Paul Gassiat 
  
Idris Kharroubi 
  
Huyên Pham 
  
  
Time discretization and quantization methods for optimal multiple switching problem

Keywords: Optimal switching, quantization of random variables, discrete-time approximation, Markov chains, numerical probability MSC Classification: 65C20, 65N50, 93E20

. A priori L p -error estimates are stated in terms of quantization errors. Finally, some numerical tests are performed for an optimal switching problem with two regimes.

Introduction

On some filtered probability space (Ω, F, F = (F t ) t≥0 , P), let us introduce the controlled regime-switching diffusion in R d governed by dX t = b(X t , α t )dt + σ(X t , α t )dW t , where W is a standard d-dimensional Brownian motion, α = (τ n , ι n ) n ∈ A is the switching control represented by a nondecreasing sequence of stopping times (τ n ) together with a sequence (ι n ) of F τn -measurable random variables valued in a finite set {1, . . . , q}, and α t is the current regime process, i.e. α t = ι n for τ n ≤ t < τ n+1 . We then consider the optimal switching problem over a finite horizon:

V 0 = sup α∈A E T 0 f (X t , α t )dt + g(X T , α T ) - τn≤T c(X τn , ι n-1 , ι n ) .
(1.1)

Optimal switching problems can be seen as sequential optimal stopping problems belonging to the class of impulse control problems, and arise in many applied fields, for example in real option pricing in economics and finance. It has attracted a lot of interest during the past decades, and we refer to Chapter 5 in the book [START_REF] Pham | Continuous time stochastic control and optimization with financial applications[END_REF] and the references therein for a survey of some applications and results in this topic. It is well-known that optimal switching problems are related via the dynamic programming approach to a system of variational inequalities with inter-connected obstacles in the form:

min - ∂v i ∂t -b(x, i).D x v i - 1 2 tr(σ(x, i)σ(x, i) ′ D 2 x v i ) -f (x, i) , (1.2) 
v i -max j =i (v j -c(x, i, j)) = 0 on [0, T ) × R d ,
together with the terminal condition v i (T, x) = g(x, i), for any i = 1, . . . , q. Here v i (t, x) is the value function to the optimal switching problem starting at time t ∈ [0, T ] from the state X t = x ∈ R d and the regime α t = i ∈ {1, . . . , q}, and the solution to the system (1.2) has to be understood in the weak sense, e.g. viscosity sense. The purpose of this paper is to solve numerically the optimal switching problem (1.1), and consequently the system of variational inequalities (1.2). These equations can be solved by analytical methods (finite differences, finite elements, etc ...), see e.g. [START_REF] Maroso | Analyse numérique de problèmes de contrôle stochastique[END_REF], but are known to require heavy computations, especially in high dimension. Alternatively, when the state process is uncontrolled, i.e. regime-independent, optimal switching problems are connected to multi-dimensional reflected Backward Stochastic Differential Equations (BSDEs) with oblique reflections, as shown in [START_REF] Hamadène | Switching problem and related system of reflected BSDEs[END_REF] and [START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF], and the recent paper [START_REF] Chassagneux | Discrete-time approximation of multidimensional BSDEs with oblique reflections[END_REF] introduced a discretely obliquely reflected numerical scheme to solve such BSDEs. From a computational viewpoint, there are rather few papers dealing with numerical experiments for optimal switching problems. The special case of two regimes for switching problems can be reduced to the resolution of a single BSDE with two reflecting barriers when considering the difference value process, and is exploited numerically in [START_REF] Hamadène | On the starting and stopping problem: application in reversible investments[END_REF]. We mention also the paper [START_REF] Carmona | Pricing asset scheduling flexibility using optimal switching[END_REF], which solves an optimal switching problem with three regimes by considering a cascade of reflected BSDEs with one reflecting barrier derived from an iteration on the number of switches.

We propose probabilistic numerical methods based on dynamic programming and optimal quantization methods combined with a suitable time discretization procedure for computing the solution to optimal multiple switching problem. Quantization methods were introduced in [START_REF] Bally | A quantization algorithm for solving discrete time multidimensional optimal stopping problems[END_REF] for solving variational inequality with given obstacle associated to optimal stopping problem of some diffusion process (X t ). The basic idea is the following. One first approximates the (continuous-time) optimal stopping problem by the Snell envelope for the Markov chain ( Xt k ) defined as the Euler scheme of the (uncontrolled) diffusion X, and then spatially discretize each random vector Xt k by a random vector taking finite values through a quantization procedure. More precisely, ( Xt k ) k is approximated by ( Xk ) k where Xk is the projection of Xt k on a finite grid in the state space following the closest neighbor rule. The induced L p -quantization error, Xt k -Xk p , depends only on the distribution of Xt k and the grid, which may be chosen in order to minimize the quantization error. Such an optimal choice, called optimal quantization, is achieved by the competitive learning vector quantization algorithm (or Kohonen algorithm) developed in full details in [START_REF] Bally | A quantization algorithm for solving discrete time multidimensional optimal stopping problems[END_REF]. One finally computes the approximation of the optimal stopping problem by a quantization tree algorithm, which mimics the backward dynamic programming of the Snell envelope. In this paper, we develop quantization methods to our general framework of optimal switching problem. With respect to standard optimal stopping problems, some new features arise on one hand from the regime-dependent state process, and on the other hand from the multiple switching times, and the discrete sum for the cumulated switching costs.

We first study a time discretization of the optimal switching problem by considering an Euler-type scheme with step h = T /m for the regime-dependent state process (X t ) controlled by the switching strategy α:

Xt k+1 = Xt k + b( Xt k , α t k )h + σ( Xt k , α t k )
√ h ϑ k+1 , t k = kh, k = 0, . . . , m, (1.3) where ϑ k , k = 1, . . . , m, are iid, and N (0, I d )-distributed. We then introduce the optimal switching problem for the discrete-time process ( Xt k ) controlled by switching strategies with stopping times valued in the discrete time grid {t k , k = 0, . . . , m}. The convergence of this discrete-time problem is analyzed, and we prove that the error is in general of order h 1 2 -ε , and this estimate holds true with ε = 0, as for optimal stopping problems, when the switching costs c(i, j) do not depend on the state process. Arguments of the proof rely on a regularity result of the controlled diffusion with respect to the switching strategy, and moment estimates on the number of switches. This extends the convergence rate result in [START_REF] Chassagneux | Discrete-time approximation of multidimensional BSDEs with oblique reflections[END_REF] derived in the case where X is regime-independent.

Next, we propose approximation schemes by quantization for computing explicitly the solution to the discrete-time optimal switching problem. Since the controlled Markov chain ( Xt k ) k cannot be directly quantized as in standard optimal stopping problems, we adopt a Markovian quantization approach in the spirit of [START_REF] Pagès | Optimal quantization methods and applications to numerical problems in finance[END_REF], by considering an optimal quantization of the Gaussian random vector ϑ k+1 arising in the Euler scheme (1.3). A quantization tree algorithm is then designed for computing the approximating value function, and we provide error estimates in terms of the quantization errors ϑ k -θk p and state space grid parameters. Alternatively, in the case of regime-independent state process, we propose a quantization algorithm in the vein of [START_REF] Bally | A quantization algorithm for solving discrete time multidimensional optimal stopping problems[END_REF] based on marginal quantization of the uncontrolled Markov chain ( Xt k ) k . A priori L p -error estimates are also established in terms of quantization errors Xt k -Xk p . Finally, some numerical tests on the two quantization algorithms are performed for an optimal switching problem with two regimes.

The plan of this paper is organized as follows. Section 2 formulates the optimal switching problem and sets the standing assumptions. We also show some preliminary results about moment estimates on the number of switches. We describe in Section 3 the time discretization procedure, and study the rate of convergence of the discrete-time approximation for the optimal switching problem. Section 4 is devoted to the approximation schemes by quantization for the explicit computation of the value function to the discrete-time optimal switching problem, and to the error analysis. Finally, we illustrate our results with some numerical tests in Section 5.

Optimal switching problem 2.1 Formulation and assumptions

We formulate the finite horizon multiple switching problem. Let us fix a finite time T ∈ (0, ∞), and some filtered probability space (Ω, F, F = (F t ) t≥0 , P) satisfying the usual conditions. Let I q = {1, . . . , q} be the set of all possible regimes (or activity modes). A switching control is a double sequence α = (τ n , ι n ) n≥0 , where (τ n ) is a nondecreasing sequence of stopping times, and ι n are F τn -measurable random variables valued in I q . The switching control α = (τ n , ι n ) is said to be admissible, and denoted by α ∈ A, if there exists an integer-valued random variable N with τ N > T a.s. Given α = (τ n , ι n ) n≥0 ∈ A, we may then associate the indicator of the regime value defined at any time t ∈ [0, T ] by

I t = ι 0 1 {0≤t<τ 0 } + n≥0 ι n 1 {τn≤t<τ n+1 } ,
which we shall sometimes identify with the switching control α, and we introduce N (α) the (random) number of switches before T :

N (α) = # n ≥ 1 : τ n ≤ T .
For α ∈ A, we consider the controlled regime-switching diffusion process valued in R d , governed by the dynamics

dX s = b(X s , I s )ds + σ(X s , I s )dW s , X 0 = x 0 ∈ R d , (2.1) 
where W is a standard d-dimensional Brownian motion on (Ω, F, F = (F t ) 0≤t≤T , P). We shall assume that the coefficients b i = b(., i): R d → R d , and σ i (.) = σ(., i) : R d → R d×d , i ∈ I q , satisfy the usual Lipschitz conditions. We are given a running reward, terminal gain functions f, g : R d × I q → R, and a cost function c : R d × I q × I q → R, and we set f i (.) = f (., i), g i (.) = g(., i), c ij (.) = c(., i, j), i, j ∈ I q . We shall assume the Lipschitz condition:

(Hl) The coefficients f i , g i and c ij , i, j ∈ I q are Lipschitz continuous on R d .

We also make the natural triangular condition on the functions c ij representing the instantaneous cost for switching from regime i to j:

(Hc) c ii (.) = 0, i ∈ I q , inf x∈R d c ij (x) > 0, for i, j ∈ I q , j = i, inf x∈R d c ij (x) + c jk (x) -c ik (x)] > 0, for i, j, k ∈ I q , j = i, k.
The triangular condition on the switching costs c ij in (Hc) means that when one changes from regime i to some regime j, then it is not optimal to switch again immediately to another regime, since it would induce a higher total cost, and so one should stay for a while in the regime j.

