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Abstract

In this paper, we study probabilistic numerical methods based on optimal quanti-
zation algorithms for computing the solution to optimal multiple switching problems
with regime-dependent state process. We first consider a discrete-time approximation
of the optimal switching problem, and analyze its rate of convergence. The error is of
order % —e&,e > 0, and of order % when the switching costs do not depend on the state
process. We next propose quantization numerical schemes for the space discretization
of the discrete-time Euler state process. A Markovian quantization approach relying
on the optimal quantization of the normal distribution arising in the Euler scheme is
analyzed. In the particular case of uncontrolled state process, we describe an alterna-
tive marginal quantization method, which extends the recursive algorithm for optimal
stopping problems as in [2]. A priori LP-error estimates are stated in terms of quan-
tization errors. Finally, some numerical tests are performed for an optimal switching
problem with two regimes.

Key words: Optimal switching, quantization of random variables, discrete-time approxi-
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1 Introduction

On some filtered probability space (£, F,F = (F)
regime-switching diffusion in R? governed by

=0, ), let us introduce the controlled

dXt = b(Xt,at)dt—i—a(Xt,at)th,

where W is a standard d-dimensional Brownian motion, o = (75, ty,)n € A is the switching
control represented by a nondecreasing sequence of stopping times (7,,) together with a
sequence (ty,) of F, -measurable random variables valued in a finite set {1,...,¢}, and o
is the current regime process, i.e. oy = iy, for 7, <t < 7,41. We then consider the optimal
switching problem over a finite horizon:

T
Vo = supIE[/ f( Xy, aq)dt + g(Xp,ar) — E (X, s tn—1stn)|- (1.1)
acA 0 Tn<T

Optimal switching problems can be seen as sequential optimal stopping problems belonging
to the class of impulse control problems, and arise in many applied fields, for example in real
option pricing in economics and finance. It has attracted a lot of interest during the past
decades, and we refer to Chapter 5 in the book [15] and the references therein for a survey
of some applications and results in this topic. It is well-known that optimal switching
problems are related via the dynamic programming approach to a system of variational
inequalities with inter-connected obstacles in the form:

; 1
min [— 881;; —b(x,4).Dyv; — §tr(a(3:, Yo (x,i) D) — f(x,1) , (1.2)
v —max(v; —c(e.i.))| = 0 on[0.7) xR,
JF

together with the terminal condition v;(T,z) = g(x,i), for any ¢ = 1,...,q. Here v;(t,z)
is the value function to the optimal switching problem starting at time ¢ € [0, 7] from the
state X; = x € R? and the regime ay =i € {1,...,q}, and the solution to the system (1.2)
has to be understood in the weak sense, e.g. viscosity sense.

The purpose of this paper is to solve numerically the optimal switching problem (1.1),
and consequently the system of variational inequalities (1.2). These equations can be solved
by analytical methods (finite differences, finite elements, etc ...), see e.g. [12], but are known
to require heavy computations, especially in high dimension. Alternatively, when the state
process is uncontrolled, i.e. regime-independent, optimal switching problems are connected
to multi-dimensional reflected Backward Stochastic Differential Equations (BSDEs) with
oblique reflections, as shown in [8] and [9], and the recent paper [5] introduced a discretely
obliquely reflected numerical scheme to solve such BSDEs. From a computational view-
point, there are rather few papers dealing with numerical experiments for optimal switching
problems. The special case of two regimes for switching problems can be reduced to the re-
solution of a single BSDE with two reflecting barriers when considering the difference value
process, and is exploited numerically in [7]. We mention also the paper [4], which solves an
optimal switching problem with three regimes by considering a cascade of reflected BSDEs
with one reflecting barrier derived from an iteration on the number of switches.



We propose probabilistic numerical methods based on dynamic programming and opti-
mal quantization methods combined with a suitable time discretization procedure for com-
puting the solution to optimal multiple switching problem. Quantization methods were
introduced in [2] for solving variational inequality with given obstacle associated to optimal
stopping problem of some diffusion process (X;). The basic idea is the following. One first
approximates the (continuous-time) optimal stopping problem by the Snell envelope for the
Markov chain (X, ) defined as the Euler scheme of the (uncontrolled) diffusion X, and then
spatially discretize each random vector Xy, by a random vector taking finite values through
a quantization procedure. More precisely, (th)k is approximated by (Xk)k where X is
the projection of th on a finite grid in the state space following the closest neighbor rule.
The induced LP-quantization error, || Xy, — X[, depends only on the distribution of Xy,
and the grid, which may be chosen in order to minimize the quantization error. Such an
optimal choice, called optimal quantization, is achieved by the competitive learning vector
quantization algorithm (or Kohonen algorithm) developed in full details in [2]. One finally
computes the approximation of the optimal stopping problem by a quantization tree algo-
rithm, which mimics the backward dynamic programming of the Snell envelope. In this
paper, we develop quantization methods to our general framework of optimal switching
problem. With respect to standard optimal stopping problems, some new features arise
on one hand from the regime-dependent state process, and on the other hand from the
multiple switching times, and the discrete sum for the cumulated switching costs.

We first study a time discretization of the optimal switching problem by considering
an Euler-type scheme with step h = T'/m for the regime-dependent state process (X;)
controlled by the switching strategy a:

th-H = th -+ b(th,Oétk)h + O'(th,,atk)\/ﬁ 29]44_1, tk == kh, k= 0, ..,y (13)

where 9, k = 1,...,m, are iid, and N (0, I;)-distributed. We then introduce the optimal
switching problem for the discrete-time process (X, ) controlled by switching strategies
with stopping times valued in the discrete time grid {¢x,k = 0,...,m}. The convergence
of this discrete-time problem is analyzed, and we prove that the error is in general of order
héfs, and this estimate holds true with € = 0, as for optimal stopping problems, when the
switching costs ¢(7, j) do not depend on the state process. Arguments of the proof rely on
a regularity result of the controlled diffusion with respect to the switching strategy, and
moment estimates on the number of switches. This extends the convergence rate result in
[5] derived in the case where X is regime-independent.

Next, we propose approximation schemes by quantization for computing explicitly the
solution to the discrete-time optimal switching problem. Since the controlled Markov chain
(th) i cannot be directly quantized as in standard optimal stopping problems, we adopt a
Markovian quantization approach in the spirit of [13], by considering an optimal quantiza-
tion of the Gaussian random vector ¥4 arising in the Euler scheme (1.3). A quantization
tree algorithm is then designed for computing the approximating value function, and we
provide error estimates in terms of the quantization errors ||y — Uy, and state space grid
parameters. Alternatively, in the case of regime-independent state process, we propose a
quantization algorithm in the vein of [2] based on marginal quantization of the uncontrolled



Markov chain (Xy, ). A priori LP-error estimates are also established in terms of quantiza-
tion errors || Xy, — Xg||p- Finally, some numerical tests on the two quantization algorithms
are performed for an optimal switching problem with two regimes.

The plan of this paper is organized as follows. Section 2 formulates the optimal swit-
ching problem and sets the standing assumptions. We also show some preliminary results
about moment estimates on the number of switches. We describe in Section 3 the time dis-
cretization procedure, and study the rate of convergence of the discrete-time approximation
for the optimal switching problem. Section 4 is devoted to the approximation schemes by
quantization for the explicit computation of the value function to the discrete-time optimal
switching problem, and to the error analysis. Finally, we illustrate our results with some
numerical tests in Section 5.

2 Optimal switching problem

2.1 Formulation and assumptions

We formulate the finite horizon multiple switching problem. Let us fix a finite time T
€ (0,00), and some filtered probability space (2, F,F = (F),.,,P) satisfying the usual
conditions. Let I, = {1,...,¢} be the set of all possible regi_mes (or activity modes).
A switching control is a double sequence o = (7, tn)n>0, Where (7,,) is a nondecreasing
sequence of stopping times, and ¢,, are F;, -measurable random variables valued in I,. The
switching control o = (7, t,,) is said to be admissible, and denoted by « € A, if there exists
an integer-valued random variable N with 7y > T a.s. Given a = (7, tn)n>0 € A, we may
then associate the indicator of the regime value defined at any time ¢t € [0,7] by

I, = L01{0§t<7'o} + Z Ln1{7n§t<7'n+1}7
n>0

which we shall sometimes identify with the switching control a, and we introduce N («) the
(random) number of switches before T':

N(o) = #{n>1:7,<T}.

For a € A, we consider the controlled regime-switching diffusion process valued in R?
governed by the dynamics

dXs = b(Xs, I)ds + o(Xs, I)dWs, Xo =z € RY, (2.1)

where W is a standard d-dimensional Brownian motion on (2, F,F = (Ft)o<i<7,P). We
shall assume that the coefficients b; = b(.,7): R — R? and o;(.) = o(.,i) : R? — R¥*d
€ 1, satisfy the usual Lipschitz conditions.

