ1 +

β

φβ
[J1
L + J2

L + J3
L + J4

L − R1
L +R2

L],

where

I1L =

3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k
τ−iEνβ [V

′(rL+k+1)
2p2−L−k−1(ξ

0,(2L)
i − ξ

0,(L+k)
i )ϕ(E−2L,2L)|FL+k],

I2L =

3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k
τ−i{(ξ0,(L+k)i − ξ0i )Eνβ [V

′(rL+k+1)
2p2−L−k−1ϕ(E−2L,2L)|FL+k]},

I3L =

3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k
ξ0(p, r)τ−iEνβ [V

′(rL+k+1)
2p2−L−k−1(ϕ(E−2L,2L)− 1)|FL+k],

I4L =

3̂L/4∑

k=L/2

1

2(L+K)
τ−L−kEνβ [V

′(rL+k+1)
2p2−L−k−1ξ

0,(2L)
L+k ϕ(E−2L,2L)|FL+k],

I5L =

3̂L/4∑

k=L/2

L+k∑

i=−L−k

1

2(L+K)
τ−iEνβ [V

′(rL+k+1)
2p2−L−k−1ǫ

0,(2L)
i ϕ(E−2L,2L)|FL+k],

J1
L =

3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k
τ−iEνβ [V

′(rL+k+1)
2p2−L−k−1(ξ

1,(2L)
i − ξ

1,(L+k)
i )ϕ(E−2L,2L)|FL+k],

J2
L =

3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k
τ−i{(ξ1,(L+k)i − ξ1i )Eνβ [V

′(rL+k+1)
2p2−L−k−1ϕ(E−2L,2L)|FL+k]},

J3
L =

3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k
ξ1(p, r)τ−iEνβ [V

′(rL+k+1)
2p2−L−k−1(ϕ(E−2L,2L)− 1)|FL+k],

J4
L =

3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k
τ−iEνβ [V

′(rL+k+1)
2p2−L−k−1ǫ

1,(2L)
i ϕ(E−2L,2L)|FL+k],

R1
L =

3̂L/4∑

k=L/2

τ−L−k{V ′(rL+k+1)
∂

∂pL+k
g(L,k)},
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R2
L =

3̂L/4∑

k=L/2

τL+k+1{p−L−k−1
∂

∂r−L−k
g(L,k)}.

Here the hat over the sum symbol means that it is in fact an average, and
E−2L,2L is equal to 1

4L+1

∑2L
i=−2L Ei.

The proof of the theorem will be concluded in the following way. First we
show that the middle terms I1L, I

2
L, I

3
L, I

4
L, I

5
L and J1

L, J
2
L, J

3
L, J

4
L tend to zero

in L2(νβ). Then, the proof will be concluded by showing the existence of a
subsequence of {−R1

L + R2
L}L≥1 weakly convergent to cp0V

′(r1) with some
constant c.
For the sake of clarity, the proof is divided in three steps. Before that, let
us state two remarks.

Remark 9.1. We know that for m = 0, 1, Eνβ [ξ
m|FL]

L2

−→ ξm, i.e given
ǫ > 0 there exist L0 ∈ N such that

Eνβ [|ξm − ξm,(L)|2] ≤ ǫ if L ≥ L0.

Moreover, by the translation invariance we have

Eνβ [|ξmi − ξ
m,(L)
i |2] ≤ ǫ if [−L0 + i, L0 + i] ⊆ [−L, L].

In fact, given τ−iA ∈ FL
∫

A

ξ
m,(L)
i (τ−i(p, r))νβ(dpdr) =

∫

τ−i(A)

ξ
m,(L)
i (p, r)νβ(dpdr) =

∫

τ−i(A)

ξmi (p, r)νβ(dpdr)

=

∫

A

ξmi (τ−i(p, r))νβ(dpdr) =

∫

A

ξm(p, r)νβ(dpdr).

In addition, since ξ
m,(L)
i (τ−i) ∈ FL−i

−L−i we have

ξ
m,(L)
i (τ−i) = Eνβ [ξ

m|FL−i
−L−i]

and therefore

Eνβ [|ξmi − ξ
m,(L)
i |2] = Eνβ [|ξm − ξ

m,(L)
i (τ−i)|2] ≤ Eνβ [|ξm − ξ

m,(L0)
0 |2].

Remark 9.2. Besides a Strong law of large numbers for (p2iV
′(ri)2)i∈Z we

have

Eνβ



(
1

L

L∑

i=1

p2iV
′(ri)

2 − φβ
β

)2

 ≤ Cβ

L

for some finite constant Cβ.

Step 1. The convergence of the middle terms to 0. The conver-
gence to zero as L tends to infinity of I1L, I

2
L and I5L in L2(νβ) follows from

Schwarz inequality, Remark 9.1, the condition of {ǫL} and the fact that ϕ
is a bounded function.
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Using the symmetry of the measure about exchanges of variables, I3L can be
rewritten as

ξ0(p, r)

3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k
Eνβ [

L̂−k∑

j=1

V ′(rL+k+j)
2p2−L−k−j(ϕ(E−2L,2L)−1)|FL+k](τ−i(p, r))

and then we decompose it as I6L +
φβ
β
I7L, where I

6
L and I7L are respectively

ξ0(p, r)

3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k

Eνβ [

L̂−k∑

j=1

{V ′(rL+k+j)
2p2−L−k−j −

φβ
β
}(ϕ(E−2L,2L)− 1)|FL+k](τ−i(p, r))

and

ξ0(p, r)

3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k
Eνβ [ϕ(E−2L,2L)− 1|FL+k](τ−i(p, r)).

