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4Dipartimento di Fisica, Università di Roma “Tor Vergata”, via della Ricerca Scientifica 1, I-00133 Roma, Italy
5Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain

Many-body effects are known to play a crucial role in the electronic and optical properties of
solids and nano-structures. Nevertheless the majority of theoretical and numerical approaches able
to capture the influence of Coulomb correlations are restricted to the linear response regime. In this
work we introduce a novel approach based on a real-time solution of the electronic dynamics. The
proposed approach reduces to the well-known Bethe-Salpeter equation in the linear limit regime and
it makes possible, at the same time, to investigate correlation effects in nonlinear phenomena. We
show the flexibility and numerical stability of the proposed approach by calculating the dielectric
constants and the effect of a strong pulse excitation in bulk h-BN.

PACS numbers: 78.20.Bh Theory, models, and numerical simulation; 78.47.je Time resolved light scattering
spectroscopy; 73.22.-f Electronic structure of nanoscale materials and related systems;

I. INTRODUCTION

Real-time methods have proven their utility in calcu-
lating optical properties of finite systems mainly within
time-dependent density functional theory (TDDFT).1,2

On the other hand extended systems have been
mostly studied by using many-body perturbation theory
(MBPT) within the linear response regime.3 The differ-
ent treatment of correlation and nonlinear effects mark
the range of applicability of the two approaches. The
real-time TDDFT makes possible to investigate nonlinear
effects like second harmonic generation4 or hyperpolar-
izabilities of molecular systems.2 However the standard
approaches used to approximate the exchange-correlation
functional of TDDFT treat correlation effects only on a
mean-field level. As a consequence, while finite systems—
such as molecules—are well described, in the case of
extended systems—such as periodic crystals and nano-
structures—the real-time TDDFT does not capture the
essential features of the optical absorption5 even qualita-
tively.
On the contrary MBPT allows to include correlation

effects using controllable and systematic approximations
for the self-energy Σ, that is a one-particle operator non-
local in space and time. Σ can be evaluated within dif-
ferent approximations, among which one of the most suc-
cessful is the so-called GW approximation.6 Since its first
application to semiconductors7 the GW self-energy has
been shown to correctly reproduce quasi-particle energies
and lifetimes for a wide range of materials.6 Furthermore,
by using the static limit of the GW self-energy as scat-
tering potential of the Bethe-Salpeter equation (BSE),3

it is possible to calculate response functions including
electron-hole interaction effects.
In recent years, the MBPT approach has been merged

with density-functional theory (DFT) by using the Kohn-

Sham Hamiltonian as zeroth-order term in the perturba-
tive expansion of the interacting Green’s functions. This
approach is parameter free and completely ab-initio,5 and
in this paper will be addressed as ab-initio-MBPT (Ai-
MBPT) to mark the difference with the conventional
MBPT. However the Ai-MBPT is a very cumbersome
technique that, based on a perturbative concept, in-
creases its level of complexity with the order of the ex-
pansion. As an example, this makes the extension of this
approach beyond the linear response regime quite com-
plex, though there have been recently some applications
of the Ai-MBPT in nonlinear optics.8–10

Another stringent restriction of the Ai-MBPT is that it
cannot be applied when non-equilibrium phenomena take
place: for example it cannot be applied to study the light
emission after an ultra-fast laser pulse excitation. A gen-
eralization of MBPT to non-equilibrium situations has
been proposed by Kadanoff and Baym.11 In their semi-
nal works the authors derived a set of equations for the
real-time Green’s functions, the Kadanoff-Baym equa-
tions (KBE’s), that provide the basic tools of the non-
equilibrium Green’s Function theory and allow essential
advances in non equilibrium statistical mechanics.11