We are given a running reward, terminal gain functions f,g : R? x I, — R, and a cost
function ¢ : R? x I, x I, — R, and we set fi(.) = f(.,9), gi(-) = g(.,4), cij(.) = c(.,3,7), i, ]
€ ;. We shall assume the Lipschitz condition:

(HI) The coefficients f;, g; and ¢;j, i, j € I, are Lipschitz continuous on R4,



We also make the natural triangular condition on the functions c¢;; representing the

instantaneous cost for switching from regime ¢ to j:
(He)

C”() = 0, 1€ Hq,
inf ¢;j(x) > 0, fori,jely, j#i,
z€R4
xiéle [cij(@) + cju(z) — ciu(z)] > 0, fori,j,kely, j#ik.

The triangular condition on the switching costs ¢;; in (Hc) means that when one changes
from regime i to some regime j, then it is not optimal to switch again immediately to
another regime, since it would induce a higher total cost, and so one should stay for a while
in the regime j.

The expected total profit over [0, 7] for running the system with the admissible switching
control a = (7p, tn) € A is given by:

T N(a)
J()(Ck) = E{/ f(Xt,It)dt—i-g(XT,IT) — C(XTn,Ln_l,l,n)].
0 n=1
The maximal profit is then defined by
Vo = supJo(a). (2.2)

acA

The dynamic version of this optimal switching problem is formulated as follows. For (¢, 1)
€ [0,T] x I, we denote by A ; the set of admissible switching controls a = (7, t,,) starting
from ¢ at time ¢, i.e. 79 =t, 1o = i. Given o € A, and x € R?, and under the Lipschitz
conditions on b, o, there exists a unique strong solution to (2.1) starting from z at time ¢,
and denoted by {X5™* t < s < T}. It is then given by

Tn+1/A\S

Tn+1/\S
by, (XE7)dy + / o0 (XETOYV AW, £ < 5 < T.(2.3)
Tn

The value function of the optimal switching problem is defined by

(a)

T
vi(t,x) = sup E[ /t FXEP L)ds + g(X3™ Ir) = Y e(XED 1, 1n) [ (2.4)
o t,i =1

=

3

for any (¢,z,i) € [0,T] x R? x I, so that Vy = max;er, v;(0, ).
For simplicity, we shall also make the assumption

gix) > maxlo;(e) - cy(@)], V(i) € B xL, (2.5)

This means that any switching decision at horizon T induces a terminal profit, which is
smaller than a no-decision at this time, and is thus suboptimal. Therefore, the terminal
condition for the value function is given by:

vi(T,x) = gi(x), (xz,9)€ R% x I,.



Otherwise, it is given in general by v;(T, z) = maxje, [g;(7) — ¢ij(z)].

Notations. |.| will denote the canonical Euclidian norm on R?, and (.|.) the corresponding

inner product. For any p > 1, and Y random variable on (€, F,P), we denote by [|Y||, =
1

EY[P)>.

2.2 Preliminaries

We first show that one can restrict the optimal switching problem to controls « with
bounded moments of N(a). More precisely, let us associate to a strategy a € A;, the
cumulated cost process C%® defined by

tx,oo t,x,«
C, = E (X2 -1, tn) 1ry <, t<u<T.
n>1

We then consider for € R? and a positive sequence K = (K}),en the subset Afi(az) of
At,i defined by

Affw) = {a e A EICEP < (Ut ol vpz 1}

In the sequel, we shall assume that for each (¢, z,i) € [0,T] x R% x I4, the optimal switching
problem v;(¢, z) admits an optimal strategy a* satisfying EUCtT‘TO‘ \2] < oo. The existence
of an optimal strategy o* with IE|C§F’%’O‘*|2 < o0 is a wide assumption that is valid under
(H1) and (Hg) in the case where the diffusion X is not controlled i.e. the functions b and
o do not depend on the variable ¢ and the function ¢ does not depend on the variable z, as
shown in Theorem 3.1 of [9].

Proposition 2.1 Assume that (H1) and (Hc) holds. Then there exists a positive sequence
K = (K,), such that

=

(a)

T
vi(t,z) = sup ]E[/ FXE 1) ds 4 g(Xa™%, Ip) — o(XLP 1y, LH)P.G)
aGA{%(z) 3 =1

3

for any (t,z,i) € [0,T] x R x 1.

Remark 2.1 Under the uniformly strict positive condition on the switching costs in (Hc),
there exists some positive constant 7 > 0s.t. N(a) < 770%”:’0‘ for any (t,x,i) € [0, T]xR4x1,,
a € Az;. Thus, for any o € Afg(aj), we have

E[N(a)[" < nKp(1+[zlP),

which means that in the value functions v;(t,x) of optimal switching problems, one can
restrict to controls « for which the moments of N(«a) are bounded by a constant depending
on x.

Before proving Proposition 2.1, we need the following Lemmata.



Lemma 2.1 For all p > 1, there exists a positive constant K, such that

sup ‘Xﬁ’”’c’o“
se(t,T)

sup
OzE.Atﬂ'

< Kp(l+z)),
p

for all (t,z,i) € [0,T] x R? x .
Proof. Fix p > 1. Then, we have from the definition of X:™® in(2.3), for (t,z,i) €
[0, 7] x R x I, a € Ay

Tn+1/AT
o [xieot] < (5[ [ st

s€E[t,r] <™
Tnt1/s t,z,x p
+ E| sup Z o, (X;0%)dW, ,
s€Et,r] Ta<s”Tn

for all r € [t,T]. From the linear growth conditions on b; and o, for i € I, and Burkholder-
Davis-Gundy’s (BDG) inequality, we then get by Holder inequality when p > 2:

E{ sup ‘Xﬁ’m’a‘p} < Kp<1—|— ]aj\p—i-/rE[ sup ‘Xz’m’a‘pdu]) ,
¢

s€[t,r] s€[t,ul

for all r € [t,T]. By applying Gronwall’s Lemma, we obtain the required estimate for p >
2 , and then also for p > 1 by Holder inequality. O

Lemma 2.2 Under (H1) and (Hc), the functions v;, i € 1y, satisfy a linear growth con-
dition, i.e. there exists a constant K such that

|vi(tax)| < K(l |33|),
or all (t,x,17) € [0,T x R% x I,.
J q

Proof. Under the linear growth condition on f;, g; in (HI), and the nonnegativity of the
switching costs in (Hc), there exists some positive constant K s.t.

T N(a)
E[ / Fxbme L)ds + g(X5™ Ir) = > e(XEP 1y, 1)
t

n=1

< K(l—i—E[ sup !XZ’”C""]),
w€e(0,T]

for all (¢,2,i) € [0,T] x R x I, & € Ay, i. By combining with the estimate in Lemma 2.1,
this shows that

vi(t,z) < K1+ |z|).

Moreover, by considering the strategy o with no intervention i.e. N(a’) = 0, we have

T
w(to) = B[ [ SO s+ g0 )
t

_K(l + ELEI[BI?T] ‘XZCL”&” )

Y]

7



Again, by the estimate in Lemma 2.1, this proves that
vi(t,z) > —K({1+|z|),

and therefore the required linear growth condition on v;. O
We now turn to the proof of the Proposition.

Proof of Proposition 2.1. Fix (¢,z,i) € [0,7] x R? x I,. Denote by a* = (7", (})n>0 an
optimal strategy associated to v;(t, z):

N(a*)

T
B [ 1t s+ oK ) = 3 X5 )] (21

n=1

where I* is the indicator regime associated to a*. Consider the process (Y1 Z6@:a™)
solution to the following Backward Stochastic Differential Equation (BSDE)

yhoe' = g(XEP I} / FXL™ I3 ds (2.8)
— / ZL50" W, — L™ 4 olwe” | t<u<T
u
and satisfying the condition

T
E[ sup ]Y;’”C’a*ﬂ —HE[/ |Z§’$’°‘*|2ds} < 00.
s€t,T) t

Such a solution exists under (HI1), Lemma 2.1 and E[[C’;x’a* ?] < 0o0. Moreover, by taking

expectation in (2.8) and from the dynamic programming principle for the value function in
(2.7), we have

VEee = op(u, XE5T), t<u<T.
From Lemma 2.1 and 2.2, there exists for each p > 1 a constant K, such that

Eﬂ[ sup \Yjvw’“*\p] < K,(1+|zP). (2.9)
u€[t,T)

We now prove that there exists a sequence K = (K,), which does not depend on (t,z,14)
such that

E[|CE™P] < Kp(1+ |z[P) . (2.10)
Applying Itd’s formula to [Y4%27|2 in (2.8), we have
* T * * T * *
‘Y;t,m,a ‘2_‘_/ |Z§,a:,a ’2d8 _ ‘g(X%x,a 71%)’2_'_2/ Y;t,ar,a f(X?aﬂ,a ,I;)ds
t t