For the first term, observe that

|I6L|2 ≤ |ξ0(p, r)|2
3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k
Eνβ






L̂−k∑

j=1

{V ′(rL+k+j)
2p2−L−k−j −

φβ
β
}




2

 ,

and the expectation inside the last expression is bounded by
Cβ
L−k , so

||I6L||2L2(νβ)
≤ Cβ

L
||ξ0||2L2(νβ)

.

For the second term, written explicitly the conditional expectation we see
that |I7L|2 is bounded by

|ξ0(p, r)|2
3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k

∫
|ϕ( 1

4L+ 1

∑

|j|>L+k
E ′
j +

1

4L+ 1

∑

|j|≤L+k
Ej+i)− 1|2dνβ.

We rewrite the integral part as∫
|ϕ( 1

4L+ 1

∑

|j|>L+k
(E ′
j −Eβ) +

1

4L+ 1

∑

|j|≤L+k
(Ej+i − Eβ) + Eβ)− 1|2dνβ.

Using the fact that ϕ is a Lipschitz positive function bounded by 1 such
that ϕ(Eβ) = 1, we obtain that |I7L|2 is bounded from above by

|ξ0(p, r)|2
3̂L/4∑

k=L/2

L̂+k−1∑

i=−L−k
1∧
∫

| 1

4L+ 1

∑

|j|>L+k
(E ′
j−Eβ)+

1

4L+ 1

∑

|j|≤L+k
(Ej+i−Eβ)|2dνβ

where a∧ b denote the minimum of {a, b}. So, taking expectation and using
the Strong law of large numbers together with the dominated convergence
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theorem, the convergence to zero as L tends to infinity of I3L in L2(νβ) is
proved.

Same arguments can be applied for J1
L, J

2
L, J

3
L and J4

L. For I4L, we can

bound the L2-norm of the term from above by
Cβ
L
||ξ0||2L2(νβ)

for some con-

stant Cβ.
Step 2. The uniform bound of the L2(νβ) norms of the boundary

terms.

Remember that R1
L is defined as

3̂L/4∑

k=L/2

1

2(L+ k)
τ−L−k{V ′(rL+k+1)Eνβ [p

2
−L−k−1V

′(rL+k+1)
2 ∂

∂pL+k
g(2L)|FL+k]}

= −
3̂L/4∑

k=L/2

1

2(L+ k)

τ−L−k{V ′(rL+k+1)Eνβ [p
2
−L−k−1V

′(rL+k+1)YL+k,L+k+1g
(2L)|FL+k]}

+

3̂L/4∑

k=L/2

1

2(L+ k)

τ−L−k{pL+kV ′(rL+k+1)Eνβ [p
2
−L−k−1V

′(rL+k+1)
∂

∂rL+k+1

g(2L)|FL+k]}.

By Schwarz inequality and (9.5), we can see that the L2(νβ) norm of the first

term in the right hand side of the last equality is bounded by
Cβ
L
||ξ1||L2(νβ)

for some constant Cβ. After an integration by parts, the second term can
be written as

3̂L/4∑

k=L/2

1

2(L+ k)

τ−L−k{pL+kV ′(rL+k+1)Eνβ [p
2
−L−k−1

(
βV ′(rL+k+1)

2 − V ′′(rL+k+1)
)
g(2L)|FL+k]}.

(9.6)

Using the symmetry of the measure again, the conditional expectation ap-
pearing in the last expression can be rewritten as

Eνβ [p
2
−L−k−1

2̂L∑

j=L+k+1

(βV ′(rj)
2 − V ′′(rj))(g

(2L) ◦ πj,L+k+1
r )|FL+k] ,

where πj,L+k+1
r stands for the exchange operator of rj and rL+k+1. After

that, we decompose the last expression as the sum of the following two
terms,

Eνβ [p
2
−L−k−1

2̂L∑

j=L+k+1

(βV ′(rj)
2 − V ′′(rj))g

(2L)|FL+k],
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and

Eνβ [p
2
−L−k−1

2̂L∑

j=L+k+1

(βV ′(rj)
2 − V ′′(rj))(g

(2L) ◦ πj,L+k+1
r − g(2L))|FL+k].

The square of the last expressions are respectively bounded from above by

CβL
−1Eνβ [(g

(2L))2|FL+k], CβEνβ [

2̂L∑

j=L+k+1

(g(2L) ◦ πj,L+k+1
r − g(2L))2|FL+k]

for some constant Cβ. Using Schwarz inequality we can see that the square
of each term of the sum is respectively bounded from above by

Cβ
L3

Eνβ

[( 3̂L/4∑

k=L/2

p2L+k
)
(g(2L))2

]
, (9.7)

and

C ′
β

L2

3̂L/4∑

k=L/2

Eνβ

[
p2L+k

2̂L∑

j=L+k+1

(g(2L) ◦ πj,L+k+1
r − g(2L))2

]

≤
C ′
β

L2

3̂L/4∑

k=L/2

Eνβ

[
p2L+k

2̂L∑

j=L+k+1

2{j − (L+ k + 1)}
j−1∑

i=L+k+1

(g(2L) ◦ πi,i+1
r − g(2L))2

]

≤
C ′
β

L

3̂L/4∑

k=L/2

Eνβ

[
p2L+k

2L∑

i=3L/2+1

(g(2L) ◦ πi,i+1
r − g(2L))2

]

for some constants Cβ and C
′
β. One can now estimate

∑̂3L/4
k=L/2p

2
L+k uniformly

because of the cutoff. Using the spectral gap estimate (12.1) proved in
Section 12, we can bound (9.7) by a constant.