The expected total profit over [0, T ] for running the system with the admissible switching control α = (τ n , ι n ) ∈ A is given by:

J 0 (α) = E T 0 f (X t , I t )dt + g(X T , I T ) - N (α) n=1 c(X τn , ι n-1 , ι n ) .
The maximal profit is then defined by

V 0 = sup α∈A J 0 (α).
(

The dynamic version of this optimal switching problem is formulated as follows. For (t, i) ∈ [0, T ] × I q , we denote by A t,i the set of admissible switching controls α = (τ n , ι n ) starting from i at time t, i.e. τ 0 = t, ι 0 = i. Given α ∈ A t,i , and x ∈ R d , and under the Lipschitz conditions on b, σ, there exists a unique strong solution to (2.1) starting from x at time t, and denoted by {X t,x,α s , t ≤ s ≤ T }. It is then given by

X t,x,α s = x + τn≤s τ n+1 ∧s τn b ιn (X t,x,α u )du + τ n+1 ∧s τn σ ιn (X t,x,α u )dW u , t ≤ s ≤ T.(2.
3)

The value function of the optimal switching problem is defined by

v i (t, x) = sup α∈A t,i E T t f (X t,x,α s , I s )ds + g(X t,x,α T , I T ) - N (α) n=1 c(X t,x,α τn , ι n-1 , ι n ) ,(2.4) for any (t, x, i) ∈ [0, T ] × R d × I q , so that V 0 = max i∈Iq v i (0, x 0 ).
For simplicity, we shall also make the assumption

g i (x) ≥ max j∈Iq [g j (x) -c ij (x)], ∀(x, i) ∈ R d × I q . (2.5)
This means that any switching decision at horizon T induces a terminal profit, which is smaller than a no-decision at this time, and is thus suboptimal. Therefore, the terminal condition for the value function is given by:

v i (T, x) = g i (x), (x, i) ∈ R d × I q .
Otherwise, it is given in general by v i (T, x) = max j∈Iq [g j (x)c ij (x)]. 

Notations

Preliminaries

We first show that one can restrict the optimal switching problem to controls α with bounded moments of N (α). More precisely, let us associate to a strategy α ∈ A t,i , the cumulated cost process C t,x,α defined by

C t,x,α u = n≥1 c(X t,x,α τn , ι n-1 , ι n )1 τn≤u , t ≤ u ≤ T.
We then consider for x ∈ R d and a positive sequence K = (K p ) p∈N the subset A K t,i (x) of A t,i defined by

A K t,i (x) = α ∈ A t,i : E C t,x,α T p ≤ K p (1 + |x| p ), ∀p ≥ 1 .
In the sequel, we shall assume that for each (t, x, i) ∈ [0, T ] × R d × I q , the optimal switching problem v i (t, x) admits an optimal strategy α * satisfying E |C t,x,α * T | 2 < ∞. The existence of an optimal strategy α * with E|C t,x,α * T | 2 < ∞ is a wide assumption that is valid under (Hl) and (Hg) in the case where the diffusion X is not controlled i.e. the functions b and σ do not depend on the variable i and the function c does not depend on the variable x, as shown in Theorem 3.1 of [START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF]. Proposition 2.1 Assume that (Hl) and (Hc) holds. Then there exists a positive sequence K = ( Kp ) p such that

v i (t, x) = sup α∈A K t,i (x) E T t f (X t,x,α s , I s )ds + g(X t,x,α T , I T ) - N (α) n=1 c(X t,x,α τn , ι n-1 , ι n ) (2.6) for any (t, x, i) ∈ [0, T ] × R d × I q .
Remark 2.1 Under the uniformly strict positive condition on the switching costs in (Hc), there exists some positive constant η > 0 s.t. N (α) ≤ ηC t,x,α T for any (t, x, i) ∈ [0, T ]×R d ×I q , α ∈ A t,i . Thus, for any α ∈ A K t,i (x), we have

E N (α) p ≤ ηK p (1 + |x| p ),
which means that in the value functions v i (t, x) of optimal switching problems, one can restrict to controls α for which the moments of N (α) are bounded by a constant depending on x.

Before proving Proposition 2.1, we need the following Lemmata.

Lemma 2.1 For all p ≥ 1, there exists a positive constant K p such that

sup α∈A t,i sup s∈[t,T ] X t,x,α s p ≤ K p (1 + |x|) , for all (t, x, i) ∈ [0, T ] × R d × I q .
Proof. Fix p ≥ 1. Then, we have from the definition of X t,x,α s in(2.3), for (t, 

x, i) ∈ [0, T ] × R d × I q , α ∈ A t,i : E sup s∈[t,r] X t,
|v i (t, x)| ≤ K 1 + |x| , for all (t, x, i) ∈ [0, T ] × R d × I q .
Proof. Under the linear growth condition on f i , g i in (Hl), and the nonnegativity of the switching costs in (Hc), there exists some positive constant K s.t.

E T t f (X t,x,α s , I s )ds + g(X t,x,α T , I T ) - N (α) n=1 c(X t,x,α τn , ι n-1 , ι n ) ≤ K 1 + E sup u∈[0,T ] X t,x,α u , for all (t, x, i) ∈ [0, T ] × R d × I q , α ∈ A t , i.
By combining with the estimate in Lemma 2.1, this shows that

v i (t, x) ≤ K(1 + |x|) .
Moreover, by considering the strategy α 0 with no intervention i.e. N (α 0 ) = 0, we have

v i (t, x) ≥ E T t f (X t,x,α 0 s , i)ds + g(X t,x,α 0 T , i) ≥ -K 1 + E sup u∈[0,T ] X t,x,α u .
Again, by the estimate in Lemma 2.1, this proves that

v i (t, x) ≥ -K(1 + |x|) ,
and therefore the required linear growth condition on v i . 2

We now turn to the proof of the Proposition.

Proof of Proposition 2.1.

Fix (t, x, i) ∈ [0, T ] × R d × I q . Denote by α * = (τ * n , ζ * n ) n≥0 an optimal strategy associated to v i (t, x): v i (t, x) = E T t f (X t,x,α * s , I * s )ds + g(X t,x,α * T , I * T ) - N (α * ) n=1 c(X t,x,α * τn , ι * n-1 , ι * n ) . (2.7)
where I * is the indicator regime associated to α * . Consider the process (Y t,x,α * , Z t,x,α * ) solution to the following Backward Stochastic Differential Equation (BSDE)

Y t,x,α * u = g(X t,x,α * T , I * T ) + T u f (X t,x,α * s , I * s )ds (2.8) - T u Z t,x,α * s dW s -C t,x,α * T + C t,x,α * u , t ≤ u ≤ T
and satisfying the condition

E sup s∈[t,T ] |Y t,x,α * s | 2 + E T t |Z t,x,α * s | 2 ds < ∞.
Such a solution exists under (Hl), Lemma 2.1 and

E |C t,x,α * T | 2 < ∞.
Moreover, by taking expectation in (2.8) and from the dynamic programming principle for the value function in (2.7), we have

Y t,x,α * u = v I * u u, X t,x,α * u , t ≤ u ≤ T.
From Lemma 2.1 and 2.2, there exists for each p ≥ 1 a constant K p such that

E sup u∈[t,T ] |Y t,x,α * u | p ≤ K p 1 + |x| p . (2.9) 
We now prove that there exists a sequence K = ( Kp ) p which does not depend on (t, x, i) such that

E |C t,x,α * T | p ≤ Kp (1 + |x| p ) . (2.10) Applying Itô's formula to |Y t,x,α * | 2 in (2.8), we have |Y t,x,α * t | 2 + T t |Z t,x,α * s | 2 ds = |g(X t,x,α * T , I * T )| 2 + 2 T t Y t,x,α * s f (X t,x,α * s , I * s )ds -2 T t Y t,x,α * s Z t,x,α * s dW s -2 T t Y t,x,α * s dC t,x,α * s .
Using (Hl) and the inequality 2ab ≤ a 2 + b 2 for a, b ∈ R, we get

T t |Z t,x,α * s | 2 ds ≤ K 1 + sup s∈[t,T ] |X t,x,α * s | 2 + sup s∈[t,T ] |Y t,x,α * s | 2 + |C t,x,α * T -C t,x,α * t | sup s∈[t,T ] |Y t,x,α * s | -2 T t Y t,x,α * s Z t,x,α * s dW s . (2.11)
Moreover, from (2.8), we have

|C t,x,α * T -C t,x,α * t | 2 ≤ K 1 + sup s∈[t,T ] |X t,x,α * s | 2 + sup s∈[t,T ] |Y t,x,α * s | 2 + T t Z t,x,α * s dW s 2 (2.12)
Combining (2.11) and (2.12) and using the inequality ab

≤ a 2 2ε + εb 2 2 , for a, b ∈ R and ε > 0, we obtain T t |Z t,x,α * s | 2 ds ≤ K (1 + ε) 1 + sup s∈[t,T ] |X t,x,α * s | 2 + sup s∈[t,T ] |Y t,x,α * s | 2 ε + 1 ε + ε T t Z t,x,α * s dW s 2 -2 T t Y t,x,α * s Z t,x,α * s dW s .
Elevating the previous estimate to the power p/2 and taking expectation, it follows from BDG inequality, Lemma 2.1 and (2.9) that

E T t |Z t,x,α * s | 2 ds p 2 ≤ K p (1 + ε p 2 ) 1 + E sup s∈[t,T ] |X t,x,α * s | p + ε p 2 + 1 ε p 2 E sup s∈[t,T ] |Y t,x,α * s | p + ε p 2 E T t Z t,x,α * s dW s p + E T t Y t,x,α * s Z t,x,α * s dW s p 2 ≤ K p (1 + |x| p ) 1 + ε p 2 + 1 ε p 2 + ε p 2 E T t |Z t,x,α * s | 2 ds p 2 + E T t |Y t,x,α * s Z t,x,α * s | 2 ds p 4
(2.13)

≤ K p (1 + |x| p ) 1 + ε p 2 + 1 ε p 2 + ε p 2 E T t |Z t,x,α * s | 2 ds p 2
, where we used again the inequality ab ≤ a 2 2ε + εb 2 2 for the last term in the r.h.s of (2.13). Taking ε small enough, this yields

E T t |Z t,x,α * s | 2 ds p 2 ≤ K p 1 + |x| p ,
Elevating now inequality (2.12) to the power p/2, and using the previous inequality together with BDG inequality, we get with the estimate of Lemma 2.1 and (2.9):

E|C t,x,α * T -C t,x,α * t | p ≤ Kp (1 + |x| p ), (2.14) 
for some positive constant Kp . Since α * is optimal, and from the triangular condition in (Hc), we know that at the initial time t, there is at most one decision time τ * 1 . Thus, from the linear growth condition on the switching cost,

E[|C t,x,α * t | p ] ≤ Kp (1 + |x| p ), which implies with (2.14) that α * ∈ A K t,i
, and proves the required result. 2

In the sequel of this paper, we shall assume that (Hl) and (Hc) stand in force.