T T
_ 2/ Y*St,x,oz ZE,I,O[ dWS _ 2/ Y*St,x,oz dcﬁ,x,a )
t t



Using (HI) and the inequality 2ab < a® + b? for a,b € R, we get

T
[ 1z s < k(14 sup [T sup VIR CRE - 0P sup (Vi)
t s€t,T] selt,T] s€t,T)

T
—2 / yhea' zbaet gy (2.11)
t
Moreover, from (2.8), we have

5 =G < K (1 sup [XET 4 sup |VEee
s€[t,T] selt,T)

T y 2
+ ‘/ ztweaw,|") (2.12)
t

Combining (2.11) and (2.12) and using the inequality ab < 62% + %, for a,b € R and ¢ >
0, we obtain

T
* * * 1
/ 28 Pds < K((1+2)(1+ sup |XE2"[2) 4 sup VAo [P (e 4 )
t s€[t,T] s€[t,T) €

+e / AR / Yo" b aiw
t t

Elevating the previous estimate to the power p/2 and taking expectation, it follows from
BDG inequality, Lemma 2.1 and (2.9) that

T 3
* 2 * 1 *
E[(/ |ZLEe |2d8>2:| < Kp((l—l—sg)(l—i—E sup | X5 |p) + (Eg + = )E sup [Y 5P
t s€[t,T] £2 s€(t,T]

)

< (et ) ete]( [ 1z pas) |

T
+E |:</t D/st,x,a* Z;t,m,a* ’2d5>

1 T . p
< Kp((+[eP)(1+e8 + ) +55E[(/ 78 as) *]) |
g2 t

T T
. P . .
+ €%E‘ / Zﬁ,i&& dLLs —|— E‘ / Ygtﬂjvoé Z;f,l‘,a dWS
¢ t

2
4

D (2.13)

where we used again the inequality ab < g—z + # for the last term in the r.h.s of (2.13).
Taking € small enough, this yields

s( [ 126 ) ] < Kol 1el)

Elevating now inequality (2.12) to the power p/2, and using the previous inequality together
with BDG inequality, we get with the estimate of Lemma 2.1 and (2.9):

E|CLPY — CH P < Ky(1 + |z|P), (2.14)



for some positive constant I_(p. Since a* is optimal, and from the triangular condition in
(Hc), we know that at the initial time ¢, there is at most one decision time 7;. Thus,
from the linear growth condition on the switching cost, E[|CF™ [P] < K, (1 + |z|P), which
implies with (2.14) that o* € .A{i-, and proves the required result. O

In the sequel of this paper, we shall assume that (HI) and (Hc) stand in force.

3 Time discretization

We first consider a time discretization of [0, 7] with time step h = T'/m < 1, and partition
Ty = {ty = kh,k =0,...,m}. For (tx,1) € T}, x I, we denote by .A?k’i the set of admissible
switching controls o = (7p, Ly ), in Ay, ;, such that 7, are valued in {¢h,¢{ =k,...,m}, and
we consider the value functions for the discretized optimal switching problem:

m—1
vl (te, 1) = sup E[Zf(X:;@’“,Itm+g<X§fn’f’a,Itm>
O‘E‘At}tlk,i —
N(e)
- (XM 11 )| (3.1)
n=1

for (tg,i,2) € T x I, x R%

The next result provides an error analysis between the continuous-time optimal switch-
ing problem and its discrete-time version.

Theorem 3.1 For any ¢ > 0, there exists a positive constant K. (not depending on h)
such that

it @) — ol (b, )] < Ko(1+ |a|)ha—s,

for all (ty,z,i) € Ty x RY x 4. Moreover if the cost functions c¢;j, 1,1 € Iy, do not depend
on x, then the previous inequality also holds for e = 0.

Remark 3.1 For optimal stopping problems, it is known that the approximation by the
discrete-time version gives an error of order h%, see e.g. [11] and [1]. We recover this rate
of convergence for multiple switching problems when the switching costs do not depend on
the state process. However, in the general case, the error is of order h3~¢ for any € > 0.
Such feature was showed in [5] in the case of uncontrolled state process X, and is extended
here when X may be influenced through its drift and diffusion coefficient by the switching
control.

Before proving this Theorem, we need the two following lemmata. The first one deals
with the regularity in time of the controlled diffusion uniformly in the control, and the
second one deals with the regularity of the controlled diffusion with respect to the control.

10



Lemma 3.1 For any p > 1, there exists a constant K, such that

sup ~ max

th,m,oz _th,m,a H < K.(1 h%
a€Ay, ; kstsm—1 Sub ‘ s te ‘p = p(1+[z[)h2

SE[t@,tg+1]
forallz € R, i € I, k=0,...,n.
Proof. Fix p > 1. From the definition of X%®® in (2.3), we have for all (t;,x,i) €

Tp x RYx I, and a € Ay, 4,

S
E[ sup [xioo - ximof] < K (E[( /t br, (XL |du )|
0

ue[tfvs]

+ IE[ sup
ue[tg78]

1)

for all s € [tg,tp41]. From BDG and Jensen inequalities for p > 2, we then have

/ o1, (XP5) AW,

ty

E[ sup {X;vxaa—xffya\p} < Kphé’1(1&[/8\1;1“()(3%0‘)\%4 +E[/S|01u(Xi’x’a)‘pdu}),
ty ty

u€|[ty,s]

From the linear growth conditions on b; and o3, for i € I;, and Lemma 2.1, we conclude
that the following inequality

E[ sup \X;@’C“—Xf’w\p] < K,(1+|zP)ht,

s€[tetos1) ‘
holds for p > 2, and then also for p > 1 by Hoélder inequality. O
For a strategy a = (7, tn)n € Ay,i we denote by & = (7, in)n the strategy of ‘A?k,i
defined by
T = min{t, € Ty, : tp>71,}, In = Ln, n € N.

h

The strategy & can be seen as the approximation of the strategy a by an element of Atw.

We then have the following regularity result of the diffusion in the control a.

Lemma 3.2 There exists a constant K such that

1
1

| < K(E[N(a)ﬂ) (1+ |z])h? |

N

sup }X;]mxaa _ X£k7x7a|
Se[tva]

forallz € R, i €1, k=0,....,n and a € Ay, ;.
Proof. From the definition of X%*® and X% for (tg,x,i) € Ty x Ry x I, a € -Atli,z’,

we have by BDG inequality:

E[ sup |X§’$’a —Xg’z’&IQ} 2

u€lty,s]

IN

K(E[ [ [p(XE5, 1) = b(X™, 1) *du]
ty

+ E[ ) | (XE™ 1) — o (X5, fu)\QduD ,

123

11



for all s € [tg,T]. Then using Lipschitz property of b; and o; for i € I, we get:

ELS&ES]‘X;e,:p,a_X;,x,aﬂ < E[/ ’tha Xta:a’ d}
+IE[ \bXtMI) b(Xi"’”’O‘,fu)fdu}
+E[ o (X559 1,) — o(X5, T,) )[*au))
< (E[ / sup | X7 — Xﬁ’w’d|2du] (3.2)
t

Kk TE tk,u]

S
—I—E{( sup ‘Xt‘“"| +1)/ ll;,,éfcls])7
u€lty,,T) t, °

for all s € [tg,T]. From the definition of & we have

/tllﬁéjsds < N(a)h,
k

which gives with (3.2), Lemma 2.1, Remark 2.1 and Hélder inequality:

E[ suwp [xim - ximP] < K(E| / " sup |Xpme — Xpna | dul

WE Lk, 9] tr TE[tk,ul
1
+ (EIN(@)?)* (1+ [o)h),
for all s € [tg, T]. We conclude with Gronwall’s Lemma. O

We are now ready to prove the convergence result for the time discretization of the optimal
switching problem.