Finally, we state that we can bound the term Eνβ

[
(g(2L) ◦πi,i+1

r − g(2L))2
]

by the Dirichlet form of g(2L) which concludes the proof.

Proposition 9.1. There exists some constant C such that for every smooth
function f : Ω → R,

Eνβ

[
(f ◦ πi,i+1

r − f)2
]
≤ C{Eνβ

[
(Xif)

2
]
+Eνβ

[
(Yi,i+1f)

2
]
}.

Proof. The change of variables and simple computations conclude the proof.
�

Step 3. The existence of a weakly convergent subsequence of

{R1
L}L≥1. Firstly, observe that the expression (9.6) is equal to

p0V
′(r1)h

1
L(p0, r0, . . . , p−7L/2, r−7L/2)
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where

h1L =

3̂L/4∑

k=L/2

1

2(L+ k)
τ−L−kEνβ [p

2
−L−k−1(βV

′(rL+k+1)
2−V ′′(rL+k+1))g

(2L)|FL+k].

On the other hand, we had proved in Step 2 that {p0V ′(r1)h1L}L≥1 is
bounded in L2(νβ), therefore it contains a weakly convergent subsequence
{p0V ′(r1)hL′}L′. We can conclude in a similar way that {h1L}L≥1 is bounded
in L2(νβ), therefore {h1L′}L′ contains a weakly convergent subsequence, whose
limit will be denoted by h. It is easy to see that

||Xih
1
L||L2(νβ) ≤

C

L
||ξ0||L2(νβ) for i ∈ {0,−1,−2, · · · }

and

||Yi,i+1h
1
L||L2(νβ) ≤

C

L
||ξ1||L2(νβ) for {i, i+ 1} ⊆ {0,−1,−2, · · · }

which implies that Xih = 0 for i ∈ {0,−1,−2, · · · } and Yi,i+1h = 0
for {i, i + 1} ⊆ {0,−1,−2, · · · }. Since the function h depends only on
{p0, r0, p−1, r−1, p−2, r−2 · · · } one can show that h is a constant function,
let’s say c. Taking suitable test functions, we can conclude that in fact
{p0V ′(r1)h1L′}L′ converges weakly to cp0V

′(r1). This proves that for every
weakly convergent subsequence of {R1

L}L≥1 there exist a constant c such that
the limit is cp0V

′(r1). Exactly the same can be said about {R2
L}L≥1. �

Remark 9.3. Observe that the roles of the vector fields X0 and Y0,1 are
symmetric, in the sense that changing the definition of the energy of the
particle i to Ei = p2i /2 + V (ri+1) their actions in the boundary terms in
the above approximation are exchanged. The space of closed forms does not
depend on this choice of the definition of the energy Ei, so we also have the
equivalent characterization of the closed forms:

Hc = B + {(p0V ′(r0), 0)}. (9.8)

This imply that, defining by ξF = (X0ΓF , Y0,1ΓF ), a closed form ξ can be
approximated by ξF + c0(p0V

′(r0), 0) and by ξG + c1(0, p0V
′(r1)), then c0 =

−c1 = c and F −G = −cp20
2
.

10. Diffusion coefficient

In this section, we describe the diffusion coefficient in several variational
formulas and prove the second statement of Lemma 3.3. From Corollary
5.2, there exists a unique number D̃(β) such that

W0,1 + D̃(β)(p21 − p20) ∈ LC in H−1.

Our purpose now is to obtain the explicit formula for D̃. To do this, we
follow the argument in [15].
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Lemma 10.1. We have

H−1 = LC|N ⊕ {W0,1} = L∗C|N ⊕ {W ∗
0,1}

where W ∗
0,1 := W S

0,1 −WA
0,1 and L∗ = S −A.

Proof. We shall prove the first decomposition since the same arguments
apply to the second one. Because we have already proved in Lemma 5.4 that
LC|N has a one-dimensional complementary subspace in H−1, it is sufficient
to show that H−1 is generated by LC and the current. Let h ∈ H−1 so that
≪ h,W0,1 ≫−1= 0 and ≪ h, Lg ≫−1= 0 for all g ∈ C. By Proposition 5.1,
h = limk→∞(aW S

0,1+Shk) in H−1 for some a ∈ R and hk ∈ C. In particular,

|||h|||2−1 = lim
k→∞

≪ aW S
0,1 + Shk, aW

S
0,1 + Shk ≫−1

= lim
k→∞

≪ aW S
0,1 + Shk, aW0,1 + Lhk ≫−1

since ≪ aW S
0,1 + Shk, aW

A
0,1 + Ahk ≫−1= 0 by Lemma 5.3. On the other

hand, by assumption ≪ h, aW0,1 + Lhk ≫−1= 0 for all k. Also, by Propo-
sition 5.2,

sup
k

|||aW0,1 + Lhk|||2−1 ≤ 2a2|||W0,1|||2−1 + 2(C + 1) sup
k

|||Shk|||2−1 := Ch

is finite. Therefore,

|||h|||2−1 = lim
k→∞

≪ aW S
0,1 + Shk, aW0,1 + Lhk ≫−1

= lim
k→∞

≪ aW S
0,1 + Shk − h, aW0,1 + Lhk ≫−1

≤ lim sup
k→∞

Ch|||aW S
0,1 + Shk − h|||−1 = 0.