Time discretization

We first consider a time discretization of [0, T ] with time step h = T /m ≤ 1, and partition

T h = {t k = kh, k = 0, . . . , m}. For (t k , i) ∈ T h × I q , we denote by A h t k ,i the set of admissible switching controls α = (τ n , ι n ) n in A t k ,i
, such that τ n are valued in {ℓh, ℓ = k, . . . , m}, and we consider the value functions for the discretized optimal switching problem:

v h i (t k , x) = sup α∈A h t k ,i E m-1 ℓ=k f (X t k ,x,α t ℓ , I t ℓ )h + g(X t k ,x,α tm , I tm ) - N (α) n=1 c(X t k ,x,α τn , ι n-1 , ι n ) , (3.1) 
for (t k , i, x) ∈ T h × I q × R d .
The next result provides an error analysis between the continuous-time optimal switching problem and its discrete-time version. Theorem 3.1 For any ε > 0, there exists a positive constant K ε (not depending on h) such that

|v i (t k , x) -v h i (t k , x)| ≤ K ε (1 + |x|)h 1 2 -ε , for all (t k , x, i) ∈ T h × R d × I q .
Moreover if the cost functions c ij , i, i ∈ I q , do not depend on x, then the previous inequality also holds for ε = 0.

Remark 3.1 For optimal stopping problems, it is known that the approximation by the discrete-time version gives an error of order h 1 2 , see e.g. [START_REF] Lamberton | Brownian optimal stopping and random walks[END_REF] and [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF]. We recover this rate of convergence for multiple switching problems when the switching costs do not depend on the state process. However, in the general case, the error is of order h 1 2 -ε for any ε > 0. Such feature was showed in [START_REF] Chassagneux | Discrete-time approximation of multidimensional BSDEs with oblique reflections[END_REF] in the case of uncontrolled state process X, and is extended here when X may be influenced through its drift and diffusion coefficient by the switching control.

Before proving this Theorem, we need the two following lemmata. The first one deals with the regularity in time of the controlled diffusion uniformly in the control, and the second one deals with the regularity of the controlled diffusion with respect to the control. Lemma 3.1 For any p ≥ 1, there exists a constant K p such that

sup α∈A t k ,i max k≤ℓ≤m-1 sup s∈[t ℓ ,t ℓ+1 ] X t k ,x,α s -X t k ,x,α t ℓ p ≤ K p (1 + |x|)h 1 2 , for all x ∈ R d , i ∈ I q , k = 0, . . . , n.
Proof. Fix p ≥ 1. From the definition of X t,x,α in (2.3), we have for all (t k , x, i) ∈

T h × R d × I q and α ∈ A t k ,i , E sup u∈[t ℓ ,s] X t,x,α u -X t,x,α t ℓ p ≤ K p E s t ℓ |b Iu (X t,x,α u )|du p + E sup u∈[t ℓ ,s] u t ℓ σ Ir (X t,x,α r )dW r p , for all s ∈ [t ℓ , t ℓ+1 ].
From BDG and Jensen inequalities for p ≥ 2, we then have

E sup u∈[t ℓ ,s] X t,x,α u -X t,x,α t ℓ p ≤ K p h p 2 -1 E s t ℓ b Iu (X t,x,α u ) p du + E s t ℓ σ Iu (X t,x,α u ) p du ,
From the linear growth conditions on b i and σ i , for i ∈ I q , and Lemma 2.1, we conclude that the following inequality

E sup s∈[t ℓ ,t ℓ+1 ] X t,x,α s -X t,x,α t ℓ p ≤ K p (1 + |x| p )h p 2 ,
holds for p ≥ 2, and then also for p ≥ 1 by Hölder inequality. 2

For a strategy α = (τ n , ι n ) n ∈ A t k ,i we denote by α = (τ n , ιn ) n the strategy of

A h t k ,i defined by τn = min{t ℓ ∈ T h : t ℓ ≥ τ n } , ιn = ι n , n ∈ N.
The strategy α can be seen as the approximation of the strategy α by an element of A h t k ,i . We then have the following regularity result of the diffusion in the control α. Lemma 3.2 There exists a constant K such that

sup s∈[t k ,T ] X t k ,x,α s -X t k ,x, α s 2 ≤ K E[N (α) 2 ] 1 4 (1 + |x|)h 1 2 , for all x ∈ R d , i ∈ I q , k = 0, . . . , n and α ∈ A t k ,i .
Proof. From the definition of X t,x,α and X t,x, α, for (

t k , x, i) ∈ T h × R d × I q , α ∈ A K t k ,i
, we have by BDG inequality:

E sup u∈[t k ,s] X t,x,α s -X t,x, α s 2 ≤ K E s t k b(X t,x,α u , I u ) -b(X t,x, α u , Ĩu ) 2 du + E s t k σ(X t,x,α u , I u ) -σ(X t,x, α u , Ĩu ) 2 du ,
for all s ∈ [t k , T ]. Then using Lipschitz property of b i and σ i for i ∈ I q we get: 

E sup u∈[t k ,s] X t,x,α s -X t,x, α s 2 ≤ K E s t k X t,x,α u -X t,x, α u 2 du + E s t k b(X t,x,α u , I u ) -b(X t,x,α u , Ĩu ) 2 du + E s t k σ(X t,x,α u , I u ) -σ(X t,x,α u , Ĩu ) 2 du ≤ K E s t k sup r∈[t k ,u] X t,x,α r -X t,x, α r 2 du (3.2) + E sup u∈[t k ,T ] X t,
E sup u∈[t k ,s] X t,x,α u -X t,x, α u 2 ≤ K E s t k sup r∈[t k ,u] X t,x,α r -X t,x, α r 2 du + E[N (α) 2 ] 1 2 (1 + |x| 2 )h , for all s ∈ [t k , T ].
We conclude with Gronwall's Lemma.

2

We are now ready to prove the convergence result for the time discretization of the optimal switching problem.

Proof of Theorem 3.1. We introduce the auxiliary function ṽh i defined by

ṽh i (t k , x) = sup α∈A h t k ,i E T t k f (X t k ,x,α s , I s )ds + g(X t k ,x,α T , I T ) - N (α) n=1 c(X t k ,x,α τn , ι n-1 , ι n ) , for all (t k , x) ∈ T h × R d . We then write |v i (t k , x) -v h i (t k , x)| ≤ |v i (t k , x) -ṽh i (t k , x)| + |ṽ h i (t k , x) -v h i (t k , x)| ,
and study each of the two terms in the right-hand side.

• Let us investigate the first term. By definition of the approximating strategy α = (τ n , ιn ) n ∈ A h t k ,i of α ∈ A t k ,i , we see that the auxiliary value function ṽh i may be written as

ṽh i (t k , x) = sup α∈A t k ,i E T t k f (X t k ,x, α s , Ĩs )ds + g(X t k ,x, α T , ĨT ) - N (α) n=1 c(X t k ,x, α τn , ιn-1 , ιn ) ,
where Ĩ is the indicator of the regime value associated to α. Fix now a positive sequence K = ( Kp ) p s.t. relation (2.6) in Proposition 2.1 holds, and observe that sup

α∈A K t k ,i (x) E T t k f (X t k ,x, α s , Ĩs )ds + g(X t k ,x, α T , ĨT ) - N (α) n=1 c(X t k ,x, α τn , ιn-1 , ιn ) ≤ ṽh i (t k , x) ≤ v i (t k , x) = sup α∈A K t k ,i (x) E T t k f (X t k ,x,α s , I s )ds + g(X t k ,x,α T , I T ) - N (α) n=1 c(X t k ,x,α τn , ι n-1 , ι n ) .
We then have

|v i (t k , x) -ṽh i (t k , x)| ≤ sup α∈A K t k ,i (x) ∆ 1 t k ,x (α) + ∆ 2 t k ,x (α) , (3.3) 
with

∆ 1 t k ,x (α) = E T t k f (X t k ,x,α s , I s ) -f (X t k ,x, α s , Ĩs ) ds + g(X t k ,x,α T , I T ) -g(X t,x, α T , ĨT ) , ∆ 2 t k ,x (α) = E N (α) n=1 c(X t k ,x,α τn , ι n-1 , ι n ) -c(X t k ,x, α τn , ιn-1 , ιn ) .
Under (Hl), and by definition of α, there exists some positive constant K s.t.

∆ 1 t k ,x (α) ≤ K sup s∈[t k ,T ] E X t k ,x,α s -X t k ,x, α s + E sup s∈[t k ,T ] X t k ,x,α s + 1 T t k 1 Is = Ĩs ds . ≤ K sup s∈[t k ,T ] E X t k ,x,α s -X t k ,x, α s (3.4) + 1 + sup s∈[t k ,T ] X t k ,x,α s 2 E T t k 1 Is = Ĩs ds 1 2 ,
by Cauchy-Schwarz inequality. For α ∈ A K t k ,i (x), we have by Remark 2.1

E T t k 1 Is = Ĩs ds ≤ hE N (α) ≤ η K1 (1 + |x|)h,
for some positive constant η > 0. By using this last estimate together with Lemmata 2.1 and 3.2 into (3.4), we obtain the existence of some constant K s.t.

sup

α∈A K t k ,i (x) ∆ 1 t k ,x (α) ≤ K(1 + |x|)h 1 2 , (3.5) for all (t k , x, i) ∈ T h × R d × I q .
We now turn to the term ∆ 2 t,x (α). Under (Hl), and by definition of α, there exists some positive constant K s.t.

∆ 2 t k ,x (α) ≤ KE N (α) n=1 X t k ,x,α τn -X t k ,x, α τn ≤ K E N (α) n=1 X t k ,x,α τn -X t k ,x,α τn + E N (α) sup s∈[t k ,T ] X t k ,x,α s -X t k ,x, α s ≤ K E N (α) n=1 X t k ,x,α τn -X t k ,x,α τn + N (α) 2 sup s∈[t k ,T ] X t k ,x,α s -X t k ,x, α s 2 , (3.6) 
by Cauchy-Schwarz inequality. For α ∈ A K t k ,i (x) with Remark 2.1, and from Lemma 3.2, we get the existence of some positive constant K s.t.