Proof of Theorem 3.1. We introduce the auxiliary function 17? defined by

pt N(«a)
FOXE2, L)ds + g(XE5 Tr) = 3 (X2 1 g,00)|

tE n=1

oMty x) = sup E[
ocEA?k,i

for all (t,z) € T), x R?. We then write
[0i(th, @) = ol (b, )| < Jviltn, @) — 8 (b, @)| + (8] (b, @) — o] (g, )]

and study each of the two terms in the right-hand side.
e Let us investigate the first term. By definition of the approximating strategy & = (7, in)n

€ A?k ; of a € Ay, ;, we see that the auxiliary value function @ may be written as
T N(@)
- c & T t 5 1~ T t B 7~ Ind Ind
vz}'l(tkﬂx) = S}ip E f(X;:k,x’aaIs)ds"i‘g(XjExaaIT) - Z C(X;Zmayén—laLn) s
€A i 173 n=1
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where I is the indicator of the regime value associated to &. Fix now a positive sequence
K = (Kp), s.t. relation (2.6) in Proposition 2.1 holds, and observe that

T
sup E[
aGA{Z’i(az)
(g, z) < vilty, )
T N(a)
-  sup [ PO L) ds + g(XE Ir) — 3 c(Xif;»xva,Ln_l,Ln)]
23

aE.AfZ (@)

(2"

N(a)
FOXEm T ds + g(X ™ Ir) = Y c(X;:“’“,zn_l,znﬂ
n=1

IN

n=1

We then have

vilt @) = T (t2)] < swp AL L(0) + A (a)], (3.3)
a€Af (2)
with
T .
Bll0) = B[ [ A1) — FOX00 L) ds 4 oK, Ir) = (X5, T
12
N(a)
Afk, ( ) = E[Z‘ (th,za bn— th)_C(th,m,a anlazn)”-
n=1

Under (HI), and by definition of &, there exists some positive constant K s.t.

T
A%k’ (o) < K[ sup E[‘Xﬁk’x’a—X?’m’a” JrIE[( sup | X% + )/ lls;éfsds]) .
s€[tg,T) s€tg,T] ty

< K( swp E[[xire - xpood||

s€[ty,T]
T 1
JE[[ 1)),

by Cauchy-Schwarz inequality. For o € Atk ;(z), we have by Remark 2.1

+ (1+ sup ‘Xt’“’xo‘|

s€[ty,T]

E[/tT 1ot ds} < hE[N(a)} < nKy(1+ |z|)h,

for some positive constant > 0. By using this last estimate together with Lemmata 2.1
and 3.2 into (3.4), we obtain the existence of some constant K s.t.

sup Al () < K(1+ |z)h?, (3.5)
ac AL ()

for all (ty,z,i) € Tj x R? x 1.

13



We now turn to the term A? (). Under (HI), and by definition of &, there exists some
positive constant K s.t.

N(a)
M) < KE[ 3" |xime _ xtos|
n=1
N(a) N
([ I xie] eyt s oo o]
N(a)
< ( [Z ‘th7x7a _ X;:,a?,a”

sup }th#ﬂ Ne sz,iv,d‘
s€ty,T]

by Cauchy-Schwarz inequality. For o € Agl(aj) with Remark 2.1, and from Lemma 3.2,

2), (3.6)

we get the existence of some positive constant K s.t.

HN(a)H K(1+ |z)h7 . (3.7)

tr,x,a tg,x,&
sup ‘Xs’f - X ‘
2 Se[tsz] 2

On the other hand, for any ¢ € (0, 1], we have from Holder inequality applied to expectation
and Jensen’s inequality applied to the summation:

N(a) N(a) .
B[ Y Jxioe - x| < (B] 3 e - x|
n=1 n=1
. N e
< (B[IV@PE Y e - xiee)?])
n=1
n—1 ) L
< (Y E[IN@F swp |xioe - )
=k s€[testeq1]
- t,x,a
< | N(a)] max sup | Xboe _ xh
he 2 k<t<m-—1 SE[te,t[_H}' s t) :

by Cauchy-Schwarz inequality. By Lemma 3.1, this yields the existence of some positive
constant K; s.t

N(«a)
[Z\th”— x| < K1+ [al s (3.8)

By plugging (3.7) and (3.8) into (3.6), we then get
A? (@) < K.(1+|z))hie. (3.9)
Combining (3.5) and (3.9), we obtain with (3.3)

it ) — D2ty 2)| < Ko(1+ |z|)hz s .

14



In the case where ¢ does not depend on the variable z, we have A7 (a) = 0, and so by
(3.3), (3.5):

it @) — B (tg, )] < K(1+ |z[)h2 .

e For the second term, we have by definition of vlh and f}f-‘:

m—1

tot
5 (ths) = o} (tr,2)] < sup E| DO / [FXEm0 1) = F(X 1) ds|,
a€A} ;=g Ut

since Iy = Iy, on [tg,te11). Under (HI), we get

]f)f(tk,:v)—vf‘(tk,aj)\ < K sup max sup IEUX?““—XZ‘T’O“],

eA?k i k<€<m 1 SE[tz,tz_H]

for some positive constant K, and by Lemma 3.1, this shows that
[0t 2) = of (b 2)| < K(L+[a])h>
OJ

In a second step, we approximate the continuous-time (controlled) diffusion by a discrete-
time (controlled) Markov chain following an Euler type scheme. For any (t,x,i) € Tp X

R? x Ty, a € A} ;, we introduce (Xth’ Y e defined by:

vhite,x,a vhte,z,«a hty,x,«
Xy, =z, X,h = FItZ(X yO041), k<l<m-—1,
where

FlM(x,0p41) = 2+ bi(x)h + oi(z)Vh O,
and Vp11 = (Wy,,, —Wi,)/Vh, k=0,...,m—1, are iid, N'(0, I;)-distributed, independent

of Fi,. Similarly as in Lemma 2.1, we have the LP-estimate:

max ‘Xth’t’“’m’ﬂ
l=k,....m

sup H < K1+ |z)), (3.10)

ac Al

th,t

for some positive constant K, not depending on (h, tx, x, ). Moreover, one can also derive
the standard estimate for the Euler scheme, as e.g. in section 10.2 of [10]:

sup H max |Xt‘“’$a Xhtk’wa‘

h l=k,....m
ac Al

< Ky(1+|z|)Vh. (3.11)

We then associate to the Euler controlled Markov chain, the value functions v , @ € Iy, for
the optimal switching problem:

m—1
Tty ) = sup E[Zf X[eme 1 )b g(XPteee
acAl . —
k>
N(a)
- (XMt 1 )] (3.12)
n=1

The next result provides the error analysis between th by 171}-‘, and thus of the continuous

time optimal switching problem v; by its Euler discrete-time approximation Elh.
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Theorem 3.2 There exists a constant K (not depending on h) such that
0P (t, 2) — T (tr,2)| < K1+ |z)Vh, (3.13)
for all (ty,x,i) € Tj, x R? x I,.

Remark 3.2 The above theorem combined with Theorem 3.1 gives the rate of conver-
gence for the approximation of the continuous time optimal switching problem by its Euler
discrete-time version: For any € > 0, there exists a positive constant K, s.t.

0t ) — TP (te,2)| < Ko(1+ |z])h3 e, (3.14)

for all (tg,z,4) € Ty x R? x ;. Moreover if the cost functions c¢;j, i,% € I, do not depend
on z, then the previous inequality also holds for e = 0.

Proof of Theorem 3.2.

e Step 1. For (ty,z,i) € T, x R? x I, denote by a™* (resp. a*) the optimal switching
strategy corresponding to v(tg,x) (resp. P (t,x)). Let us prove that there exists some
constant K, not depending on (tx, z, 14, h), such that

E|[N(a")|* + E|N@"")|* < K1+« (3.15)

We use discrete-time arguments, which are analog to the continuous-time case in the proof

h,*

of Proposition 2.1. For a®* optimal strategy to v!(t,z) with corresponding indicator

regime I™* | and to alleviate notations, we denote by Y; = vlh*(tk,Xt’“’xa ), Fy =

tie 0% Thox o tie,z,al* Thox o .
f(X, 1)), o = (X, Ay tg ), for £ = k,...,m. From the estimates on

Xf:’x’a in Lemma 2.1, we know that

E[ sup (\1’2]2—}—]}}]2—1—]0@]2)] < K1+, (3.16)

k<t<m

for some positive constant K. Moreover, by the DPP for the value function vlh,

we have :
}/g = E[}/g_;_ﬂfte]‘l-th—Cg, f:k‘,...,m—l.

Letting AM1; := Y41 — E[Yp41|F,], we obtain in particular

—1 m—
g = hz Z AMyyp1 + (Yo — Yi),
=k

l=k l=

and so by (3.16)

m—1 2
< K(1+|z*)+3E ( AM4+1>

fm—1
= K(1+[z)+3E|) AM}HI : (3.17)
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Now by writing that

m—1 m—1

Yo -Y7 = > (YA -Y) = D (Ve = Y)(Yesr + V)
=k =k
m—1

= (AMypyq — hFy+c)(2Ye + AMyy1 — hEy + ¢),

l=k
we get
m—1 m—1 m—1
AMP = Y2 —=Y5 =Y hFy(hF;—2Y;—2¢) =2 aY
=k =0 =0
-1 m—1
- AMyi1(2Yy — 2hF) + 2¢)) — Y cf.
=0 =0

Since E {AM4+1|}}Z} = 0, this shows that

[y

m— m—1 m—1
IE[ 3 AM}H} < E[Y,,% — 5" hE(hFy - 2, — 2¢;) - 2 cm}
= {=0 =0
m—1
< K(1+ %)+ 2EH 3 cmH, (3.18)
£=0

where we used again (3.16). Now since ¢, > 0,

m—1 m—1
5| ]| < B[(Xa) s ]
< eE[m_lAMfﬂ} +K(1+ %)(1 + |z|?),

~
o

for all e > 0, by (3.16), (3.17) and Cauchy-Schwarz inequality. Hence taking ¢ small enough
and plugging this estimate into (3.18), we obtain

—_

m—

E[ > AME,| < KO+,
=k

Using (3.17) one more time and recalling that N(a/*) < 7", ¢, for some 1 > 0 under the

uniformly lower bound condition in (Hc), we thus obtain

E|N (/)|

< K14+ |z)?).