Both the standardMBPT and non-equilibrium Green’s
Function theory are based on the Green’s function con-
cept. This function describes the time propagation of a
single particle excitation under the action of an exter-
nal perturbation. In the equilibrium MBPT, due to the
time translation invariance, the relevant variable used to
calculate the Green’s functions is the frequency ω. In-
stead, out of equilibrium, in all non steady-state situa-
tions, the time variables acquire a special role and much
more attention is devoted to the their propagation prop-
erties. The time propagation avoids the explosive de-
pendence, beyond the linear response, of the MBPT on
high order Green’s functions. Moreover the KBE are

http://arxiv.org/abs/1109.2424v1
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non-perturbative in the external field therefore weak and
strong fields can be treated on the same footing.
One of the first attempts to apply the KBE’s for in-

vestigating optical properties of semiconductors was pre-
sented in the seminal paper of Schmitt-Rink and co-
workers.12 Later the KBE’s were applied to study quan-
tum wells,13 laser excited semiconductors,14 and lumi-
nescence15. However, only recently it was possible to
simulate the Kadanoff-Baym dynamics in real-time.16–19

In this work we combine a simplified version of the
KBE’s with DFT in such a way to obtain a parameter-
free theory that is able to reproduce and predict ultra-
fast and nonlinear phenomena (Sec. II). This approach,
that we will address as time-dependent BSE, reduces to
the standard BSE for weak perturbations (Sec. II C) but,
at the same time, naturally describes optical excitations
beyond the linear regime. After discussing some relevant
aspects of the practical implementation of our approach
(Sec. III), we exemplify how it works in practice by cal-
culating the optical absorption spectra of h-BN and the
time dependent change in its electronic population due
to the perturbation by means of an ultra-fast and ultra-
strong laser pulse (Sec. IV).

II. THE TIME-DEPENDENT

BETHE-SALPETER EQUATION

We derive here a novel approach to solve the time evo-
lution of an electronic system with Hamiltonian coupled
with an external field,

Ĥ = ĥ+ Ĥmb + Û , (1)

where U represents the electron-light interactions (see
Sec. III A for its specific form). As usually done in

MBPT, Ĥ is partitioned in an (effective) one-particle

Hamiltonian ĥ and a part containing the many-particle
effects Ĥmb.
In our derivation, we take as starting point the KBE’s

that we briefly introduce in Sec. II A (see e.g. Refs. 20 for
a systematic treatment). Then, in Sec. II B we proceed in
analogy with the equilibrium Ai-MBPT: first, we define

ĥ as the Hamiltonian of the Kohn-Sham system, second
we introduce the same approximations for the self-energy
operator. As a result we obtain the analogous of the
successful GW+BSE approach for the non-equilibrium
case. Indeed in Sec. II C we show that our approach,
the time-dependent BSE, reduce to the GW+BSE in the
linear regime.

A. The Kadanoff-Baym equations

Within the KBE’s, the time evolution of an electronic
system coupled with an external field is described by
the equation of motion for the non-equilibrium Green’s
functions11,20,21, G (r, t; r′t′). To keep the formulation

as simple as possible and, being interested only in long
wavelength perturbations, we expand the generic G in

the eigenstates {ϕn,k} of the ĥ Hamiltonian for a fixed
momentum point k:

[Gk (t1, t2)]n1n2
≡ Gn1n2,k(t1, t2) =

∫

ϕ∗

n1k
(r1)G (r1, t1; r2, t2)ϕn2k(r2)d

3r1d
3r2. (2)

As the external field does not break the spatial invariance
of the system k is conserved.
Within a second-quantization formulation of the many-

body problem, the equation of motion for the Green’s
function described by Eq. (2) are obtained from those
for the creation and destruction operators. However the
resulting equations of motion for Gk are not closed: they
depend on the equations of the two-particle Green’s func-
tion that in turns depends on the three-particle Green’s
function and so on. In order to truncate this hierar-
chy of equations, one introduces the self-energy opera-
tor Σk(t1, t2), a non-local and frequency dependent one-
particle operator that holds information of all higher or-
der Green’s functions. A further complication arises with
respect to the equilibrium case because of the lack of
time-traslation invariance in non-equilibrium phenomena
that implies that Σk(t1, t2) and Gk(t1, t2) depend explic-
itly on both t1, t2. Then, one can define an advanced Σa