This concludes the proof. �

Now, we can define bounded linear operators T : H−1 → H−1

and T ∗ : H−1 → H−1 as

T (aW0,1 + Lf) := aW S
0,1 + Sf,

T ∗(aW ∗
0,1 + L∗f) := aW S

0,1 + Sf

since

|||aW0,1 + Lf |||2−1 = |||aW ∗
0,1 + L∗f |||2−1 = |||aW S

0,1 + Sf |||2−1 + |||aWA
0,1 + Af |||2−1.

We can easily show that T ∗ is the adjoint operator of T and also we have
the relations

≪ T (p21 − p20),W
∗
0,1 ≫−1=≪ T ∗(p21 − p20),W0,1 ≫−1= − 1

β2
,

and

≪ T (p21 − p20), L
∗f ≫−1=≪ T ∗(p21 − p20), Lf ≫−1= 0

for all f ∈ C. In particular,

H−1 = L∗C|N ⊕ {T (p21 − p20)}
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and there exists a unique number Q(β) such that

W ∗
0,1 +Q(β)T (p21 − p20) ∈ L∗C in H−1.

It will turn out later that Q(β) = D̃(β).

Lemma 10.2.

Q(β) =
1

β2|||T (p21 − p20)|||2−1

= β2 inf
f∈C

|||W ∗
0,1 − L∗f |||2−1. (10.1)

Proof. First identity follows from the fact that

≪ T (p21−p20),W ∗
0,1+Q(β)T (p

2
1−p20) ≫−1= − 1

β2
+Q(β)|||T (p21−p20)|||2−1 = 0.

Second identity is obtained by the expression

inf
f∈C

|||W ∗
0,1 +Q(β)T (p21 − p20)− L∗f |||−1 = 0

since

inf
f∈C

|||W ∗
0,1 +Q(β)T (p21 − p20)− L∗f |||2−1

= inf
f∈C

|||W ∗
0,1 − L∗f |||2−1 −

2Q(β)

β2
+Q(β)2|||T (p21 − p20)|||2−1

= inf
f∈C

|||W ∗
0,1 − L∗f |||2−1 −

2Q(β)

β2
+
Q(β)

β2
.

�

By a simple computation, we can show that≪ Tg, g ≫−1=≪ Tg, Tg ≫−1

for all g ∈ H−1, and therefore (p21 − p20) − T (p21 − p20) ∈ L∗C0 since (p21 −
p20) − T (p21 − p20) is orthogonal to T (p21 − p20). By the fact, we obtain the
variational formula for |||T (p21 − p20)|||2−1:

Lemma 10.3.

|||T (p21 − p20)|||2−1 = inf
f∈C

|||p21 − p20 − L∗f |||2−1. (10.2)

Proof. By the similar argument with the proof of Proposition 10.2, we have

inf
f∈C

|||p21 − p20 − T (p21 − p20)− L∗f |||2−1 = 0

and

inf
f∈C

|||p21 − p20 − T (p21 − p20)− L∗f |||2−1

= inf
f∈C

|||p21 − p20 − L∗f |||2−1 − |||T (p21 − p20)|||2−1

which concludes the proof. �

Proposition 10.1.

D̃(β) = β2 inf
f∈C

|||W ∗
0,1 − L∗f |||2−1 =

1

β2 inff∈C |||p21 − p20 − L∗f |||2−1

. (10.3)
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Proof. By the definition, W0,1 + D̃(β)(p21 − p20) ∈ LC and therefore

≪W0,1+ D̃(β)(p21−p20), T ∗(p21−p20) ≫−1= − 1

β2
+ D̃(β)|||T (p21−p20)|||2−1 = 0.

Then, D̃(β) = Q(β) follows and we obtain two variational formulas from
(10.1) and (10.2). �

Proposition 10.2. For any sequence FK in C such that

lim
K→∞

|||W0,1 + D̃(β)(p21 − p20)− LFK |||−1 = 0,

we have

lim
K→∞

[
γ

2
〈(p0V ′(r1)− Y0,1ΓFK )

2〉+ γ

2
〈(X0ΓFK)

2〉] = D̃(β)

β2
.

Proof. By the assumption,

lim
K→∞

|||T{W0,1 + D̃(β)(p21 − p20)− LFK}|||−1 = 0

and therefore

lim
K→∞

|||W S
0,1 − SFK |||2−1 = D̃(β)2|||T (p21 − p20)|||2−1.

Then, since

D̃(β) = Q(β) =
1

β2|||T (p21 − p20)|||2−1

and

|||W S
0,1 − SFK |||2−1 =

γ

2
〈(p0V ′(r1)− Y0,1ΓFK )

2〉+ γ

2
〈(X0ΓFK )

2〉,
we complete the proof. �

11. Detailed estimates of the diffusion coefficient

In this section, we give some detailed estimates of the diffusion coefficient
as a function of γ. Note that they are not necessary to prove our main
theorem.

First, we rewrite the variational formula for the diffusion coefficient given
by the terms of the norm of H−1 in a tractable way.

Observe that C is divided into two orthogonal spaces Le and Lo where Le
is the set of even functions in p and Lo is the set of odd functions in p. More
precisely, for f ∈ C, f ∈ Le if and only if f(p, r) = f(−p, r) and f ∈ Lo if
and only if f(p, r) = −f(−p, r) where (−p)i = −pi for all i.

Consider two subspaces of H−1 defined as He
−1 := SLe|N ⊕ {W S

0,1} and

Ho
−1 := SLo|N .