The proof for N(a"*) is the same, by using estimate (3.10) on H)Z'Z’tk’x’aHz.

e Step 2. By Step 1, the supremum in the definitions (3.1) and (3.12) of v/ (¢, ) and
ol (t), z) can be taken over .A?klf(x) = {a e A} ;st. E[N(a)]* < K(1+]z[*)}. Now, for
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any o € Afklf(az), we have under (HI) and by Cauchy-Schwarz inequality

—_

m

E |: Z h‘f(Xff 7x7a7 It@) - f(X[;’th:’a’ It()} + ‘g(X:Z,x7a7 Itrn) - g(Xth,,;ltk7x7a7 Itm)
l=k
N(a)
+ ’C(Xf—?m’aa ln—1, Ln) - C(qu_ztk,x,aj ln—1, Ln)”

[y

n=
< KE [(1 + N(a))( sup ‘ka,fﬂ,a _ Xf,tk,m,a‘)]
k<t<m ¢

< K(+fal)| sup [xfome - ghtene|
kE<t<m 2

< K1+ |z[)Vh, (3.19)

by (3.11). Taking the supremum over a € AZCIZ((:/U) into (3.19), this shows that

[ (ty, ) — ol (tr2)| < K1+ [z)Vh.

4 Approximation schemes by optimal quantization

In this section, for a fixed time discretization step h, we focus on a computational appro-

ximation for the value functions T)Zh, i € I, defined in (3.12). To alleviate notations, we

shall often omit the dependence on h in the superscripts, and write e.g. v; = 17?. The
corresponding dynamic programming relation for v; is written in the backward induction:

Vi(tm,z) = gi(z),
v;(ty,z) = max {E[ﬁi(tkﬂ,f(f:ﬁ’i)] + fi(x)h I?gl;([ﬁj(tk,x) — ij(iC)]}»
for k=0,...,m—1, (i,r) € I, x R%, where X1 is the solution to the Euler scheme:

Xiomt = F,L'h(x,’ﬁk+1> = x—l—bz-(a;)h—l—ai(x)\/ﬁﬁkﬂ.

trt1

Observe that under the triangular condition on the switching costs ¢;; in (Hc), these
backward relations can be written as an explicit discrete-time scheme:

Biltme1) = gi(a) (4.1)
Uiltr, ) = max {E[ﬁj(fkﬂa X0 + fi(a)h — Cij(ﬂﬁ)}, (4.2)

q
for k=0,...,m—1, (i,z) € I x R?. Next, the practical implementation for this scheme

requires a computational approximation of the expectations arising in the above dynamic
programming formulae, and a space discretization for the state process X valued in RY.
We shall propose two numerical approximations schemes by optimal quantization methods,
the second one in the particular case where the state process X is not controlled by the
switching control.

18



4.1 A Markovian quantization method

Let X be a bounded lattice grid on R? with step J/d and size R, namely X = (5/d)Z? N
B(0,R) = {zx € R?: 2 = (§/d)z for some z € Z¢, and |z| < R}. We then denote by Projx
the projection on the grid X according to the closest neighbour rule, which satisfies

|z — Projg(z)| < max(|z| — R,0)+0, VzeR% (4.3)

At each time step t; € Ty, and point space-grid x € X, we have to compute in (4.2) expecta-
tions in the form E [go()_(f:fll)}, for p(.) = l(tgy1,.), i € I;. We shall then use an optimal
quantization for the Gaussian random variable ¥, which consists in approximating the
distribution of ¢ ~» N (0, I;) by the discrete law of a random variable U of support N points
wy, 1 =1,...,N,in R? and defined as the projection of ¥ on the grid {wy, ..., wx} follow-
ing the closest neighbor rule. The grid {w1,...,wx} is optimized in order to minimize the
distorsion error, i.e. the quadratic L?-norm H19 — 1§H o- This optimal grid and the associ-
ated weights {m1,...,7n} are downloaded from the website: “http://www.quantize.maths-
fi.com/downloads”. We refer to the survey article [13] for more details on the theoretical
and computational aspects of optimal quantization methods. In the vein of [14], we intro-
duce the quantized Euler scheme:
Xpeot = Projy (F}'(x,9)),

[

and define the value functions v; on T,, x X, ¢ € I; in backward induction by

bi(tm,x) = gi(x)
~ ~ otk X,
O;i(ty,x) = Ijnezi( {E[vj(tkH,Xt:H])] —i—fj(a;)h—c,-j(a;)}, E=0,...,m—1.

This numerical scheme can be computed explicitly according to the following recursive

algorithm:
Oi(tm,z) = gi(z), (x,i) e Xx]I,
N
oi(te, ) = max [lz;m 0j (t11, Projy (Ff (z, w)) + fi()h — cij(x) |, (2,i) € X x L,
for k =0,...,m—1. At each time step, we need to make O(N) computations for each point

of the grid X. Therefore, the global complexity of the algorithm is of order O(mN(R/§)?).

The main result of this paragraph is to provide an error analysis and rate of convergence
for the approximation of v; by ;.

Theorem 4.1 There exists a constant K (not depending on h) such that
|03tk @) — Di(tgo )| < K exp (Kh™72||[0 =], (1 +a| + %)
[0 n 20— 0], (1 + e + )
b esp (Kh 20— ) (14 Jaf? + (D)2)],
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for all (ty,x,i) € Ty, x X x 1. In the case where the switching costs c;j do not depend on

x, the above estimation is stengthened into:
st ) — it )| < K [0l exp (0720~ 3],) (14 1ol + )

0 1 —1/2 3 2 02
+ 5+ e (Kh Hv"—ﬁ||4)<1+\x| +(3) )]

Remark 4.1 The estimation in Theorem 4.1 consists of error terms related to

e the space discretization parameters §, R, which have to be chosen s.t. 6/h and 1/Rh
go to zero.

e the quantization error Hﬁ — 1§Hp of the normal distribution N (0, I;), which converges

-1 -1
to zero at a rate Né, where N is the number of grid points chosen s.t. h2 N @ goes
to zero.

By combining with the discrete-time approximation error (3.14), and by choosing grid
parameters d, 1/R of order h%, and a number of points N of order 1/h? we see that the
error estimate between the value function of the continuous-time optimal switching problem
and its approximation by Markovian quantization is of order h3. With these values of the
parameters, we then see that the complexity of this Markovian quantization algorithm is
of order O(1/h%+1).

Let us now focus on the proof of Theorem 4.1. First, notice from the dynamic pro-
gramming principle that the value functions v;, ¢ € I, admit the Markov control problem

representation:
m—1
bi(ty,T) =  sup E[ 3 HX T Tk + g(X T,
O‘EA?W (=
N(o)
= > AX Ln)], (4.4)
n=1

where X% is defined by

LT vtk Ts ; h (xteT,0 g
Xyt =, XU = Projy(Fr, (X", 0e4)), k<l<m—1,

for a € Aﬁk,i, and 1§k+1, k=0,...,m—1, are iid, @—distributed, and independent of F, .

We first prove several estimates on Xtwer,
Lemma 4.1 For each p > 1 there exists a constant K, (not depending on h) such that

ot
a€A} k<l<m

+ sup HFE@ (ij’x’o‘,@kﬂ) H (4.5)
p aEA?k k<t<m—1 p

< Kyowp (2o =], ) (14101 +7).
for all (tg,x,i) € T, x X x 1.
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Proof. We fix (ty,2,i) € T, x X x I, a € A}, and denote X;, = X;*™% k < £ < m.
First by standard estimates on solutions to SDEs, we have

o 50, = o

‘XW Hp + K, h. (4.6)

Then, by using the linear growth property of ¢ and the fact that 1§‘g+1, Y41 are independent
of Xy,, we obtain

HF& (Xt Dpar) — Fﬁe (Xte71915+1)Hp < Kh'/? (1 + HX@

p) -l @

Combining (4.6),(4.7) and the fact that [Projx(y)| < |y| + ¢ for all y € R?, we get

e R (e S I
< R KR 0 -] )| X, o Eph 5+ KR [0 )|,
By induction, recalling that h = %, and since (1 + %)m < €Y for all y > 0, we obtain
Xy, < Kpexp <Kph—1/2Hq9 - @HP) (1 + || + % +hY2||— b p)
< Kpexp (Kph 20 9], <1 Tl + }‘i) |
for all k < ¢ < m. The estimate for F"(X;,,9,,1) then follows from (4.6). O

Lemma 4.2 There exists some constant K (not depending on h) such that

ot x,0 vli, T,
sup H sup }Xt;’ ’ —thf“’ ’
aEA?k’i k<t<m

2
) . 5
< K[ 0= d]yexp (K020 = d],) (1+ 12l + 7)

5 1 _ ; g
o e (=) (1l ()] @)

for all (ty,x,i) € Ty, x X x I4.