N (α) 2 sup s∈[t k ,T ] X t k ,x,α s -X t k ,x, α s 2 ≤ K(1 + |x|)h 1 2 . (3.7)
On the other hand, for any ε ∈ (0, 1], we have from Hölder inequality applied to expectation and Jensen's inequality applied to the summation:

E N (α) n=1 X t k ,x,α τn -X t k ,x,α τn ≤ E N (α) n=1 X t k ,x,α τn -X t k ,x,α τn 1 ε ε ≤ E |N (α)| 1 ε -1 N (α) n=1 X t k ,x,α τn -X t k ,x,α τn 1 ε ε ≤ 2 n-1 ℓ=k E |N (α)| 1 ε sup s∈[t ℓ ,t ℓ+1 ] X t,x,α s -X t,x,α t ℓ 1 ε ε ≤ 2 h ε N (α)| 2 ε max k≤ℓ≤m-1 sup s∈[t ℓ ,t ℓ+1 ] X t,x,α s -X t,x,α t ℓ 2 ε
by Cauchy-Schwarz inequality. By Lemma 3.1, this yields the existence of some positive constant K ε s.t.

E N (α) n=1 X t k ,x,α τn -X t k ,x,α τn ≤ K ε (1 + |x|)h 1 2 -ε . (3.8) 
By plugging (3.7) and (3.8) into (3.6), we then get

∆ 2 t,x (α) ≤ K ε (1 + |x|)h 1 2 -ε . (3.9)
Combining (3.5) and (3.9), we obtain with (3.3)

|v i (t k , x) -ṽh i (t k , x)| ≤ K ε (1 + |x|)h 1 2 -ε .
In the case where c does not depend on the variable x, we have ∆ 2 t,x (α) = 0, and so by (3.3), (3.5):

|v i (t k , x) -ṽh i (t k , x)| ≤ K(1 + |x|)h 1 2 .
• For the second term, we have by definition of v h i and ṽh i :

|ṽ h i (t k , x) -v h i (t k , x)| ≤ sup α∈A h t k ,i E m-1 ℓ=k t ℓ+1 t ℓ f (X t,x,α s , I s ) -f (X t,x,α t ℓ , I s ) ds , since I s = I t ℓ on [t ℓ , t ℓ+1
). Under (Hl), we get

|ṽ h i (t k , x) -v h i (t k , x)| ≤ K sup α∈A h t k ,i max k≤ℓ≤m-1 sup s∈[t ℓ ,t ℓ+1 ] E X t,x,α s -X t,x,α t ℓ ,
for some positive constant K, and by Lemma 3.1, this shows that

|ṽ h i (t k , x) -v h i (t k , x)| ≤ K(1 + |x|)h 1 2 .
2

In a second step, we approximate the continuous-time (controlled) diffusion by a discretetime (controlled) Markov chain following an Euler type scheme. For any (t k , x, i)

∈ T h × R d × I q , α ∈ A h t k ,i , we introduce ( Xh,t k ,x,α t ℓ
) k≤ℓ≤m defined by:

Xh,t k ,x,α t k = x, Xh,t k ,x,α t ℓ+1 = F h It ℓ ( Xh,t k ,x,α t ℓ , ϑ ℓ+1 ), k ≤ ℓ ≤ m -1,
where

F h i (x, ϑ k+1 ) = x + b i (x)h + σ i (x) √ h ϑ k+1 ,
and 

ϑ k+1 = (W t k+1 -W t k )/ √ h, k = 0, . . . ,
≤ K p (1 + |x|), (3.10) 
for some positive constant K p , not depending on (h, t k , x, i). Moreover, one can also derive the standard estimate for the Euler scheme, as e.g. in section 10.2 of [START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF]:

sup α∈A h t k ,i max ℓ=k,...,m X t k ,x,α t ℓ -Xh,t k ,x,α t ℓ p ≤ K p (1 + |x|) √ h. (3.11) 
We then associate to the Euler controlled Markov chain, the value functions vh i , i ∈ I q , for the optimal switching problem:

vh i (t k , x) = sup α∈A h t k ,i E m-1 ℓ=k f ( Xh,t k ,x,α t ℓ , I t ℓ )h + g( Xh,t k ,x,α tm , I tm ) - N (α) n=1 c( Xh,t k ,x,α τn , ι n-1 , ι n ) . (3.12)
The next result provides the error analysis between v h i by vh i , and thus of the continuous time optimal switching problem v i by its Euler discrete-time approximation vh i .

Theorem 3.2 There exists a constant K (not depending on h) such that

v h i (t k , x) -vh i (t k , x) ≤ K(1 + |x|) √ h, (3.13 
)

for all (t k , x, i) ∈ T h × R d × I q .
Remark 3.2 The above theorem combined with Theorem 3.1 gives the rate of convergence for the approximation of the continuous time optimal switching problem by its Euler discrete-time version: For any ε > 0, there exists a positive constant K ε s.t.

|v i (t k , x) -vh i (t k , x)| ≤ K ε (1 + |x|)h 1 2 -ε , (3.14) 
for all (t k , x, i) ∈ T h × R d × I q . Moreover if the cost functions c ij , i, i ∈ I q , do not depend on x, then the previous inequality also holds for ε = 0.

Proof of Theorem 3.2.

• Step 1. For (t k , x, i) ∈ T h × R d × I q , denote
by α h, * (resp. ᾱh, * ) the optimal switching strategy corresponding to v h i (t k , x) (resp. vh i (t k , x)). Let us prove that there exists some constant K, not depending on (t k , x, i, h), such that

E N (α h, * ) 2 + E N ( ᾱh, * ) 2 ≤ K(1 + |x| 2 ). (3.15)
We use discrete-time arguments, which are analog to the continuous-time case in the proof of Proposition 2.1. For α h, * optimal strategy to v h i (t k , x) with corresponding indicator regime I h, * , and to alleviate notations, we denote by

Y ℓ = v h I h, * t ℓ (t k , X t k ,x,α h, * t ℓ ), F ℓ = f (X t k ,x,α h, * t ℓ , I h, * t ℓ ), c ℓ = c(X t k ,x,α h, * t ℓ
, I h, * t ℓ-1 , I h, * t ℓ ), for ℓ = k, . . . , m. From the estimates on X t k ,x,α t ℓ in Lemma 2.1, we know that

E sup k≤ℓ≤m |Y ℓ | 2 + |F ℓ | 2 + |c ℓ | 2 ≤ K(1 + |x| 2 ), (3.16) 
for some positive constant K. Moreover, by the DPP for the value function v h i , we have :

Y ℓ = E [Y ℓ+1 |F t ℓ ] + hF ℓ -c ℓ , ℓ = k, . . . , m -1. Letting ∆M ℓ+1 := Y ℓ+1 -E[Y ℓ+1 |F t ℓ ], we obtain in particular m-1 ℓ=k c ℓ = h m-1 ℓ=k F ℓ - m-1 ℓ=k ∆M ℓ+1 + (Y m -Y k ),
and so by (3.16)

E m ℓ=k c ℓ 2 ≤ K(1 + |x| 2 ) + 3 E   m-1 ℓ=k ∆M ℓ+1 2   = K(1 + |x| 2 ) + 3 E m-1 ℓ=k ∆M 2 ℓ+1 .
(3.17)

Now by writing that

Y 2 m -Y 2 0 = m-1 ℓ=k Y 2 ℓ+1 -Y 2 ℓ = m-1 ℓ=k (Y ℓ+1 -Y ℓ )(Y ℓ+1 + Y ℓ ) = m-1 ℓ=k (∆M ℓ+1 -hF ℓ + c ℓ )(2Y ℓ + ∆M ℓ+1 -hF ℓ + c ℓ ), we get m-1 ℓ=k ∆M 2 ℓ+1 = Y 2 m -Y 2 0 - m-1 ℓ=0 hF ℓ (hF ℓ -2Y ℓ -2c l ) -2 m-1 ℓ=0 c l Y l - m-1 ℓ=0 ∆M ℓ+1 (2Y ℓ -2hF ℓ + 2c ℓ ) - m-1 ℓ=0 c 2 ℓ .
Since E ∆M ℓ+1 |F t ℓ = 0, this shows that

E m-1 ℓ=k ∆M 2 ℓ+1 ≤ E Y 2 m - m-1 ℓ=0 hF ℓ (hF ℓ -2Y ℓ -2c ℓ ) -2 m-1 ℓ=0 c ℓ Y ℓ ≤ K(1 + |x| 2 ) + 2E m-1 ℓ=0 c ℓ Y ℓ , (3.18) 
where we used again (3.16). Now since c ℓ ≥ 0,

E m-1 ℓ=0 c ℓ Y ℓ ≤ E m-1 ℓ=0 c ℓ sup k≤ℓ≤m-1 |Y ℓ | ≤ εE m-1 ℓ=k ∆M 2 ℓ+1 + K 1 + 1 ε (1 + |x| 2 ),
for all ε > 0, by (3.16), (3.17) and Cauchy-Schwarz inequality. Hence taking ε small enough and plugging this estimate into (3.18), we obtain

E m-1 ℓ=k ∆M 2 ℓ+1 ≤ K(1 + |x| 2 ).
Using (3.17) one more time and recalling that N (α h, * ) ≤ η ℓ c ℓ for some η > 0 under the uniformly lower bound condition in (Hc), we thus obtain

E N (α h, * ) 2 ≤ K(1 + |x| 2 ).
The proof for N ( ᾱh, * ) is the same, by using estimate (3.10) on Xh,t k ,x,α t ℓ

. • Step 2. By

Step 1, the supremum in the definitions (3.1) and (3.12) of v h i (t k , x) and vh i (t k , x) can be taken over

A h,K t k ,i (x) = α ∈ A h t k ,i s.t. E|N (α)| 2 ≤ K(1 + |x| 2 )
. Now, for any α ∈ A h,K t k ,i (x), we have under (Hl) and by Cauchy-Schwarz inequality

E m-1 ℓ=k h f (X t k ,x,α t ℓ , I t ℓ ) -f ( Xh,t k ,x,α t ℓ , I t ℓ ) + g(X t k ,x,α tm , I tm ) -g( Xh,t k ,x,α tm , I tm ) + N (α) n=1 c(X t k ,x,α τn , ι n-1 , ι n ) -c( Xh,t k ,x,α τn , ι n-1 , ι n ) ≤ KE (1 + N (α)) sup k≤ℓ≤m X t k ,x,α t ℓ -Xh,t k ,x,α t ℓ ≤ K(1 + |x|) sup k≤ℓ≤m X t k ,x,α t ℓ -Xh,t k ,x,α t ℓ 2 ≤ K(1 + |x| 2 ) √ h, (3.19) 
by (3.11). Taking the supremum over α ∈ A h,K t k ,i (x) into (3.19), this shows that

v h i (t k , x) -vh i (t k , x) ≤ K(1 + |x| 2 ) √ h.