k

(Ga
k), a retardedΣr

k (Gr
k), a greater and a lesserΣ>

k ,Σ
<
k

(G>
k ,G

<
k ) self-energy operators (Green’s functions) de-

pending on the ordering of t1, t2 on the time axis. Fi-
nally, the following equation for the G<

k is obtained (see
e.g. Ch. 2 of Ref. 20 for more details):

i~
∂

∂t1
G<

n1n2k
(t1, t2) = δ(t1 − t2)δn1n2

+hn1n1k(t1)G
<
n1n2k

(t1, t2)+
∑

n3

Un1n3k(t1)G
<
n3n2k

(t1, t2)

+
∑

n3

∫

dt3
(

Σr
n1n3k

(t1, t3)G
<
n3n2k

(t3, t2)

+ Σ<
n1n3k

(t1, t3)G
a
n3n2k

(t3, t2)
)

. (3)

This equation, together with the adjoint one for i~ ∂
∂t2

G<,

describes the evolution of the lesser Green’s function G<
k

that gives access to the electron distribution (G<
k (t, t))

and to the average of any one-particle operator such as for
example the electron density [Eq. (10)], the polarization
[Eq. (32)] and the current. However, in general Σr,Σ<

and the Ga
k depend on G>

k , so that in addition to Eq. (3)
the corresponding equation for the G>

k has to be solved.
Then, in principle, to determine the non-equilibrium

Green’s function in presence of an external perturba-
tion one needs to solve the system of coupled equations
for G>

k ,G
<
k , known as KBE’s. Indeed, this system has

been implemented within several approximations for the
self-energy in model systems,16,17 in the homogeneous
electron gas,18 and in atoms19. The possibility of a di-
rect propagation in time of the KBE’s provided, in these
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systems, valuable insights on the real-time dynamics of
the electronic excitations, as their lifetime and transient
effects.16–19 Nevertheless, the enormous computational
load connected to the large number of degrees of free-
dom de facto prevented the application of this method
to crystalline solids, large molecules and nano-structures.
In the next subsection we show a simplified approach—
grounded on the DFT—that while capturing most of the
physical effects we are interest in, makes calculation of
“real-world” systems feasible.

B. The Kohn-Sham Hamiltonian and an

approximation for the self-energy

In analogy to Ai-MBPT for the equilibrium case, we

choose as ĥ in Eq. (1) the Kohn-Sham Hamiltonian,22

ĥ = −
~
2

2m

∑

i

∇2
i + V̂eI + V̂ H [ρ̃] + V̂ xc[ρ̃], (4)

where V̂eI is the electron-ion interaction, V̂ H is the
Hartree potential and V̂ xc the exchange-correlation po-
tential. Within DFT, the Kohn-Sham Hamiltonian cor-
responds to the independent particle system that repro-
duces the ground-state electronic density ρ̃ of the full

interacting system (ĥ+ Ĥmb), that is

ρ̃ =
∑

nk

fnk|ϕ(r)|
2, (5)

where fnk is the Kohn-Sham Fermi distribution.
Equation (3) can be greatly simplified by choosing a

static retarded approximation for the self-energy,

Σr(t1, t2) =
[

Σcohsex(t1)−Vxc

]

δ(t1 − t2) (6a)

Σ<(t1, t2) = 0 (6b)

where the usual choice is Σcohsex, the so-called Coulomb-
hole plus screened-exchange self-energy (COHSEX). In
Eq. 6a we subtracted the correlation effects already ac-

counted by Kohn-Sham Hamiltonian ĥ.23 The COHSEX
is composed of two parts:

Σsex(r, r′, t) = iW (r, r′;G<)G<(r, r′, t), (7)