Proof. As before we fix (t,x,4), @ and omit the dependence on (ty,x,7, @) in )A(té. Let us

first show an estimate on HXWJA - X0 . For k </ <m—1, we get

Hth+1 - Xte+1

s S 2, ], e - B, e,

+ (4.9)

FI}; (thaﬂ€+l) - FI}EZ (th,'&g+1)‘

)
On the other hand, since

ly|?

ly — Projx(y)| < 0+ |yllyysry < 5+f,
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by inequality (4.3), we have

2

= (4.10)

HXWH_FI}EZ(XW,&Z—H)‘L < 0+ R

Furthermore by standard estimates for the Euler scheme (see e.g. Lemma A.1 in [14]), we
have

| Fh, (Ko 0en) = Fl (R0, = (L KRR, = K|

Plugging these last two inequalities and (4.7) into (4.9), we get :

A HQ

1l

HXt”l B Xt”l 2 R

< 1+ Kh)HXte -~ X,

,H R (HXQHQ + 1) |9 — 9|, + 0+

Finally since th = th = x, we obtain by induction, and using the estimates (4.5) on

4.

Xt/z - Xt/z 9 < K[hil/Q (Khi ) 2) (1 + |33’ + %) + %
1 . ; 5
+ =rexp (KB™Y2 [0 = 9]),) (1+ e + (5)°) ], (4.11)

for all kK < ¢ < m. Now by definition of th, th, we may write for k < /£ <m —1:

Xte+1 - Xte-u = (Xte - th) + h(b(thv Ite) - b(th Ite))
+ Vh(o(Xe,, I, )01 — 0(Xey, I, )9041)
+ Projx (Ff,, (X, 0e41)) — Fr,, (X, Vo),

Since X;, = X;, (= x), we obtain by induction:

m—1
< hy Hb(fft[,ftz) —b(Xep )|

sup ’Xté — th

k<t<m
+\fH sup (Xtraltr)'gﬂrl —U(Xtmfn)ﬂrﬂ‘H
k<é<m TSE 2
m—
Z)PmJX Fl (Rt 9e00)) = FE, (R Do) || (412)

l=k

We now bound each of the three terms in the right hand side of (4.12). First, by the
Lipschitz property of b and (4.11), we have

h Z Hb(XtNItZ) - b(thIte)HQ

< K[n 20— | exp (Kn~ 20— 0]l) (14| + )

6 ]. 1/2 ~ 2 (5 2
+ 5+ o exp (Kh™ }|19_Q9H4)(1+|xy +(3) )}

22



Next, recalling that 1§g+1 is independent of F;,, with distribution law 1§‘, and since 9 is an
optimal L2-quantizer of 1, it follows that E[294+1|}"te] = E[J] = E[0] = 0. Thus, the process
(> r<e (X, It )01 — 0(Xp, I, )0ri1)e is a Fp,-martingale, and from Doob’s inequality,
we have:

H sup ‘ZU(XtNItT)ﬁrH _U(Xtr)ItT)ﬁr—i-l’H
k<t<m 2 2

3

< K(E[ ‘U(th,ltz)2§4+1fO'(XtZ,Itl)ﬁg_H’Q}) :
l

N

Il
B

By writing from the Lipschitz condition on o¢; that
‘O'(tijtg)'lgé—i-l - U(thalte)79€+1|2 < K(‘th — th}2‘19£+1‘2
+ (U4 Z ) [9e1 = Do ),
and since Yy 1, 1§g+1 are independent of F;,, we then obtain

\/EH sup | ZU(thItr)ér—i-l —o(Xy,, Itr)ﬁr+1|H2

k<t<m

r</t
< Kkg?élg—l [H)AQZ - Xt[HQ + (1 + )A(QHQ) Hq? — 1§H2}
< K[~ s (K120 - ) (1 + 1ol + )
0 1 —1/2 A 9 0.2
+ 5+ zrexp (K20 = d)) (1+ 122+ (1)) |.
where we used the estimates (4.5) and (4.11). Finally the third term in (4.12) is bounded
as before by (4.10). .

Proof of Theorem 4.1. For (t;,x,i) € T}, x X x [, denote by &* the optimal switching
strategy corresponding to 9;(tg,x). Then, similarly as in the derivation of (3.15), by using
the estimation (4.5) for HX:;IO‘HQ, we get the existence of some constant K, not depending
on (tg,z,i,h), such that

. 5
< Kexp (Kh™2[0 = d||,) (1+ |2 + ﬁ)

E|N (&%)

Therefore, the supremum in the representation (3.1) of v;(¢x, x) can be taken over the subset
A (1) = {a € Al ; st E[N(o)> < K exp (Kh’1/2”19 - 1§H2) (1 + |z|? + g—z) } Then,

Lt
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for a € /l?klf(x), we have under (HI) and by Cauchy-Schwarz inequality

|: Z h‘f th,x “ Itl f(Xf;V‘LO" It[)} + ‘g(X';fn@»a’ It'm) - g(X:::x’a7 Itm)‘

N(a)
+ Z ‘C(Xf'i?x’a) ln—1, L’I’L) - C(Xﬂff-l;;tk’x’av ln—1, Ln) ’]
n=1

< KIE[(I—}—N(@))( sup ‘th’xa—Xff’m’a )]
k<t<m

< Kexp(Kn'29 i) (1+|xr+§)H sup | XHT — X
R k<o<m

< Kexp (KR =) (14 fal + 2) [3 4577210 = 9], (1 + laf + 7)
1 . o
+ = exp (Kh™ D1+ +(5)7)]. (4.13)

by Lemma 4.2. Taking the supremum over a € /l?kff () in the above inequality, we obtain
an estimate for |v;(tx, ) — 0;(tx, z)| with an upper bound given by the r.h.s. of (4.13),
which gives the required result.

Finally, notice that in the special case where the switching cost functions ¢;; do not
depend on z, we have

,_a

m—

‘6Z(tkax) _ﬁl(tkvx)‘ < SUE E[Z h‘f Xff7x7a7*[tg)_f(Xf;7x7a7Itg)‘
ac Al i =k

+ (K0, 1,,) = g(X7E" 1) |

< K sup E’Xff’m’a — Xff’m’a‘
a€A k<l<m
< K[p'2 (Kh™ i) (1+ |zl + %)
5 1 5 d\2
24— exp (KR = 3],) (14 122 + (5)%)],
by the estimate in Lemma 4.2. O

4.2 Marginal quantization in the uncontrolled diffusion case

In this paragraph, we consider the special case where the diffusion X is not controlled, i.e.
b; = b, 0; = 0. The Euler scheme for X, denoted by X, is given by:

XO - XO) th+1 — Fh(th7’l9k+1)
= X +b(Xi )b+ o(Xy )Wh g, k=0,...,m—1,

where ¥y 11 = (W, ., ~Wi,)/Vh, k=0,...,m—1, are iid, N'(0, I;)-distributed, independent
of F,. Let us recall the well-known estimate: for any p > 1, there exists some K, s.t.

1Xeull, < Ep[|Xoll- (4.14)
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Notice that the backward dynamic programming formulae (4.1)-(4.2) for v; can be written
in this case as:

Ui(tm,.) = gi(.), i€l
vi(tg,.) = Enez]ifX[P Uj (tgs1,.) + hfj — Cij]. (4.15)
q

Here P is the probability transition kernel of the Markov chain X, given by:
Plo(z) = Elp(Xy, )Xy =] = Elp(F"(z,9))], (4.16)

where ¥ is NV (0, I;)-distributed. Let us next consider the family of discrete-time processes
(ﬁi)k:o,...,m, i € I, defined by:

Vi = vty Xy), k=0,....m, i€l

Remark 4.2 By the Markov property of the Euler scheme X w.r.t. (F:,)x, we see that
(ﬁi)kzow,mv i € I, satisfy the backward induction:

Yo = 9i(Xe,) = gi(Xr), i€l
Y, = I;.gx{ [tk+1|ftk]+hf](th) Cij(th)}, k=0,...,m—1,
q

and is represented as
m— N(a)

}_/ttc = ess supE{ Z f thv Ite)h + Q(Xtm, Itm) Z C(XTn7 ln—1, Ln)
016-»4?]9 i l=k n=1

H

ftk} .