4 Approximation schemes by optimal quantization

In this section, for a fixed time discretization step h, we focus on a computational approximation for the value functions vh i , i ∈ I q , defined in (3.12). To alleviate notations, we shall often omit the dependence on h in the superscripts, and write e.g. vi = vh i . The corresponding dynamic programming relation for vi is written in the backward induction:

vi (t m , x) = g i (x), vi (t k , x) = max E vi (t k+1 , Xt k ,x,i t k+1 ) + f i (x)h , max j =i [v j (t k , x) -c ij (x)] ,
for k = 0, . . . , m -1, (i, x) ∈ I q × R d , where Xt k ,x,i is the solution to the Euler scheme:

Xt k ,x,i t k+1 = F h i (x, ϑ k+1 ) := x + b i (x)h + σ i (x) √ h ϑ k+1 .
Observe that under the triangular condition on the switching costs c ij in (Hc), these backward relations can be written as an explicit discrete-time scheme:

vi (t m , x) = g i (x) (4.1) vi (t k , x) = max j∈Iq E vj (t k+1 , Xt k ,x,j t k+1 ) + f j (x)h -c ij (x) , (4.2) 
for k = 0, . . . , m -1, (i, x) ∈ I q × R d . Next, the practical implementation for this scheme requires a computational approximation of the expectations arising in the above dynamic programming formulae, and a space discretization for the state process X valued in R d . We shall propose two numerical approximations schemes by optimal quantization methods, the second one in the particular case where the state process X is not controlled by the switching control.

A Markovian quantization method

Let X be a bounded lattice grid on R d with step δ/d and size R, namely X = (δ/d)Z d ∩ B(0, R) = {x ∈ R d : x = (δ/d)z for some z ∈ Z d , and |x| ≤ R}. We then denote by Proj X the projection on the grid X according to the closest neighbour rule, which satisfies

|x -Proj X (x)| ≤ max(|x| -R, 0) + δ, ∀x ∈ R d . (4.3) 
At each time step t k ∈ T h , and point space-grid x ∈ X, we have to compute in (4.2) expectations in the form E ϕ( Xt k ,x,i t k+1 ) , for ϕ(.) = vh i (t k+1 , .), i ∈ I q . We shall then use an optimal quantization for the Gaussian random variable ϑ k+1 , which consists in approximating the distribution of ϑ ; N (0, I d ) by the discrete law of a random variable θ of support N points w l , l = 1, . . . , N , in R d , and defined as the projection of ϑ on the grid {w 1 , . . . , w N } following the closest neighbor rule. The grid {w 1 , . . . , w N } is optimized in order to minimize the distorsion error, i.e. the quadratic L 2 -norm ϑ -θ 2 . This optimal grid and the associated weights {π 1 , . . . , π N } are downloaded from the website: "http://www.quantize.mathsfi.com/downloads". We refer to the survey article [START_REF] Pagès | Optimal quantization methods and applications to numerical problems in finance[END_REF] for more details on the theoretical and computational aspects of optimal quantization methods. In the vein of [START_REF] Pagès | An optimal Markovian quantization algorithm for multi-dimensional stochastic control problem[END_REF], we introduce the quantized Euler scheme:

Xt k ,x,i t k+1 = Proj X (F h i (x, θ)),
and define the value functions vi on T m × X, i ∈ I q in backward induction by

vi (t m , x) = g i (x) vi (t k , x) = max j∈Iq E vj (t k+1 , Xt k ,x,j t k+1 ) + f j (x)h -c ij (x) , k = 0, . . . , m -1.
This numerical scheme can be computed explicitly according to the following recursive algorithm:

vi (t m , x) = g i (x), (x, i) ∈ X × I q vi (t k , x) = max j∈Iq N l=1 π l vj t k+1 , Proj X (F h j (x, w l )) + f j (x)h -c ij (x) , (x, i) ∈ X × I q ,
for k = 0, . . . , m-1. At each time step, we need to make O(N ) computations for each point of the grid X. Therefore, the global complexity of the algorithm is of order O(mN (R/δ) d ).

The main result of this paragraph is to provide an error analysis and rate of convergence for the approximation of vi by vi . Theorem 4.1 There exists a constant K (not depending on h) such that

vi (t k , x) -vi (t k , x) ≤ K exp Kh -1/2 ϑ -θ 2 1 + |x| + δ h δ h + h -1/2 ϑ -θ 2 1 + |x| + δ h + 1 Rh exp Kh -1/2 ϑ -θ 4 1 + |x| 2 + ( δ h ) 2 ,
for all (t k , x, i) ∈ T h × X × I q . In the case where the switching costs c ij do not depend on x, the above estimation is stengthened into:

vi (t k , x) -vi (t k , x) ≤ K h -1/2 ϑ -θ 2 exp Kh -1/2 ϑ -θ 2 1 + |x| + δ h + δ h + 1 Rh exp Kh -1/2 ϑ -θ 4 1 + |x| 2 + δ h 2 .
Remark 4.1 The estimation in Theorem 4.1 consists of error terms related to

• the space discretization parameters δ, R, which have to be chosen s.t. δ/h and 1/Rh go to zero.

• the quantization error ϑ -θ p of the normal distribution N (0, I d ), which converges to zero at a rate N 1 d , where N is the number of grid points chosen s.t. h

-1 2 N -1 d goes to zero.
By combining with the discrete-time approximation error (3.14), and by choosing grid parameters δ, 1/R of order h 3 2 , and a number of points N of order 1/h d , we see that the error estimate between the value function of the continuous-time optimal switching problem and its approximation by Markovian quantization is of order h 1 2 . With these values of the parameters, we then see that the complexity of this Markovian quantization algorithm is of order O(1/h 4d+1 ).

Let us now focus on the proof of Theorem 4.1. First, notice from the dynamic programming principle that the value functions vi , i ∈ I q , admit the Markov control problem representation:

vi (t k , x) = sup α∈A h t k ,i E m-1 ℓ=k f ( Xt k ,x,α t ℓ , I t ℓ )h + g( Xt k ,x,α tm , I tm ) - N (α) n=1 c( Xt k ,x,α τn , ι n-1 , ι n ) , (4.4) 
where Xt k ,x,α is defined by

Xt k ,x,α t k = x, Xt k ,x,α t ℓ+1 = Proj X F h It ℓ ( Xt k ,x,α t ℓ , θℓ+1 ) , k ≤ ℓ ≤ m -1, for α ∈ A h t k ,i
, and θk+1 , k = 0, . . . , m -1, are iid, θ-distributed, and independent of F t k . We first prove several estimates on Xt k ,x,α . Lemma 4.1 For each p ≥ 1 there exists a constant K p (not depending on h) such that sup

α∈A h t k ,i ,k≤ℓ≤m Xt k ,x,α t ℓ p + sup α∈A h t k ,i ,k≤ℓ≤m-1 F h It ℓ Xt k ,x,α t ℓ , θk+1 p (4.5) ≤ K p exp K p h -1/2 ϑ -θ p 1 + |x| + δ h , for all (t k , x, i) ∈ T h × X × I q .
Proof. We fix (t k , x, i) ∈ T h × X × I q , α ∈ A h t k ,i , and denote Xt ℓ = Xt k ,x,α t ℓ

, k ≤ ℓ ≤ m. First by standard estimates on solutions to SDEs, we have

F h It ℓ ( Xt ℓ , ϑ ℓ+1 ) p ≤ e Kph Xt ℓ p + K p h. (4.6)
Then, by using the linear growth property of σ and the fact that θℓ+1 , ϑ ℓ+1 are independent of Xt ℓ , we obtain 

F h It ℓ ( Xt ℓ , ϑ ℓ+1 ) -F h It ℓ ( Xt ℓ , θℓ+1 ) p ≤ Kh 1/2 1 + Xt ℓ p ϑ -θ p . ( 4 
+ K p h + Kh 1/2 Xt ℓ p + 1 ϑ -θ p ≤ e Kph (1 + Kh 1/2 ϑ -θ p ) Xt ℓ p + K p h + δ + Kh 1/2 ϑ -θ p .
By induction, recalling that h T m , and since 1 + y m m ≤ e y for all y ≥ 0, we obtain

Xt ℓ p ≤ K p exp K p h -1/2 ϑ -θ p 1 + |x| + δ h + h -1/2 ϑ -θ p ≤ K p exp K ′ p h -1/2 ϑ -θ p 1 + |x| + δ h ,
for all k ≤ ℓ ≤ m. The estimate for F h ( Xt ℓ , ϑ ℓ+1 ) then follows from (4.6). 2

Lemma 4.2 There exists some constant K (not depending on h) such that sup

α∈A h t k ,i sup k≤ℓ≤m Xt k ,x,α t ℓ -Xt k ,x,α t ℓ 2 ≤ K h -1/2 ϑ -θ 2 exp Kh -1/2 ϑ -θ 2 1 + |x| + δ h + δ h + 1 Rh exp Kh -1/2 ϑ -θ 4 1 + |x| 2 + δ h 2 , (4.8 
)

for all (t k , x, i) ∈ T h × X × I q .
Proof. As before we fix (t k , x, i), α and omit the dependence on (t k , x, i, α) in Xt ℓ . Let us first show an estimate on Xt ℓ+1 -

Xt ℓ+1 2 . For k ≤ ℓ ≤ m -1, we get Xt ℓ+1 -Xt ℓ+1 2 ≤ Xt ℓ+1 -F h It ℓ ( Xt ℓ , θℓ+1 ) 2 + F h It ℓ ( Xt ℓ , θℓ+1 ) -F h It ℓ ( Xt ℓ , ϑ ℓ+1 ) 2 + F h It ℓ ( Xt ℓ , ϑ ℓ+1 ) -F h It ℓ ( Xt ℓ , ϑ ℓ+1 ) 2 . (4.9)
On the other hand, since

y -Proj X (y) ≤ δ + |y|1 {|y|≥R} ≤ δ + |y| 2 R ,
by inequality (4.3), we have

Xt ℓ+1 -F h It ℓ ( Xt ℓ , θℓ+1 ) 2 ≤ δ + Xt ℓ 2 4 R . (4.10)
Furthermore by standard estimates for the Euler scheme (see e.g. Lemma A.1 in [START_REF] Pagès | An optimal Markovian quantization algorithm for multi-dimensional stochastic control problem[END_REF]), we have

F h It ℓ ( Xt ℓ , ϑ ℓ+1 ) -F h It ℓ ( Xt ℓ , ϑ ℓ+1 ) 2 ≤ (1 + Kh) Xt ℓ -Xt ℓ 2 .
Plugging these last two inequalities and (4.7) into (4.9), we get :