Lemma 11.1. We have

H−1 = He
−1 ⊕Ho

−1

and they are orthogonal to each other. Moreover, WA
0,1 ∈ Ho

−1, Af ∈ Ho
−1 if

f ∈ Le and Af ∈ He
−1 if f ∈ Lo.
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Proof. Straightforward. �

Proposition 11.1.

D̃(β) = β2 inf
f∈Le

sup
g∈Lo

{
γ[
1

2
〈(p0V ′(r1)− Y0,1Γf)

2〉+ 1

2
〈(X0Γf )

2〉]

+2〈(WA
0,1 −Af)Γg〉 − γ[

1

2
〈(Y0,1Γg)2〉+

1

2
〈(X0Γg)

2〉]
}
.

(11.1)

Proof. We can rewrite the first variational formula for D̃(β) in (10.3) as

β2 inf
f∈C

{|||W S
0,1 − Sf |||2−1 + |||WA

0,1 −Af |||2−1}

= β2 inf
fe∈Le

inf
fo∈Lo

{|||W S
0,1 − Sfe|||2−1 + |||Sfo|||2−1 + |||WA

0,1 −Afe|||2−1 + |||Afo|||2−1}

= β2 inf
f∈Le

{|||W S
0,1 − Sf |||2−1 + |||WA

0,1 −Af |||2−1}

= β2 inf
f∈Le

sup
g∈Lo

{|||W S
0,1 − Sf |||2−1 − 2 ≪WA

0,1 − Af, Sg ≫−1 −|||Sg|||2−1}

= β2 inf
f∈Le

sup
g∈Lo

{γ[1
2
〈(p0V ′(r1)− Y0,1Γf)

2〉+ 1

2
〈(X0Γf )

2〉] + 2〈(WA
0,1 − Af)Γg〉

− γ[
1

2
〈(Y0,1Γg)2〉+

1

2
〈(X0Γg)

2〉]}.

�

Proposition 11.2.

D̃(β) ≤ γ

4
〈V ′′(r0)〉+

3

4γ
.

Proof. Take f = −p20
4
in the variational formula (11.1). Even if this function

is not of compact support, this can be justified by approximations. Then
we have

D̃(β) ≤ β2 sup
g∈Lo

{γ
4
〈p20V ′(r0)

2〉+ 2〈{WA
0,1 + A(

p20
4
)}Γg〉 − γ[

1

2
〈(Y0,1Γg)2〉+

1

2
〈(X0Γg)

2〉]}

=
γ

4
〈V ′′(r0)〉+

β2

γ
sup
g∈Lo

{2〈(WA
0,1 + A(

p20
4
))Γg〉 −

1

2
〈(Y0,1Γg)2〉 −

1

2
〈(X0Γg)

2〉}.

Since WA
0,1 = Y0,1(

p20
2
),

sup
g∈Lo

{2(WA
0,1 + A(

p20
4
))Γg〉 −

1

2
〈(Y0,1Γg)2〉 −

1

2
〈(X0Γg)

2〉}

= sup
g∈Lo

{−1

2
〈p20, X0Γg〉 −

1

2
〈p20, Y0,1Γg〉 −

1

2
〈(Y0,1Γg)2〉 −

1

2
〈(X0Γg)

2〉}

= sup
g∈Lo

{−1

2
〈(X0Γg +

p20
2
)2〉 − 1

2
〈(Y0,1Γg +

p20
2
)2〉+ 1

4
〈p40〉} ≤ 1

4
〈p40〉.

�
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Proposition 11.3.

D̃(β) ≥ γ

4β〈r20〉
.

Proof. By the variational formula (11.1)

D̃(β) ≥ γβ2 inf
f∈Le

{[1
2
〈(p0V ′(r1) + Y0,1Γf )

2〉+ 1

2
〈(X0Γf)

2〉]}.

Since 1
β2 = 〈p0V ′(r1), p0r1〉 and 〈p0r0, X0(Γf)〉−〈p0r1, Y0,1(Γf)〉 = 〈V ′(r0)r0−

V ′(r1)r1,Γf〉 = 0 for any f ∈ Le, we have

1

β2
= 〈p0V ′(r1)− Y0,1(Γf ), p0r1〉+ 〈p0r0, X0(Γf)〉

for any f ∈ L0. Then, by Schwarz inequality,

1

β4
≤ inf

f∈L0

〈(p0V ′(r1)− Y0,1(Γf))
2 + (X0(Γf))

2〉〈(p0r1)2 + (p0r0)
2〉

=
2

β
〈r20〉 inf

f∈L0

〈(p0V ′(r1)− Y0,1(Γf))
2 + (X0(Γf))

2〉.

�

Remark 11.1. For the harmonic case with V (r) = r2

2
, we have an explicit

fluctuation-dissipation given by

WA
0,1 +W S

0,1 = −p0r1 +
γ

2
(p20 − r21)

= −∇
[(

1

6γ
+
γ

4

)
p20 +

1

2
r0r1

]
+ L

(
1

6γ
(p0 + p1)r1 +

r21
4

)

(11.2)

i.e. diffusion coefficient is given by D̃(β) = D(β) = γ
4
+ 1

6γ
which does not

depend on β.

12. Spectral gap

In this section, we prove the spectral gap estimates for the process of
finite oscillators without the periodic boundary condition, which is used in
the proof of Theorem 3 in Section 9. We use the following notation:

EνL,E [ · ] := EνL
β
[ · | 1

L

L∑

i=1

(
p2i
2

+ V (ri)) = E].