Σcoh(r, r′, t) = −W (r, r′;G<)
1

2
δ(r− r′), (8)

where W (r, r′;G<) is the Coulomb interaction in the
random-phase approximation (RPA). These two terms
are obtained as a static limit of the GW self-energy (see
Ch.4 of Ref. 20 and Refs. 23 and 24).
With the approximation in Eqs. (6a)–(6b), Eq. (3) does

not depend anymore on G> and it is diagonal in time:

i~
∂

∂t
G<

n1,n2,k
(t) =

[

hk +Uk(t) +VH
k [ρ]−VH

k [ρ̃]

+(Σcohsex
k (t)−Vxc

k [ρ̃]),G<
k (t)

]

n1,n2

. (9)

where ρ is the density obtained from the G< as

ρ(r, t) =
i

~

∑

n1n2k

ϕn1k(r)ϕ
∗

n2k
(r)G<

n2n1k
(t). (10)

Equation (9) is conserving11 and satisfies the sum rules
for the response functions because both the one- and two-
particle self-energies are obtained from the same Σcohsex

and the system of equations is solved self-consistently.25

However, despite the full real-time COHSEX dynam-
ics [Eq. 9] is an appealing option considerably simplify-
ing the dynamics with respect to the KBE’s, it neglects
the dynamical dependence of the self–energy operator.
This, in practice, induces a consistent renormalization of
the quasiparticle charge7 in addition to an opposite en-
hancement of the optical properties26. In the COHSEX
approximation both effects are neglected. At the level of
response properties for most of the extended systems dy-
namical effects are either negligible or very small (while
recently it has been shown their importance for finite sys-
tems, see Refs. 27 and 28) and, for practical purposes, it
has been shown that they partially cancel with the quasi-
particle renormalization factors.26

Therefore we modify Eq. 9 in order to include only
the effect of the dynamical self-energy on the renormal-
ization of the quasi-particle energies, that is the most
important effect. Also in this case, our idea is to pro-
ceed in strict analogy with Ai-MBPT and to derive a
real-time equation that reproduces the fruitful combina-
tion of the G0W0 approximation—for the one-particle
Green’s function—and of the BSE with a static self-
energy—for the two-particle Green’s function. Indeed
the G0W0+BSE is the state-of-the-art approach to study
optical properties within the Ai-MBPT.5 To this purpose
Eq. (8) is modified as:

i~
∂

∂t
G<

n1n2k
(t) =

[

hk +∆hk +Uk +VH
k [ρ]−VH

k [ρ̃]

+Σcohsex
k [G<]−Σcohsex

k [G̃<],G<
k (t)

]

n1n2

. (11)

∆h is a scissor operator5 that applies the G0W0 correc-
tion to the Kohn-Sham eigenvalues, eKS

n1k
,

[∆hk]n1,n2
=

(

eG0W0

n1k
− eKS

n1k

)

δn1,n2
, (12)

and G̃<
nn′ is the solution of Eq. (11) for the unperturbed

system (U = 0)

G̃<
nn′k = i~fnkδnn′ , (13)

where we assume that the Kohn-Sham Fermi distribution
is not changed by the scissor operator. Note further that
in Eq. 11, V xc[ρ̃] cancels out because it is independent of
G<(t).
Equation (11) is the key result of this work. It is equiv-

alent to assume that the quasi-particle corrections mod-
ify only the single particle eigenvalues leaving unchanged
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integration of time-dependent BSE

by 2nd order Runge-Kutta:

optical properties

e.g. 

IN

OUT

Post-processing

from previous 
DFT,GW calculations:

FIG. 1. Schematic flow of a time-Dependent BSE simulation. See
Sec. III A for details.

the Kohn-Sham wave functions. Within AiMBPT this
approximation is very successful for a wide range of ma-
terials characterized by weak correlations (see e.g. Refs. 5
and 6).