Xt ℓ+1 -Xt ℓ+1 2 ≤ (1 + Kh) Xt ℓ -Xt ℓ 2 + Kh 1/2 Xt ℓ 2 + 1 ϑ -θ 2 + δ + Xt ℓ 2 4 R .
Finally since Xt k = Xt k = x, we obtain by induction, and using the estimates (4.5) on Xt ℓ 4 :

Xt ℓ -Xt ℓ 2 ≤ K h -1/2 ϑ -θ 2 exp Kh -1/2 ϑ -θ 2 1 + |x| + δ h + δ h + 1 Rh exp Kh -1/2 ϑ -θ 4 1 + |x| 2 + δ h 2 , (4.11) 
for all k ≤ ℓ ≤ m. Now by definition of Xt k , Xt k , we may write for k ≤ ℓ ≤ m -1:

Xt ℓ+1 -Xt ℓ+1 = ( Xt ℓ -Xt ℓ ) + h b( Xt ℓ , I t ℓ ) -b( Xt ℓ , I t ℓ ) + √ h σ( Xt ℓ , I t ℓ ) θℓ+1 -σ( Xt ℓ , I t ℓ )ϑ ℓ+1 + Proj X F h It ℓ Xt ℓ , θℓ+1 ) -F h It ℓ Xt ℓ , θℓ+1 , Since Xt k = Xt k (= x)
, we obtain by induction:

sup k≤ℓ≤m Xt ℓ -Xt ℓ 2 ≤ h m-1 ℓ=k b( Xt ℓ , I t ℓ ) -b( Xt ℓ , I t ℓ ) 2 + √ h sup k≤ℓ≤m r≤ℓ σ( Xtr , I tr ) θr+1 -σ( Xtr , I tr )ϑ r+1 2 + m-1 ℓ=k Proj X F h It ℓ ( Xt ℓ , θℓ+1 ) -F h It ℓ Xt ℓ , θℓ+1 2 . (4.12) 
We now bound each of the three terms in the right hand side of (4.12). First, by the Lipschitz property of b and (4.11), we have

h m-1 ℓ=k b( Xt ℓ , I t ℓ ) -b( Xt ℓ , I t ℓ ) 2 ≤ K h -1/2 ϑ -θ 2 exp Kh -1/2 ϑ -θ 2 1 + |x| + δ h + δ h + 1 Rh exp Kh -1/2 ϑ -θ 4 1 + |x| 2 + δ h 2 .
Next, recalling that θℓ+1 is independent of F t ℓ , with distribution law θ, and since θ is an optimal L 2 -quantizer of ϑ, it follows that E[ θℓ+1

|F t ℓ ] = E[ θ] = E[ϑ] = 0.
Thus, the process ( r≤ℓ σ( Xtr , I tr ) θr+1σ( Xtr , I tr )ϑ r+1 ) ℓ is a F t ℓ -martingale, and from Doob's inequality, we have:

sup k≤ℓ≤m r≤ℓ σ( Xtr , I tr ) θr+1 -σ( Xtr , I tr )ϑ r+1 2 ≤ K E m-1 ℓ=k σ( Xt ℓ , I t ℓ ) θℓ+1 -σ( Xt ℓ , I t ℓ )ϑ ℓ+1 2 1 2 .
By writing from the Lipschitz condition on σ i that

σ( Xt ℓ , I t ℓ ) θℓ+1 -σ( Xt ℓ , I t ℓ )ϑ ℓ+1 2 ≤ K Xt ℓ -Xt ℓ 2 ϑ ℓ+1 2 + 1 + Xt ℓ 2 ϑ ℓ+1 -θℓ+1 2 ,
and since ϑ ℓ+1 , θℓ+1 are independent of F t ℓ , we then obtain

√ h sup k≤ℓ≤m r≤ℓ σ( Xtr , I tr ) θr+1 -σ( Xtr , I tr )ϑ r+1 2 ≤ K sup k≤ℓ≤m-1 Xt ℓ -Xt ℓ 2 + 1 + Xt ℓ 2 ϑ -θ 2 ≤ K h -1/2 ϑ -θ 2 exp Kh -1/2 ϑ -θ 2 1 + |x| + δ h + δ h + 1 Rh exp Kh -1/2 ϑ -θ 4 1 + |x| 2 + δ h 2 ,
where we used the estimates (4.5) and (4.11). Finally the third term in (4.12) is bounded as before by (4.10). 2

Proof of Theorem 4.1. For (t k , x, i) ∈ T h × X × I q , denote by α * the optimal switching strategy corresponding to vi (t k , x). Then, similarly as in the derivation of (3.15), by using the estimation (4.5) for Xt k ,x,α t ℓ 2 , we get the existence of some constant K, not depending on (t k , x, i, h), such that

E N ( α * ) 2 ≤ K exp Kh -1/2 ϑ -θ 2 1 + |x| 2 + δ 2 h 2 .
Therefore, the supremum in the representation (3.1) of vi (t k , x) can be taken over the subset Âh,K

t k ,i (x) = α ∈ A h t k ,i s.t. E|N (α)| 2 ≤ K exp Kh -1/2 ϑ -θ 2 1 + |x| 2 + δ 2 h 2
. Then, for α ∈ Âh,K t k ,i (x), we have under (Hl) and by Cauchy-Schwarz inequality

E m-1 ℓ=k h f ( Xt k ,x,α t ℓ , I t ℓ ) -f ( Xt k ,x,α t ℓ , I t ℓ ) + g( Xt k ,x,α tm , I tm ) -g( Xt k ,x,α tm , I tm ) + N (α) n=1 c( Xt k ,x,α τn , ι n-1 , ι n ) -c( Xh,t k ,x,α τn , ι n-1 , ι n ) ≤ KE (1 + N (α)) sup k≤ℓ≤m Xt k ,x,α t ℓ -Xt k ,x,α t ℓ ≤ K exp Kh -1/2 ϑ -θ 2 1 + |x| + δ h sup k≤ℓ≤m Xt k ,x,α t ℓ -Xt k ,x,α t ℓ 2 ≤ K exp Kh -1/2 ϑ -θ 2 1 + |x| + δ h δ h + h -1/2 ϑ -θ 2 1 + |x| + δ h + 1 Rh exp Kh -1/2 ϑ -θ 4 1 + |x| 2 + δ h 2 , (4.13) 
by Lemma 4.2. Taking the supremum over α ∈ Âh,K t k ,i (x) in the above inequality, we obtain an estimate for |v i (t k , x)vi (t k , x)| with an upper bound given by the r.h.s. of (4.13), which gives the required result.

Finally, notice that in the special case where the switching cost functions c ij do not depend on x, we have

vi (t k , x) -vi (t k , x) ≤ sup α∈A h t k ,i E m-1 ℓ=k h f ( Xt k ,x,α t ℓ , I t ℓ ) -f ( Xt k ,x,α t ℓ , I t ℓ ) + g( Xt k ,x,α tm , I tm ) -g( Xt k ,x,α tm , I tm ) ≤ K sup α∈A h t k ,i ,k≤ℓ≤m E Xt k ,x,α t ℓ -Xt k ,x,α t ℓ ≤ K h -1/2 ϑ -θ 2 exp Kh -1/2 ϑ -θ 2 1 + |x| + δ h + δ h + 1 Rh exp Kh -1/2 ϑ -θ 4 1 + |x| 2 + δ h 2 ,
by the estimate in Lemma 4.2. 2

Marginal quantization in the uncontrolled diffusion case

In this paragraph, we consider the special case where the diffusion X is not controlled, i.e. b i = b, σ i = σ. The Euler scheme for X, denoted by X, is given by:

X0 = X 0 , Xt k+1 = F h ( Xt k , ϑ k+1 ) := Xt k + b( Xt k )h + σ( Xt k ) √ h ϑ k+1 , k = 0, . . . , m -1,
where

ϑ k+1 = (W t k+1 -W t k )/ √ h, k = 0, . . . , m-1, are iid, N (0, I d )-distributed, independent of F t k .
Let us recall the well-known estimate: for any p ≥ 1, there exists some K p s.t.

Xt k p ≤ K p X 0 p . (4.14) 
Notice that the backward dynamic programming formulae (4.1)-(4.2) for vi can be written in this case as:

vi (t m , .) = g i (.), i ∈ I q vi (t k , .) = max j∈Iq [P h vj (t k+1 , .) + hf j -c ij ]. (4.15) 
Here P h is the probability transition kernel of the Markov chain X, given by:

P h ϕ(x) = E ϕ( Xt k+1 )| Xt k = x = E[ϕ(F h (x, ϑ))], (4.16) 
where ϑ is N (0, I d )-distributed. Let us next consider the family of discrete-time processes ( Ȳ i t k ) k=0,...,m , i ∈ I q , defined by:

Ȳ i t k = vi (t k , Xt k ), k = 0, . . . , m, i ∈ I q .
Remark 4.2 By the Markov property of the Euler scheme X w.r.t. (F t k ) k , we see that ( Ȳ i t k ) k=0,...,m , i ∈ I q , satisfy the backward induction:

Ȳ i tm = g i ( Xtm ) = g i ( XT ), i ∈ I q Ȳ i t k = max j∈Iq E Ȳ j t k+1 F t k + hf j ( Xt k ) -c ij ( Xt k ) , k = 0, . . . , m -1,
and is represented as

Ȳ i t k = ess sup α∈A h t k ,i E m-1 ℓ=k f ( Xt ℓ , I t ℓ )h + g( Xtm , I tm ) - N (α) n=1 c( Xτn , ι n-1 , ι n ) F t k .
On the other hand, the continuous-time optimal switching problem (2.4) admits a representation in terms of the following reflected Backward Stochastic Differential Equations (BSDE):

Y i t = g i (X T ) + T t f (X s )ds - T t Z i s dW s + K i T -K i t , i ∈ I q , 0 ≤ t ≤ T, Y i t ≥ max j =i [Y j t -c ij (X t )] and T 0 Y i t -max j =i [Y j t -c ij (X t )] dK i t = 0. (4.17)
We know from [START_REF] Djehiche | A finite horizon optimal multiple switching problem[END_REF], [START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF] or [START_REF] Hamadène | Switching problem and related system of reflected BSDEs[END_REF] that there exists a unique solution (Y, Z, K) = (Y i , Z i , K i ) i∈Iq solution to (4.17) with Y ∈ S 2 (R q ), the set of adapted continuous processes valued in

R q s.t. E[sup 0≤t≤T |Y t | 2 ] < ∞, Z ∈ M 2 (R q
), the set of predictable processes valued in R q s.t.