Recall that we assume that 0 < δ− ≤ V ′′(r) ≤ δ+ < ∞. Then it is easy to
see that V satisfies

0 < d− ≤
∣∣∣
√

2V (r)

V ′(r)

∣∣∣ ≤ d+ <∞
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for all r ∈ R\{0} where d− =

√
δ−

δ+
and d+ =

√
δ+

δ−
. Under these assumptions,

we can operate the change of variables (p, r) → (E , θ) as
√
E cos θ = p√

2
and√

E sin θ = sgn(r)
√
V (r), and we obtain that

∫

R2

f(p, r)dν1β =
1√

2πβ−1Zβ

∫ ∞

0

∫ 2π

0

f̃(E , θ)e−βEq(E , θ)dEdθ

where q(E , θ) = |
√

2V (r(E,θ))
V ′(r(E,θ)) |, which satisfies d− ≤ q(E , θ) ≤ d+ for all E and

θ. Here, f̃(E , θ) := f(p(E , θ), r(E , θ)).
Let hβ(x)dx be the probability distribution on R+ of p2/2 + V (r) under

dν1β, i.e. ∫

R2

g(p2/2 + V (r))dν1β =

∫ ∞

0

g(x)hβ(x)dx

for any g : R+ → R. Then, since hβ(x) = 1√
2πβ−1Zβ

∫ 2π

0
e−βxq(x, θ)dθ, we

obtain
δ−
δ+
βe−βx ≤ hβ(x) ≤

δ+
δ−
βe−βx

for all x > 0.
With these notations, we prepare two lemmas before we state the main

result of this section.

Lemma 12.1. There exists a positive constant C such that

Eν1,E [(f −Eν1,E [f ])
2] ≤ CEν1,E [(X1f)

2]

for every E > 0, and every smooth function f .

Proof. By simple computations with the change of variable,

Eν1,E [(f − Eν1,E [f ])
2] =

∫ 2π

0
(f̃(E, θ)− Eν1,E [f ])

2q(E, θ)dθ
∫ 2π

0
q(E, θ)dθ

and

Eν1,E [(X1f)
2] =

∫ 2π

0
{q(E, θ)−1∂θf̃(E, θ)}2q(E, θ)dθ∫ 2π

0
q(E, θ)dθ

.

Therefore, it sufficient to show that there exists a positive constant C such
that∫ 2π

0

(f̃(E, θ)−Eν1,E [f ])
2q(E, θ)dθ ≤ C

∫ 2π

0

(∂θf̃(E, θ))
2q(E, θ)−1dθ

for every E > 0 and every smooth function f . Then, since d− ≤ q(E, θ) ≤
d+ for all E > 0 and θ, and
∫ 2π

0

(f̃(E, θ)−Eν1,E [f ])2q(E, θ)dθ ≤
∫ 2π

0

(
f̃(E, θ)−(

∫ 2π

0

f̃(E, θ)dθ)
)2
q(E, θ)dθ

holds for every E > 0 and every smooth function f , the desired inequality
follows from the Poincaré inequality. �
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Lemma 12.2. There exist positive constants 0 < c ≤ C <∞ such that

c E ≤ αi(E) ≤ CE

for all E > 0 and for i = 1, 2 where α1(E) := Eν1,E [p
2
1] and α2(E) :=

Eν1,E [V
′2(r1)].

Proof. By the change of variables introduced above,

Eν1,E [p
2
1] =

∫ 2π

0
2E cos θ2q(E, θ)dθ
∫ 2π

0
q(E, θ)dθ

and it is easy to show that d−
d+
E ≤ Eν1,E [p

2
1] ≤ 2E. Similarly,

Eν1,E [V
′2(r1)] ≤

2

d2−
Eν1,E [V (r1)] =

2
∫ 2π

0
E sin θ2q(E, θ)dθ

d2−
∫ 2π

0
q(E, θ)dθ

≤ 2E

d2−

and

Eν1,E [V
′2(r1)] ≥

2

d2+
Eν1,E [V (r1)] =

2
∫ 2π

0
E sin θ2q(E, θ)dθ

d2+
∫ 2π

0
q(E, θ)dθ

≥ d−E

d3+
.

�

The following is the main theorem in this section.

Theorem 4. There exists a positive constant C such that

EνL,E [f
2] ≤ C

L∑

k=1

EνL,E [(Xkf)
2] + CL2

L−1∑

k=1

EνL,E [(Yk,k+1f)
2] (12.1)

for every positive integer L, every E > 0, and every smooth function f
satisfying EνL,E [f ] = 0.

Proof. We start the proof by the usual martingale decomposition. Let
Gk be the σ-field generated by variables {E1, . . . , Ek, pk+1, rk+1, . . . , pL, rL}.
Define fk := EνL,E [f |Gk] for k = 0, 1, · · · , L. Note that f0 = f and
fL = fL(E1, . . . , EL). Then, we obtain

EνL,E [f
2] =

L−1∑

k=0

EνL,E [(fk − fk+1)
2] + EνL,E [f

2
L].

We analyze each term separately.
By Lemma 12.1, for any k

EνL,E [(fk − fk+1)
2|Gk] ≤ CEνL,E [(Xk+1fk)

2|Gk]
and therefore we have

EνL,E [f
2] ≤ C

L∑

k=1

EνL,E [(Xkfk−1)
2] + EνL,E [f

2
L]

≤ C

L∑

k=1

EνL,E [(Xkf)
2] + EνL,E [f

2
L].
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So we are left to estimate EνL,E [f
2
L] in terms of the Dirichlet form∑L−1

k=1 EνL,E [(Yk,k+1fL)
2].