C. The linear response limit

When an external perturbation U(t) is switched on in
Eq. (11), it induces a variation of the Green’s function,

∆G<
k (t) = G<

k (t)− G̃<
k . In turns, this variation induces

a change in the self-energy and in the Hartree potential.
In the case of a strong applied laser field these changes
depend on all possible orders in the external field. How-
ever for weak fields the linear term is dominant. In this
regime it is possible to show analytically that Eq. (11)
reduces to the G0W0+BSE approach3,6. Proceeding sim-
ilarly to Ref. 27 we consider the retarded density-density
correlation function:

χr(r, t; r′, t′) = −i [〈ρ(r, t)ρ(r′, t′)〉

−〈ρ(r, t)〉〈ρ(r′, t′)〉] θ (t− t′) . (14)

χr describes the linear response of the system to a weak
perturbation, represented in Eq. (1) by U ,

χr(r, t; r′, t′) =
〈δρ(rt)〉

δU(r′t′)

∣

∣

∣

∣

U=0

. (15)

We start by expanding χ(r) in terms of the Kohn-Sham
orbitals:

χr(r, t; r′, t′;q) =
∑

i,j,k
l,m,k′

χr
i,j,k
l,m,k′

(t, t′;q)

× ϕi,k(r)ϕ
∗

j,k+q(r)ϕ
∗

l,k′(r′)ϕm,k′+q(r
′), (16)

where q is the momentum, and we define the matrix el-
ements of χr as,

χr
ij,k
lm,k′

(t, t′;q) =

∫∫

d3rd3r′ϕ∗

i,k(r)ϕ
∗

m,k′+q(r
′)ϕj,k+q(r)ϕl,k′(r′). (17)

Since we are interested only in the optical response, in
what follows we restrict ourselves to the case q = 0 and
drop the q dependence of χr (for the extension to finite
momentum transfer see Ref. 18). Inserting the expansion
for χ [Eq. (16)], ρ [Eq. (10)] and U (Um,nk ≡ 〈mk|U |nk〉)
in Eq. (15) we obtain the following relation linking the
matrix elements of χr to the matrix elements of G<:

χr
ij,k
lm,p

(t, t′) =
δ〈iG<

ji,k(t)〉

δUlm,p(t′)

∣

∣

∣

∣

∣

U=0

. (18)

Then, we can obtain the equation of motion for the ma-
trix elements of χr by taking the functional derivative of
Eq. (11) with respect to Ul,m,k (t),

− i~
∂

∂t
χr

ij,k
lm,p

(t, t′) =

δ

δUlm,p(t′)
[hk +∆hk +Uk(t) +VH

k [ρ(t)]−VH
k [ρ̃]

+Σk[G
<(t)]−Σk[G̃

<],G<
k (t)]ji. (19)

Making use of the definitions in Eqs. (12) and (13), to-
gether with Eq. (18), it can be verified that the functional
derivative of the one-electron Hamiltonian and of the ex-
ternal field give the contribution

δ

δUl,m,p(t′)
[hk +∆hk +Uk,G

<
k (t)]ji

∣

∣

∣

∣

U=0

=

(eG0W0

jk − eG0W0

ik )χr
ji,k
lm,p

(t− t′) + i(fik − fjk)δjlδimδkp.

(20)

Note that, since the perturbation is weak, the Hamil-
tonian of the system is invariant with respect to time
translation and thus χr depends only on t− t′. The term
in Eq. (19) containing the Hartree potential, that is not
directly depending on the external perturbation, is ex-
panded with respect to Ul,m,k (t) by using the functional
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derivative chain rule and the definition in Eq. (18) as:

δV H
ij,k [ρ (t)] =

∑

n,n′,p
l,m,k′

∫∫

dt′ dt′′
δV H

ij,k [ρ (t)]

δG<
n′n,p (t

′)

× χr
n,n′,p
lm,k′

(t′, t′′)δUlm,k′ (t′′) , (21)

A similar equation can be obtained for Σcohsex
ij,k [G<(t)].