E[ T 0 |Z t | 2 dt] < ∞, and 
K i ∈ S 2 (R), K i 0 = 0, K i is nondecreasing. Moreover, we have Y i t = v i (t, X t ), i ∈ I q , = ess sup α∈A t,i E T t f (X s , I s )ds + g(X T , I T ) - N (α) n=1 c(X τn , ι n-1 , ι n ) F t , 0 ≤ t ≤ T.
We recall from [START_REF] Chassagneux | Discrete-time approximation of multidimensional BSDEs with oblique reflections[END_REF] the error estimation: for any ε > 0, there exists some constant K ε s.t. max k=0,...,m

Y i t k -Ȳ i t k 2 ≤ K ε X 0 2 h 1 2 -ε ,
for all i ∈ I q , and ε can be chosen equal to zero when the switching costs c ij do not depend on x.

We propose now an optimal quantization method in the vein of [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF] for optimal stopping problems, for a computational approximation of ( Ȳ i t k ) k=0,...,m . This is based on results about optimal quantization of each marginal distribution of the Markov chain ( Xt k ) 0≤k≤m . Let us recall the construction. For each time step k = 0, . . . , m, we are given a grid Γ k = {x 1 k , . . . , x N k k } of N k points in R d , and we define the quantizer Xk = Proj k ( Xt k ) of Xt k where Proj k denotes a closest neighbour projection on Γ k . For N k being fixed, the grid Γ k is said to be L p -optimal if it minimizes the L p -quantization error: Xt k -Proj k ( Xt k ) p . Optimal grids Γ k are produced by a stochastic recursive algorithm, called Competitive Learning Vector Quantization (or also Kohonen Algorithm), and relying on Monte-Carlo simulations of Xt k , k = 0, . . . , m. We refer to [START_REF] Pagès | Optimal quantization methods and applications to numerical problems in finance[END_REF] for details about the CLVQ algorithm. We also compute the transition weights

π ll ′ k = P[ Xk+1 = x l ′ k+1 | Xk = x l k ] = P ( Xt k+1 , Xt k ) ∈ C l ′ (Γ k+1 ) × C l (Γ k ) P Xt k ∈ C l (Γ k ) , where C l (Γ k ) ⊂ {x ∈ R d : |x -x l k | = min y∈Γ k |x -y|}, l = 1, . . . , N k
, is a Voronoi tesselation of Γ k . These weights can be computed either during the CLVQ phase, or by a regular Monte-Carlo simulation once the grids Γ k are settled. The associated discrete probability transition Pk from Xk to Xk+1 , k = 0, . . . , m -1, is given by:

Pk ϕ(x l k ) := N k+1 l ′ =1 π ll ′ k ϕ(x l ′ k+1 ) = E ϕ( Xk+1 ) Xk = x l k .
One then defines by backward induction the sequence of R q -valued functions vk = (v i k ) i∈Iq computed explicitly on Γ k , k = 0, . . . , m, by the quantization tree algorithm:

vi m = g i , i ∈ I q , vi k = max j∈Iq Pk vj k+1 + hf j -c ij , k = 0, . . . , m -1. (4.18)
The discrete-time processes ( Ȳ i t k ) k=0,...,m , i ∈ I q , are then approximated by the quantized processes ( Ŷ i k ) k=0,...,m , i ∈ I q defined by

Ŷ i k = vi k ( Xk ), k = 0, . . . , m, i ∈ I q .
The rest of this section is devoted to the error analysis between Ȳ i and Ŷ i . The analysis follows arguments as in [START_REF] Bally | A quantization algorithm for solving discrete time multidimensional optimal stopping problems[END_REF] for optimal stopping problems, but has to be slightly modified since the functions vi (t k , .) are not Lipschitz in general when the switching costs depend on x. Let us introduce the subset LLip(R d ) of measurable functions ϕ on R d satisfying:

|ϕ(x) -ϕ(y)| ≤ K(1 + |x| + |y|)|x -y|, ∀x, y ∈ R d ,
for some positive constant K, and denote by Lemma 4.3 The functions vi (t k , .), k = 0, . . . , m, i ∈ I q , lie in LLip(R d ), and [v i (t k , .)] LLip is bounded by a constant not depending on (k, i, h).

Proof. We set vi k = vi (t k , .). From the representation (3.12), we have

vi k (x) = sup α∈A h t k ,i E m-1 ℓ=k f ( Xt k ,x t ℓ , I t ℓ )h + g( Xt k ,x tm , I tm ) - N (α) n=1 c( Xt k ,x τn , ι n-1 , ι n ) ,
where Xt k ,x is the solution to the Euler scheme starting from x at time t k . From (3.15), notice that in the above representation for vi k (x), one can restrict the supremum to

A h,K t k ,i (x) = α ∈ A h t k ,i s.t. E|N (α)| 2 ≤ K(1 + |x| 2
) for some positive constant K not depending on (t k , x, i, h). Then, as in the proof of Theorem 4.1, we have for any x, y ∈ R d , and

α ∈ A h,K t k ,i (x) ∪ A h,K t k ,i (y), E m-1 ℓ=k h f ( Xt k ,x t ℓ , I t ℓ ) -f ( Xt k ,y t ℓ , I t ℓ ) + g( Xt k ,x tm , I tm ) -g( Xt k ,y tm , I tm ) + N (α) n=1 c( Xt k ,x τn , ι n-1 , ι n ) -c( Xt k ,x τn , ι n-1 , ι n ) ≤ K 1 + N (α) 2 sup k≤ℓ≤m Xt k ,x t ℓ -Xt k ,y t ℓ 2 ≤ K(1 + |x| + |y|)|x -y|,
by standard Lipschitz estimates on the Euler scheme. By taking the supremum over A h,K t k ,i (x) ∪ A h,K t k ,i (y) in the above inequality, this shows that

|v i k (x) -vi k (y)| ≤ K(1 + |x| + |y|)|x -y|, i.e. vi k ∈ LLip(R d ) with [v i k ] LLip ≤ K. 2 
The next Lemma shows that the probability transition kernel of the Euler scheme preserves the growth linear Lipschitz property. Lemma 4.4 For any ϕ ∈ LLip(R d ), the function P h ϕ also lies in LLip(R d ), and there exists some constant K, not depending on h, such that

[P h ϕ] LLip ≤ √ 3(1 + O(h))[ϕ] LLip ,
where O(h) denotes any function s.t. O(h)/h is bounded when h goes to zero.

Proof. From (4.16) and Cauchy-Schwarz inequality, we have for any x, y ∈ R d :

|P h ϕ(x) -P h ϕ(y)| ≤ E ϕ(F h (x, ϑ)) -ϕ(F h (y, ϑ)) 2 1/2 ≤ [ϕ] GLip E 1 + |F h (x, ϑ)| + |F h (y, ϑ)|) 2 F h (x, ϑ) -F h (y, ϑ) 2 1/2 ≤ √ 3[ϕ] GLip E (1 + |F h (x, ϑ)| 2 + |F h (y, ϑ)| 2 )|F h (x, ϑ) -F h (y, ϑ)| 2 1 2 , (4.19)
where we used the relation (a+b+c) 2 ≤ 3(a 2 +b 2 +c 2 ). Since ϑ has a symmetric distribution, we have

E 1 + |F h (x, ϑ)| 2 + |F h (y, ϑ)| 2 |F h (x, ϑ) -F h (y, ϑ)| 2 = 1 2 E 1 + |F h (x, ϑ)| 2 + |F h (y, ϑ)| 2 |F h (x, ϑ) -F h (y, ϑ)| 2 + 1 + |F h (x, -ϑ)| 2 + |F h (y, -ϑ)| 2 |F h (x, -ϑ) -F h (y, -ϑ)| 2 A straightforward calculation gives 1 2 1 + |F h (x, ϑ)| 2 + |F h (y, ϑ)| 2 |F h (x, ϑ) -F h (y, ϑ)| 2 + 1 + |F h (x, -ϑ)| 2 + |F h (y, -ϑ)| 2 |F h (x, -ϑ) -F h (y, -ϑ)| 2 = 1 + |x + hb(x)| 2 + |y + hb(y)| 2 + h|σ(x)ϑ| 2 + h|σ(y)ϑ| 2 x -y + h(b(x) -b(y)) 2 + h|(σ(x) -σ(y))ϑ| 2 |x + hb(x)| 2 + |y + hb(y)| 2 + 4h x + hb(x)|σ(x)ϑ + y + hb(y)|σ(y)ϑ x -y + h(b(x) -b(y))|(σ(x) -σ(y))ϑ + h 2 (|σ(x)ϑ| 2 + |σ(y)ϑ| 2 )|(σ(x) -σ(y))ϑ| 2 .
By Lipschitz continuity of b and σ, and the fact that E|ϑ| 4 < ∞, we deduce that

E (1 + |F h (x, ϑ)| 2 + |F h (y, ϑ)| 2 )|F h (x, ϑ) -F h (y, ϑ)| 2 ≤ (1 + O(h))(1 + |x| 2 + |y| 2 )|x -y| 2 .
Plugging this last inequality into (4.19) shows the required result. 2

We now pass to the main result of this section by providing some a priori estimates for Ȳt k -Ŷk in terms of the quantization error Xt k -Xk . Theorem 4.2 There exists some positive constant K, not depending on h, such that

max i∈Iq Ȳ i t k -Ŷ i k p ≤ K m ℓ=k (1 + X 0 r + Xℓ r ) Xt ℓ -Xℓ s , (4.20) 
for any k = 0, . . . , m, and

(p, r, s) ∈ (1, ∞) s.t. 1 p = 1 r + 1 s .
Proof. We set vi k = vi (t k , .), and by misuse of notations, we also set Ȳ i k = Ȳ i t k = vi k ( Xk ). From the recursive induction (4.15) (resp. (4.18)) on vi k (resp. vi k ), and the trivial inequality | max j ājmax j âj | ≤ max j |ā jâj |, we have for all i ∈ I q :

| Ȳ i k -Ŷ i k | = |v i k ( Xt k ) -vi k ( Xk )| ≤ max j∈Iq P h vj k+1 ( Xt k ) + hf j ( Xt k ) -c ij ( Xt k ) -Pk vj k+1 ( Xk ) + hf j ( Xk ) -c ij ( Xk ) ≤ max j∈Iq P h vj k+1 ( Xt k ) -Pk vj k+1 ( Xk ) + h f j ( Xt k ) -f j ( Xk ) + c ij ( Xt k ) -c ij ( Xk ) ≤ K Xt k -Xk + max j∈Iq P h vj k+1 ( Xt k ) -Pk vj k+1 ( Xk )
by the Lipschitz property of f j and c ij , and so

max i∈Iq Ȳ i k -Ŷ i k p ≤ K Xt k -Xk p + max i∈Iq P h vi k+1 ( Xt k ) -Pk vi k+1 ( Xk ) p (4.21)
Writing Êk for the conditional expectation w.r.t. Xk , we have for any i ∈ I q