On the other hand, the continuous-time optimal switching problem (2.4) admits a repre-
sentation in terms of the following reflected Backward Stochastic Differential Equations
(BSDE):

T T
Vi = gi(Xr)+ f(XS)ds—/ ZLdWs + Kb — K}, i€ly, 0<t<T,
t t

T
Yz om0 and [ (- ma) - ey (X)aK; = 0. (417
J7F 0 JF

We know from [6], [9] or [8] that there exists a unique solution (Y, Z, K) = (Y*, Z", K")er,

solution to (4.17) with Y € S?(R?), the set of adapted continuous processes valued in RY

s.t. E[supgcicr [V3]?] < 00, Z € MQ(R‘]) the set of predictable processes valued in R? s.t.
fo |Z¢|?dt] < o0, and K* € S%(R), K} = 0, K* is nondecreasing. Moreover, we have

}/tz = (t Xt) 1€ ]Iq,
T N(@)
= €ss supIE[/ f(XS7 Is)ds + g(XTv IT) - Z C(X’Tn? ln—1, Ln) ‘Ft:|7 0<t<T.
aEA;; t n—=1
We recall from [5] the error estimation: for any € > 0, there exists some constant K. s.t.
i o 1
N R

for all i € I, and € can be chosen equal to zero when the switching costs ¢;; do not depend

on x.
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We propose now an optimal quantization method in the vein of [1] for optimal stopping
problems, for a computational approximation of (ﬁi)kzor-.,m- This is based on results
about optimal quantization of each marginal distribution of the Markov chain (X3, )o<i<m.
Let us recall the construction. For each time step k& = 0,...,m, we are given a grid I'j
= {z},... ,ac,iv’“} of Nj, points in R%, and we define the quantizer X), = Proj;,(Xy,) of Xy,
where Proj;, denotes a closest neighbour projection on I'y. For N being fixed, the grid I'
is said to be LP-optimal if it minimizes the LP-quantization error: || Xy, — Proj,(Xy, )|, -
Optimal grids I'p are produced by a stochastic recursive algorithm, called Competitive
Learning Vector Quantization (or also Kohonen Algorithm), and relying on Monte-Carlo
simulations of X'tk, E=0,...,m. We refer to [13] for details about the CLVQ algorithm.
We also compute the transition weights

” P[(Xtyy1s Xo) € Cr(Tiir) x Ci(T'y)]

B[R =2l Xy — 2] = < |
s (X1 = Tppa [ Xy = 23] P[Xy, € Ci(Tw)]

where C(I'y) C {x € R?: |z — 2! | = minyer, [z —y[}, I =1,..., N, is a Voronoi tesselation
of I'y. These weights can be computed either during the CLVQ phase, or by a regular
Monte-Carlo simulation once the grids I'y are settled. The associated discrete probability

transition pk, from Xk to Xk+1, k=0,...,m—1, is given by:
Ni1
Pyp(a}) = Z T o(@hr) = Elo(Xer) | X = 2]

U'=1

One then defines by backward induction the sequence of R%-valued functions 05 = (f}}i)ieﬂq

computed explicitly on I'y, £ = 0, ..., m, by the quantization tree algorithm:
o, = g, i€l
b = mez%x[]skﬁiﬂ—i—hfj—cij], k=0,....,m—1. (4.18)
J€lq

The discrete-time processes (fﬁi)kzo,m,m, it € I, are then approximated by the quantized
processes (Ylj)kzo,m,m, i € I; defined by

Vi o= (X)), k=0,...,m,icl,
The rest of this section is devoted to the error analysis between Y and Y. The analysis
follows arguments as in [2] for optimal stopping problems, but has to be slightly modified

since the functions v;(tg,.) are not Lipschitz in general when the switching costs depend on
z. Let us introduce the subset LLip(R?) of measurable functions ¢ on R satisfying:

lp(x) — o)l < K1+ z[+yhle—yl, Vo,yeRY,

for some positive constant K, and denote by

W, =  sup p(z) = oY)
b x,y€ERL xy (1 + |l‘| + |y‘)|.7,‘ - y|
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Lemma 4.3 The functions v;(ty,.), k =0,...,m, i € 1, lie in LLip(R%), and [v;(ty, .)]
is bounded by a constant not depending on (k,i,h).

LLip

Proof. We set 0}, = ¥;(t,.). From the representation (3.12), we have

m—1 N(a)
di(z) = sup [ PP Tk + oK 1) = 3 (X% 1, 0)],
O(G.A?kq é:k n=1

where X' is the solution to the Euler scheme starting from z at time t;. From (3.15),
notice that in the above representation for o (), one can restrict the supremum to A?klf (z)
= {a € Atk st E|N(a)|? < K(1+ |z*)} for some positive constant K not depending
on (tg,x,4,h). Then, as in the proof of Theorem 4.1, we have for any x,y € R?, and o €

AP () U AR (),

t i (7]
m—1 - - -
B[ Y AlAKIT 1) = PRV 1) + g(XE7 1) = g(X1EY, 1, )|

l=k

N(a)
=+ Z ‘C(Xiﬁ7x7 Ln—lvbn) - C(Xf-?xv Ln—labn)”
n=1
< KU |IN@)],)| su [Xir7 - Xiv|

< K+ [z + fyle - y\,

by standard Lipschitz estimates on the Euler scheme. By taking the supremum over “4;:[2( (z)
U Agff (y) in the above inequality, this shows that

o (2) = ()| < KL+ [2] + )|z — yl,
ie. v}, € LLip(R?) with [v}],,, < K. O

The next Lemma shows that the probability transition kernel of the Euler scheme
preserves the growth linear Lipschitz property.

Lemma 4.4 For any ¢ € LLip(R?), the function P"y also lies in LLip(RY), and there
exists some constant K, not depending on h, such that

[Pl < V3(L+O0M0)[el,L,:
where O(h) denotes any function s.t. O(h)/h is bounded when h goes to zero.
Proof. From (4.16) and Cauchy-Schwarz inequality, we have for any z,y € R%:

[P (x) — Plo(y)|

< (Ble(F"@.9) - so(Fhw,ﬁ))F)” 2
< [Plane (BI( + 1P @, 0)] + 1P . 0))2 PG, 0) — Py o))
< Vlelay, (B[ + [P 0) + [F ) () - Fr (. )2))E, (419
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where we used the relation (a+b-+c)? < 3(a>+b*+c?). Since ¥ has a symmetric distribution,
we have

E[(1+ [P, )2 + [P (,0) ) [F (x, 9) — F(y, )]
= SE[( 4P @) + [, 0)P) | a, 0) — FP(y, 0)P
(14 [P, =) + [Py, —0) )| F" (2, ~9) — F"(y, —0)

A straightforward calculation gives

SO+ F @ )P+ P, 0)P) [P, 0) — P, )

(14|, =0) + [P (y, ) ) [ F" (2, ~9) — Py, ~0)|*]

= (14 ]o+hb(@) + |y + hb(y)* + Blo(@)9] + hlo(y)d]?) [z — y + h(b(z) — b(y))|”
+ hl(o(x) = o(y))0]* (Jo + hb(x)[* + |y + hb(y)|*)

+ 4k (@ + hb(@)|o(2)9) + (y + hb(y)|o(y)9) | (@ — y + h(b(@) - b(y))| (o) - o (1))

+ 02 (|o(2)0 + |o(y)9]*)|(o(z) — a(y)I]*.
By Lipschitz continuity of b and ¢, and the fact that E[9|* < oo, we deduce that
E[(l + [F (@, )+ [F" (y,90)]*) | F (2, 9) — F*(y,9)
< (L+O0M)(+ |z +[y*)e - yl*.
Plugging this last inequality into (4.19) shows the required result. O

We now pass to the main result of this section by providing some a priori estimates for
|Y;, — Yi| in terms of the quantization error || X, — Xp]|.