Equation (21) for Hartree potential and its analogous for
the self-energy can be explicited by using

V H
mn,k(t) =− 2i

∑

ij

G<
ji,k (t) v

q=0
mn,k
ij,k

, (22)

Σcohsex
mn,k (t) =i

∑

ij,q

G<
ji,(k−q) (t)Wmk,i(k−q)

nk,j(k−q)

, (23)

where the matrix elements of vq=0 and W are labeled
accordingly to Eq. (17). In Eq. (22) vq=0 is the long range
part of the bare Coulomb potential, responsible for the
local field effects in the BSE. Then by inserting Eq. (22)
in Eq. (21) the functional derivative for the Hartree term
is

δ

δUlm,p(t′)

[

VH
k [ρ(t)]−VH

k [ρ̃],G<
k (t)

]

ji

∣

∣

∣

∣

U=0

=

(

2i2
)

(fik − fjk)
∑

st

vq=0
ji,k
st,k

χr
st,k
lm,p

(t− t′). (24)

Similarly, an analogous equation is obtained for the
self-energy (see also Appendix A),

δ

δUlm,p(t′)

[

Σk[G
<(t)]−Σk[G

<(t)],G<
k (t)

]

ji

∣

∣

∣

∣

U=0

=

(

−i2
)

(fik − fjk)
∑

st,q

Wjk,s(k−q)
ik,t(k−q)

χr
st,(k−q)

lm,p

(t− t′), (25)

where we neglected the part containing the functional
derivative of the screened interaction with respect to the
external perturbation. This is a basic assumption of the
standard BSE that is introduced in order to neglect high
order vertex corrections.3

Finally, we insert Eqs. (20), (24) and (25) in Eq. (19),
and by Fourier transforming with respect to (t − t′) we
obtain

[

~ω −
(

ǫG0W0

jk − ǫG0W0

ik

)]

χr
ij,k
lmp

(ω) =

i (fik − fjk) [δjlδimδk,p+

+i
∑

st,q

{Wjk,s(k−q)
ik,t(k−q)

− 2vq=0
ji,k
st,k

}χr
st,k−q
lm,p

(ω)

]

. (26)

formally equivalent to the standard BSE.

III. OPTICAL PROPERTIES FROM A

TIME-DEPENDENT APPROACH

A. Practical solution of the time-dependent BSE

To solve Eq. (11) for a given electronic system [Eq. (1)],

we start from ĥ, with its eigenvalues and eigenstates de-
termined from a previous DFT calculations, and from the
corrections ∆hk, determined e.g. from a previous G0W0

calculation. Then, we switch on the external perturba-
tion U and integrate the equations of motion using the
same scheme as in Ref. 16 for the diagonal part of the
G<, that is equivalent to a second order Runge-Kutta.
Specifically, in Eq. (1) we choose to treat the interac-
tion with the external electric field E within the direct
coupling—or length gauge,

Û = −er̂ ·E(t). (27)

Other choices are possible and indeed in the literature
the electron-light interaction is often described within the
minimal coupling—or velocity gauge (p̂ ·A), with A the
vector potential. As it has been pointed out in Ref. 29,
the length and velocity gauges lead to the same results
only if a gauge transformation is correctly applied. How-
ever, in this respect the velocity gauge presents two main
drawbacks. First, the wave functions and the boundary
conditions have to be transformed by a time-dependent
gauge factor T (r, t) = exp{iA(t) · r̂} and accordingly,
in the Green’s function formalism also the self-energy
and the dephasing term have to be transformed. Second,
within perturbation theory the velocity gauge induces di-
vergent terms in the response function that in principle
cancel each other, but that in practice lead to artificial
divergences in the optical response1,30 due to numerical
precision and incomplete basis sets.
The interaction Hamiltonian U is evaluated in terms

of unperturbed Kohn-Sham eigenfunctions as

〈mk|U |nk〉 = −E(t)〈mk|r|nk〉 = −E(t) rmn,k, (28)

where the dipole matrix elements rmn,k , for m 6= n are
calculated by using the commutation relation i[H, r] =
p+ i[Vnl, r] where Vnl is the non-local part of the Hamil-
tonian operator.31