Observe that Yk,k+1fL = pkV
′(rk+1)

(
∂Ek − ∂Ek+1

)
fL(E1, . . . , EL). Since

νL,E is the conditional probability of the product measure νLβ ,

EνL,E [p
2
kV

′(rk+1)
2|GL] = Eν1,Ek [p

2]Eν1,Ek+1
[V ′2(r)] = α1(Ek)α2(Ek+1).

By Lemma 12.2, the Dirichlet form
∑L−1

k=1 EνL,E [(Yk,k+1fL)
2], is equivalent

to
L−1∑

k=1

EνL,E

[
EkEk+1

{(
∂Ek − ∂Ek+1

)
fL
}2]

.

Now the problem is reduced to the estimates of the spectral gap for the
energy dynamics depending only on variables E1, . . . , EL. Since we can write
the probability distribution νL,E(·|GL) on {(E1, . . . , EL) :

∑
i Ei = LE} as the

product measure
∏L

i=1 h1(xi)dxi (or
∏L

i=1 hβ(xi)dxi for any β) conditioned
on the same surface, Theorem 5 in the next subsection completes the proof.

�

12.1. Spectral gap for the energy dynamics. Consider the product
measure

∏L
i=1 h1(xi)dxi on RL

+ and dµL,E the conditional distribution of it

on the surface ΣL,E = {∑L
i=1 xi = LE}. We have the following expression

dµL,E =
L∏

i=1

h(xi)dλL,E(x1, . . . , xL)

where dλL,E is the uniform measure on the surface ΣL,E.

Theorem 5. There exists a positive constant C such that

EµL,E [g
2] ≤ CL2

L−1∑

i=1

EµL,E

[
xixi+1

(
∂xig − ∂xi+1

g
)2]

for every positive integer L, every E > 0 and every smooth function g :
ΣL,E → R satisfying EµL,E [g] = 0.

To prove this, we first refer Caputo’s result (Example 3.1 in [6]) and recall
that δ−/δ+e−x ≤ h1(x) ≤ δ+/δ−e−x. Let Ei,j and Di,j be operators defined
by Ei,jf = EµL,E [f |Fi,j] and Di,jf = Ei,jf − f where Fi,j is the σ-algebra
generated by variables {xk}k 6=i,j.
Lemma 12.3 (Caputo, [6]). If δ−/δ+ > (3/4)1/16, then there exists a posi-
tive constant C such that

EµL,E [g
2] ≤ C

L

L∑

i,j=1

EµL,E [(Di,jg)
2]

for every E > 0, every positive integer L and every smooth function g :
ΣL,E → R satisfying EµL,E [g] = 0.
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Next, we show that we can take a telescopic sum.

Lemma 12.4. There exists a positive constant C such that

1

L

L∑

i,j=1

EµL,E [(Di,jg)
2] ≤ CL2

L−1∑

i=1

EµL,E [(Di,i+1g)
2]

for every E > 0, every positive integer L and every smooth function g :
ΣL,E → R.

Proof. First, we rewrite the term Ei,jg in an integral form:

Ei,jg(x) =
1

Ξxi+xj

∫ 1

0

g(Rt
i,jx)h((xi + xj)t)h((xi + xj)(1− t))dt

where Ξa =
∫ 1

0
h(at)h(a(1− t))dt and Rt

i,jx ∈ RL
+ is a configuration defined

by

(Rt
i,jx)k =





xk if k 6= i, j,

(xi + xj)t if k = i,

(xi + xj)(1− t) if k = j.

Then, by Schwarz’s inequality we have

(Di,jg(x))
2 = (

1

Ξxi+xj

∫ 1

0

{g(Rt
i,jx)− g(x)}h((xi + xj)t)h((xi + xj)(1− t))dt)2

≤ 1

Ξxi+xj

∫ 1

0

{g(Rt
i,jx)− g(x)}2h((xi + xj)t)h((xi + xj)(1− t))dt.

Now, we introduce operators πi,j, σi,j and σ̃i,j : RL
+ → RL

+ for i < j as

(πi,jx)k =





xk if k 6= i, j,

xj if k = i,

xi if k = j,

σi,j := πj−1,j ◦πj−2,j−1 · · ·◦πi,i+1 and σ̃i,j := πi,i+1◦πi+1,i+2 · · ·◦πj−1,j. With
these notations, for any i < j, we can rewrite the term g(Rt

i,jx)− g(x) as

g(Rt
i,jx)− g(x) = {g(σ̃i,j−1(Rt

j−1,j(σ
i,j−1x)))− g(Rt

j−1,j(σ
i,j−1x))}

+ {g(Rt
j−1,j(σ

i,j−1x))− g(σi,j−1x)} + {g(σi,j−1x)− g(x)}.
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Therefore, we can bound the term EµL,E [(Di,jg(x))
2] from above by

3EµL,E [
1

Ξxi+xj

∫ 1

0

{g(σ̃i,j−1(Rt
j−1,j(σ

i,j−1x)))− g(Rt
j−1,j(σ

i,j−1x))}2

h((xi + xj)t)h((xi + xj)(1− t))dt]

+3EµL,E [
1

Ξxi+xj

∫ 1

0

{g(Rt
j−1,j(σ

i,j−1x))− g(σi,j−1x)}2

h((xi + xj)t)h((xi + xj)(1− t))dt]

+3EµL,E [
1

Ξxi+xj

∫ 1

0

{g(σi,j−1x)− g(x)}2h((xi + xj)t)h((xi + xj)(1− t))dt].