P h vi k+1 ( Xt k ) -Pk vi k+1 ( Xk ) ≤ P h vi k+1 ( Xt k ) -P h vi k+1 ( Xk ) + P h vi k+1 ( Xk ) -Êk [P h v i k+1 ( Xt k )] + Êk [P h vi k+1 ( Xt k )] -Pk vi k+1 ( Xk ) = P h vi k+1 ( Xt k ) -P h vi k+1 ( Xk ) + Êk [P h vi k+1 ( Xk ) -P h vi k+1 ( Xt k )] + Êk [ Ȳ i k+1 -Ŷ i k+1 ] .
Since Êk is a L p -contraction, we then obtain

P h vi k+1 ( Xt k ) -Pk vi k+1 ( Xk ) p ≤ 2 P h vi k+1 ( Xt k ) -P h vi k+1 ( Xk ) p + Ȳ i k+1 -Ŷ i k+1 p ≤ K(1 + O(h)) 1 + Xt k + Xk Xt k -Xk p + Ȳ i k+1 -Ŷ i k+1 p ≤ K(1 + O(h)) 1 + X 0 r + Xk r Xt k -Xk s + Ȳ i k+1 -Ŷ i k+1 p , (4.22) 
where we used Lemmata 4.4 and 4. 

Ȳ i t k -Ŷ i k 1 ≤ K(1 + X 0 2 ) m ℓ=k Xt ℓ -Xℓ 2 ,
for all k = 0, . . . , m. In particular, if X 0 = x 0 is deterministic, then X0 = x 0 , and we have an error estimation by quantization of the value function function for the discrete-time optimal switching problem at the initial date measured by:

max i∈Iq vi (0, x 0 ) -vi 0 (x 0 ) ≤ K(1 + |x 0 |) m k=1 Xt k -Xk 2 (4.23)
Suppose that one has at hand a global stack of N points for the whole space-time grid, to be dispatched with N k points for each kth-time step, i.e. m k=1 N k = N . Then, as in [START_REF] Bally | A quantization algorithm for solving discrete time multidimensional optimal stopping problems[END_REF], in the case of uniformly elliptic diffusion with bounded Lipschitz coefficients b and σ, one can optimize over the N k 's by using the rate of convergence for the miminal L 2 -quantization error given by Zador's theorem: .

Xt k -Xk 2 ∼ J 2,d ϕ k 1 2 d d+2 N 1 d k as N k → ∞,
By combining with the estimate (3.14), we obtain an error bound between the value function of the continuous-time optimal switching problem and its approximation by marginal quantization of order h 1 2 when choosing a number of points by grid N h of order 1/h 3d 2 . This has to be compared with the number of points N of lower order 1/h d in the Markovian quantization approach, see Remark 4.1. The complexity of this marginal quantization algorithm is of order O ( m k=1 N k N k+1 ). In terms of h, if we take N k = N h = 1/h 3d 2 , we then need O(1/h 3d+1 ) operations to compute the value function. Recall that the Markovian quantization method requires a complexity of higher order O(1/h 4d+1 ), but provides in compensation an approximation of the value function in the whole space grid X.

Numerical tests

We test our quantization algorithms by comparison results with explicit formulae for optimal switching problems derived from chapter 5 in [START_REF] Pham | Continuous time stochastic control and optimization with financial applications[END_REF]. The formulae are obtained for infinite horizon problems, that we adapt to our case by taking as the final gain the (discounted) value function for the infinite horizon problem.

We consider a two-regime switching problem where the diffusion is independent of the regime and follows a geometric Brownian motion, i.e. b(x, i) = bx, σ(x, i) = σx, and the switching costs are constant c(x, i, j) = c ij ,i, j = 1, 2. The profit functions are in the form f i (t, x) = e -βt k i x γ i , i = 1, 2. From Theorem 5.3.5 in [START_REF] Pham | Continuous time stochastic control and optimization with financial applications[END_REF]), the value functions are given by:

v 1 (0, x) = A 1 x m + + K 1 k 1 x γ 1 , x < x * 1 B 2 x m -+ K 2 k 2 x γ 2 -c 12 , x ≥ x * 1 v 2 (0, x) =      A 2 x m + + K 2 k 2 x γ 2 , x < x * 2 A 1 x m + + K 1 k 1 x γ 1 -c 21 x * 2 ≤ x ≤ x * 2 B 2 x m -+ K 2 k 2 x γ 2 , x > x * 2 ,
where A i , B i , K i , x * 2 and x * 2 depend explicitly on the parameters. In the sequel, we take for value of the parameters: b = 0, σ = 1, c 01 = c 10 = 0.5, k 1 = 2, k 2 = 1, γ 1 = 1/3, γ 2 = 2/3, β = 1.

We compute the value function in regime 2 taken at X 0 = 3.0 by means of the first algorithm (Markovian quantization). We take R = 10X 0 and vary m, δ and N . The results are compared with the exact value in Table 1. Notice that the algorithm seems to be quite robust and provides good results even when δm and m R do not satisfy the constraints given by our theoretical estimates in Remark 4.1.

In Table 2, we have computed the value with the marginal quantization algorithm. We make vary the number of time steps m and the total number of grid points N (dispatched between the different time steps as described in Remark 4.3). We have used optimal quantization of the Brownian motion, and the transition probabilities π ll ′ k were computed by Monte-Carlo simulations with 10 6 sample paths (for an analysis of the error induced by this Monte-Carlo approximation, see Section 4 in [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF]). We have also indicated the time spent for these computations. Actually, almost all of this time comes from the Monte-Carlo computations, as the tree descent algorithm is very fast (less than 1s for all the tested parameters).

For the two methods, we look at the impact of the quantization number for each time step (resp. N and N h) on the precision of the results. As our theoretical estimates showed (see Remarks 4.1 and 4.3), for the first method, increasing N higher than h -1 does not seem to improve the precision, whereas for the second method, we can see for several values of h that changing N h from h -1 to h -2 or h -3 improves the precision.

Comparing the two tables, the first method seems to provide precise estimates with slightly faster computation times, and it has the further advantage of computing simultaneously the value functions at any points of the space discretization grid X. However, since most of the time spent by our second algorithm was devoted to the calculation of the transition probabilities π ll ′ k , if these were computed beforehand and stored offline, the marginal quantization method becomes more competitive.

(m, 1/δ, N ) v2 (0, 3.0) Numerical error (%) Algorithm time (s) [START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF][START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF][START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF] 2 

[ϕ]

  LLip = sup x,y∈R d ,x =y |ϕ(x)ϕ(y)| (1 + |x| + |y|)|x -y| .

.,

  where ϕ k is the probability density function of Xt k , and ϕ r = ( |ϕ(u)| r du) t k , for some constant K depending only on b, σ, T , d.Substituting into (4.23) with Zador's theorem, we obtainmax i∈Iq vi (0, x 0 )vi 0 (x 0 ) ≤ K(1 + |x 0 |)For fixed h = T /m and N , the sum in the upper bound of the above inequality is minimized over the size of the grids Γ k , k = 1, . . . , m with where ⌈x⌉ := min{k ∈ N, k ≥ x}, and we have a global rate of convergence given by: max i∈Iq vi (0, x 0 )vi 0 (x 0 ) ≤ K(1+ |x 0 |) h( N h) 1 d

  . |.| will denote the canonical Euclidian norm on R d , and (.|.) the corresponding inner product. For any p ≥ 1, and Y random variable on (Ω, F, P), we denote by Y p = (E|Y | p )

	1 p .

  m -1, are iid, N (0, I d )-distributed, independent of F t k . Similarly as in Lemma 2.1, we have the L p -estimate:

	sup α∈A h t k ,i	max ℓ=k,...,m	Xh,t k ,x,α t ℓ	p

  .7) Combining (4.6),(4.7) and the fact that |Proj X (y)| ≤ |y| + δ for all y ∈ R d , we get

	Xt ℓ+1 p	≤ δ + e Kph	Xt ℓ p

  Xm p by the Lipschitz condition on g i , we conclude by induction. 2 Remark 4.3 Assume that Xk is chosen to be an L 2 -optimal quantizer of Xt k for each k = 0, . . . , m. It is in particular a stationary quantizer in the sense that E[ Xt k | Xk ] = Xk (see[START_REF] Pagès | Optimal quantization methods and applications to numerical problems in finance[END_REF]), and by Jensen's inequality, we deduce that Xk 2 ≤ Xt k 2 .

		3, Hölder's inequality and (4.14). Substituting (4.22)
	into (4.21), we get			
	max i∈Iq	Ȳ i k -Ŷ i k p		
	≤ K(1 + O(h)) 1 + X 0 r + Xk r	Xt k -Xk s	+ max i∈Iq	Ȳ i k+1 -Ŷ i k+1 p
					Recalling (4.14), the
	inequality (4.20) in Theorem 4.2 gives		
	max i∈Iq		

, for all k = 0, . . . , m -1. Since max i∈Iq Ȳ i m -Ŷ i m p = max i∈Iq g i ( Xtm )g( Xm ) p ≤ K Xtm -

Table 2 :

 2 Results obtained by marginal quantization

		.1925	3.0	0.2
	(10,10,100)	2.1863	2.7	0.5
	(10,10,1000)	2.1852	2.7	1.4
	(10,100,1000)	2.1882	2.8	8.5
	(10,100,5000)	2.1882	2.8	40
	(100,10,100)	2.1218	0.31	1.0
	(100,10,1000)	2.1213	0.33	8.0
	(100,10,5000)	2.1213	0.33	39
	(100,100,100)	2.1250	0.16	8.6
	(100,100,1000)	2.1250	0.16	82
	Exact value	2.1285		
	Table 1: Results obtained by Markovian quantization
	(m, N )	Ŷ 2 0	Numerical error (%) Algorithm time (s)
	(10,100)	2.2080	3.7	4.4
	(10,1000)	2.2174	4.2	4.9
	(10,10000)	2.1276	0.04	5.8
	(100,1000)	2.1233	0.24	36
	(100,10000) 2.1316	0.15	48
	(100,50000) 2.1301	0.07	65
	(1000,10000) 2.1161	0.58	353
	(1000,50000) 2.1213	0.34	498