Theorem 4.2 There exists some positive constant K, not depending on h, such that

m

max |V - V], < K;(H 1Xollr + 1 Xell) || Xe, — Xell., (4.20)
forany k =0,...,m, and (p,r,s) € (1,00) s.t. % = % + %

Proof. We set 0}, = ¥;(ty, .), and by misuse of notations, we also set V! = V! = o (Xj).
From the recursive induction (4.15) (vesp. (4.18)) on ¥}, (resp. %), and the trivial inequality
| max; a; — max; a;| < max;|a; — a;|, we have for all i € I

Vi =Yl = [0(Xe,) — 01 (X)]

< max |[P0], | (X4,) + hfi(Xe,) — cij(Xe,)] — [Prt) 0 (Xi) + hf(Xk) — ei(Xn)]

Jely

IN

jely

K}th, - Xk’ + 1]116%? |Ph77i+1()_(tk) - pk@iﬂ(Xk)’

IN
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by the Lipschitz property of f; and ¢;j, and so

Vi -V

max
i€ly

< KHth—XkH + max
P P

nax | P"of i (Xe,) = P (R0)| - (421)
i€lly p

Writing [, for the conditional expectation w.r.t. Xk, we have for any i € I,

‘Phﬁz+l(th) - Pk’[)lichl(Xk)‘
‘Ph@i}—‘rl(xtk) - Ph@lic—&—l(Xk)’ + }Ph@lic-u(Xk) - Ek[PhUli-s-l(th)H
+ [ER[P 041 (Xi, )] — Prtg (X))
= ‘Phﬁlic-s-l(th) - th’li;-s—l(Xk)’ + }Ek[PhﬁliH(Xk) - Ph@lﬁ;—&-l()ztk)”
+ ‘Ek[?kiﬂ - %H”'

IN

Since Ky is a LP-contraction, we then obtain

thﬁli+1(th) - Pk@,iH(Xk)Hp

< 2| Phoa (Ky) — Profa(Kn)|| + ||V = Vi
< K(1+ O(h))H(l + | X | + | Xk]) | X, — Xk!Hp + HYZH - Y’IEHHP
< K+ 0MW) L+ [ Xoll, + [1Kell,) | o = | + [T = Vi . a22)

p

where we used Lemmata 4.4 and 4.3, Holder’s inequality and (4.14). Substituting (4.22)
into (4.21), we get

mae |V ¥,
< K+ 0m) (14 [ Xoll, + 1Kl )Xo = K|+ mae]|7s = V]|
q
for all £ = 0,...,m — 1. Since maxe, H)_/Tln — Y;LHP = maXel, Hgi()?tm) — g()A(m)Hp <
K HXtm — Xme by the Lipschitz condition on g;, we conclude by induction. O

Remark 4.3 Assume that X}, is chosen to be an L?-optimal quantizer of th for each k =
0,...,m. Tt is in particular a stationary quantizer in the sense that E[X;, | Xy = Xj (see
[13]), and by Jensen’s inequality, we deduce that HXkH2 < || X, Recalling (4.14), the
inequality (4.20) in Theorem 4.2 gives

>

max ||V, - ¥

o= KO+ Xoll) > [ X — X
{=k

[

for all K = 0,...,m. In particular, if Xg = z¢ is deterministic, then Xo = x0, and we have
an error estimation by quantization of the value function function for the discrete-time
optimal switching problem at the initial date measured by:

Hé%X!@i(Owo)—@é(wo)\ < K(1+ [wol) Y || X — Xl (4.23)
1= k=1
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Suppose that one has at hand a global stack of N points for the whole space-time grid, to
be dispatched with Nj, points for each kth-time step, i.e. Y ;" N = N. Then, as in [2], in
the case of uniformly elliptic diffusion with bounded Lipschitz coefficients b and o, one can
optimize over the Nj’s by using the rate of convergence for the miminal L?-quantization
error given by Zador’s theorem:

1
L To.a|en]2a_
| X, — Xil|, ~ —= as Ny — oo,
Ny
where ¢y, is the probability density function of X3, , and HQDH (J lo(u |7"du . From [3],

1

we have the bound H‘PkHl < K./t for some constant K depending only on b, o, T, d.
d+2

Substituting into (4.23) with Zador’s theorem, we obtain

3

max |;(0, o) — vo(aco)‘
i€lly

k:
For fixed h = T//m and N, the sum in the upper bound of the above inequality is minimized
over the size of the grids I'y, £k = 1,...,m with

d
2(d+1)N
Ny = |————— 1|

2(d+1)
Zk 1 t

where [z] := min{k€ N, k > z}, and we have a global rate of convergence given by:

max |5;(0, z9) — vo(azo)| < 7(1 + [20])

icly h( Nh)
By combining with the estimate (3.14), we obtain an error bound between the value func-
tion of the continuous-time optimal switching problem and its approximation by marginal
quantization of order h3 when choosing a number of points by grid Nh of order 1/h2 .
This has to be compared with the number of points N of lower order 1/h? in the Marko-
vian quantization approach, see Remark 4.1. The complexity of this marginal quantization
algorithm is of order O (3.7, NxNg11). In terms of h, if we take Ny = Nh = l/h%d, we
then need O(1/h3*1) operations to compute the value function. Recall that the Marko-
vian quantization method requires a complexity of higher order O(1/ h4d+1)7 but provides
in compensation an approximation of the value function in the whole space grid X.

5 Numerical tests

We test our quantization algorithms by comparison results with explicit formulae for op-
timal switching problems derived from chapter 5 in [15]. The formulae are obtained for
infinite horizon problems, that we adapt to our case by taking as the final gain the (dis-
counted) value function for the infinite horizon problem.

30



We consider a two-regime switching problem where the diffusion is independent of the
regime and follows a geometric Brownian motion, i.e. b(x,i) = bz, o(x,i) = oz, and the
switching costs are constant c(x,4,j) = ¢i; ,i,j = 1,2. The profit functions are in the form
fi(t,x) = e Pth;ai, i = 1,2. From Theorem 5.3.5 in [15]), the value functions are given by:

v(0,z) = { A"+ Kikia, z < af
Box™ 4 Kokoa"? —cr2, x>}
Agxm+ + Kokox'2, T < x5

v2(0,2) = Alxm+ + Kik1xz"t — co1 <z <75
Box™ + Kokox?, x> T

where A;, B;, K;, 5 and 75 depend explicitly on the parameters. In the sequel, we take
for value of the parameters:

b=0,0=1,co1=c10=05, k1 =2ko =1, 11 =1/3, 2 =2/3, B=1.

We compute the value function in regime 2 taken at Xy = 3.0 by means of the first
algorithm (Markovian quantization). We take R = 10X, and vary m,d and N. The results
are compared with the exact value in Table 1. Notice that the algorithm seems to be quite
robust and provides good results even when dm and 7 do not satisfy the constraints given
by our theoretical estimates in Remark 4.1.

In Table 2, we have computed the value with the marginal quantization algorithm. We
make vary the number of time steps m and the total number of grid points N (dispatched
between the different time steps as described in Remark 4.3). We have used optimal quan-
tization of the Brownian motion, and the transition probabilities 7r,l€l/ were computed by
Monte-Carlo simulations with 10° sample paths (for an analysis of the error induced by
this Monte-Carlo approximation, see Section 4 in [1]). We have also indicated the time
spent for these computations. Actually, almost all of this time comes from the Monte-
Carlo computations, as the tree descent algorithm is very fast (less than 1s for all the
tested parameters).

For the two methods, we look at the impact of the quantization number for each time
step (resp. N and Nh) on the precision of the results. As our theoretical estimates showed
(see Remarks 4.1 and 4.3), for the first method, increasing N higher than h~' does not
seem to improve the precision, whereas for the second method, we can see for several values
of h that changing Nh from h~' to h=2 or h~3 improves the precision.

Comparing the two tables, the first method seems to provide precise estimates with
slightly faster computation times, and it has the further advantage of computing simul-
taneously the value functions at any points of the space discretization grid X. However,
since most of the time spent by our second algorithm was devoted to the calculation of
the transition probabilities 7'['2[/, if these were computed beforehand and stored offline, the
marginal quantization method becomes more competitive.
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(m,1/6,N) | ©2(0,3.0) | Numerical error (%) | Algorithm time (s)
(10,10,10) 2.1925 3.0 0.2
(10,10,100) | 2.1863 2.7 0.5
(10,10,1000) | 2.1852 2.7 1.4
(10,100,1000) 2.1882 2.8 8.5
(10,100,5000) 2.1882 2.8 40
(100,10,100) 2.1218 0.31 1.0
(100,10,1000) 2.1213 0.33 8.0
(100,10,5000) 2.1213 0.33 39
(100,100,100) 2.1250 0.16 8.6
(100,100,1000) | 2.1250 0.16 82
Exact value 2.1285

Table 1: Results obtained by Markovian quantization

(m, N) Y¢ | Numerical error (%) | Algorithm time (s)
(10,100) | 2.2080 3.7 4.4
(10,1000) 2.2174 4.2 4.9

(10,10000) | 2.1276 0.04 5.8
(100,1000) | 2.1233 0.24 36
(100,10000) | 2.1316 0.15 48
(100,50000) | 2.1301 0.07 65
(1000,10000) | 2.1161 0.58 353
(1000,50000) | 2.1213 0.34 498

Table 2: Results obtained by marginal quantization
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