(12.2)

We estimate three terms separately. The last term of equation (12.2) is
equal to

3EµL,E [{g(σi,j−1x)− g(x)}2]
and therefore bounded form above by

3L

j−2∑

k=i

EµL,E [{g(πk,k+1x)− g(x)}2].

By simple computations, we obtain that

EµL,E [{g(πk,k+1x)− g(x)}2]
= EµL,E [{g(πk,k+1x)− (Ek.k+1g)(π

k,k+1x) + (Ek.k+1g)(x)− g(x)}2]
≤ 2EµL,E [{g(πk,k+1x)− (Ek.k+1g)(π

k,k+1x)}2] + 2EµL,E [{(Ek.k+1g)(x)− g(x)}2]
= 4EµL,E [(Dk.k+1g)

2].

By the change of variable with y = σi,j−1x, we can rewrite the second term
of equation (12.2) as

3EµL,E [
1

Ξyj−1+yj

∫ 1

0

{g(Rt
j−1,jy)− g(y)}2h((yj−1 + yj)t)h((yj−1 + yj)(1− t))dt]

= 3EµL,E [Ej,j+1(g
2)− 2gEj.j+1g + g2]

= 6EµL,E [g
2 − (Ej.j+1g)

2] = 6EµL,E [(Dj,j+1g)
2].

Similarly, the first term of equation (12.2) is rewritten as

3EµL,E [
1

Ξyj−1+yj

∫ 1

0

{g(σ̃i,j−1(Rt
j−1,jy))− g(Rt

j−1,jy)}2

h((yj−1 + yj)t)h((yj−1 + yj)(1− t))dt]

= 3EµL,E [Ej,j+1({g ◦ σ̃i,j−1 − g}2)] = 3EµL,E [{g ◦ σ̃i,j−1 − g}2].
As same for the first term of (12.2), it is bounded from above by

12L
∑j−2

k=i EµL,E [(Dk,k+1g)
2]. Therefore, we complete the proof. �
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Lemma 12.5. There exists a constant C such that

Eµ2,E [(D1,2g)
2] ≤ CEµ2,E [x1x2(∂x1g − ∂x2g)

2]. (12.3)

for every E > 0 and every smooth function g : Σ2,E → R.

Proof. Since the both sides of (12.3) do not change if we replace g with g+a
for any constant a, it is sufficient to show that the inequality holds for every
smooth function g : Σ2,E → R satisfying Eλ2,E [g] = 0. In particular, since
Eµ2,E [(D1,2g)

2] ≤ Eµ2,E [g
2], it is sufficient to show that

Eµ2,E [g
2] ≤ CEµ2,E [x1x2(∂x1g − ∂x2g)

2].

Note that for any positive function f : Σ2,E → R+ and for any E > 0,

(
δ−
δ+

)4Eµ2,E [f ] ≤ Eλ2,E [f ] ≤ (
δ+
δ−

)4Eµ2,E [f ].

In fact,

Eµ2,E [f ] =
1

ΞE

∫ 1

0

f(tE, (1− t)E)h(tE)h((1− t)E)dt

where ΞE =
∫ 1

0
h(tE)h((1− t)E)dt. Then, since δ−

δ+
≤ h(x) ≤ δ+

δ−
, the above

estimate holds. Now, all we have to show is that, there exists a constant C
such that

Eλ2,E [g
2] ≤ CEλ2,E [x1x2(∂x1g − ∂x2g)

2] (12.4)

for every E > 0 and every smooth function g : Σ2,E → R satisfying
Eλ2,E [g] = 0. By the definition of λ2,E , the inequality (12.4) is rewritten
as ∫ E

0

g(t)2dt ≤ C

∫ E

0

t(E − t)g′(t)2dt

and by a suitable change of variable, the problem is reduced to the case with
E = 1. Applying Schwarz inequality and changing the order of integration
repeatedly, we have
∫ 1

0

g(t)2dt =

∫ 1

0

∫ t

0

{
∫ t

s

g′(r)dr}2dsdt ≤
∫ 1

0

∫ t

0

(t− s)

∫ t

s

g′(r)2drdsdt

=

∫ 1

0

∫ t

0

(tr − r2

2
)g′(r)2drdt =

1

2

∫ 1

0

g′(r)2r(1− r)dr.

�

Lemma 12.6. There exists a positive constant C such that

EµL,E [(Di,i+1g)
2] ≤ CEµL,E [xixi+1(∂xig − ∂xi+1

g)2]

for every positive integer L, i = 1, . . . , L − 1, and every smooth function
g : ΣL,E → R.

Proof. By Lemma 12.5,

EµL,E [(Di,i+1g)
2|Fi,i+1] ≤ CEµL,E [xixi+1(∂xig − ∂xi+1

g)2|Fi,i+1]

holds. Then, by taking the expectation, we complete the proof. �
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13. Lie Algebra

We prove here that Lie{Xi, Yi,i+1, i = 1, . . . , N} generates the all tangent
space of ΣN,E .

We have

[Xj+1, Yj,j+1] = V ′′(rj+1)Zj,j+1

where

Zi,j = pi∂pj − pj∂pi

Since [Zj,j+1, Zj+1,j+2] = Zj,j+2 and V ′′(r) > δ > 0, we have that Zi,j ∈
Lie{Xi, Yi,i+1, i = 1, . . . , N} for any i and j.

On the other hand [Zj,i, Xj] = Yi,j, and we have enough vector fields to
generate the all tangent space.

Remark 13.1. By the above argument, it is obvious that Lie{{Xi, i =
1, . . . , N}{Yi,i+1, i = 1, . . . , N − 1}} also generates the all tangent space
of ΣN,E.
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