Since we are interested in calculating the dielectric
properties at zero momentum, we choose to work with
an homogeneous electric field E(t), with no space depen-
dence except its direction,1 generated by a vector poten-
tial A(t) constant in space,

E(t) = −
1

c

dA(t)

dt
. (29)

Also in this case other choices consistent with the peri-
odic boundary conditions would be possible, as for ex-
ample an external potential with the cell periodicity,32

or an electric field with a finite momentum18 q such that
q = k− k′.



6

4 5 6 7 8 9 10
Energy (eV)

0

10

20

30

40

50

60

A
bs

or
pt

io
n

0 5 10 15
Time (fs)

Po
la

ri
za

tio
n

(a) (b)

4 5 6 7 8 9 10
Energy (eV)

0

10

20

30

40

50

60

A
bs

or
pt

io
n

0 5 10 15
Time (fs)

Po
la

ri
za

tio
n

(c) (d)

FIG. 2. h-BN: Comparison between the real-time approach and the standard RPA and BSE approaches based on the equilibrium
MBPT. (a),(c): polarization P(t) generated by an electric field E(t) = Eoδ(t) within the TD-HARTREE [(a)] and TD-BSE [(c)]
approximations.(b),(d): the corresponding absorption spectra (red circles) are compared with the RPA [(b)] and with the BSE [(d)]
results (black line). The experimental absorption spectrum (grey shadow) is also shown as reference.

Instead, the particular form of E(t) as function of time
is not specified a priori, but given as input parameter of
the simulation. Indeed, the possibility of providing the
form of the external field as an input is one of the key
strengths of the real-time approach, potentially allow-
ing to use the same implementation to simulate a broad
range of phenomena and of experimental techniques. For
example, as described in Sec. IV in order to calculate
the linear optical susceptibility spectrum χ(ω) we will
use a delta function E(t) = E0δ(t − t0) (obtained from
Eq.(29) with A(t) = A0Θ(t − t0), where t0 is the time
at which the external field is switched on). This elec-
tric field probes the system at all frequencies with the
same intensity. Also, in the other example described
in Sec. IV, we can use a quasi-monochromatic source
E(t) = E0 sinω0t exp (−δ2(t− t0)

2/2) to selectively ex-
cite the system at a given frequency ω0. Furthermore,
two or more electric fields can be used to simulate e.g.
pump-probe, sum-of-frequency or wave-mixing experi-
ments.

The macroscopic quantity that is calculated at the end
of the real-time simulation is the induced polarization
P(t), related to the electric displacement D(r, t) and the

electric field E(r, t) by the so called material equation:

D(r, t) = ǫ0E(r, t) +P(r, t), (30)

that stems directly from the Maxwell equations. P(t) is
obtained from G< [Eq. (11)] by,

P(t) = −
1

V

∑

n,m,k

rmn,kG
<
nm,k(t), (31)

and from this quantity we can obtain the optical proper-
ties of the system under study.
For instance, within linear response, the electric dis-

placement D(r, t) is directly proportional, in frequency
space, to the electric field as D(ω) = ǫ̂(ω)ǫ0E(ω). There-
fore the polarization can be expressed as:

P(ω) = ǫ0(ǫ̂(ω)− Î)E(ω) (32)

and accordingly the optical susceptibility that describes
the linear response of the system to a perturbation is
χ̂(ω) = ǫ̂(ω)−Î . Then, the optical susceptibility χ̂(ω) can
be calculated by Fourier transforming the macroscopic
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polarization P(ω) (or alternatively the current density
j(ω)), by means of Eq. (32) as:

χ̂(ω) =
P(ω)

ǫ0E(ω)
. (33)

Note that by choosing a delta-like E(t), the Fourier trans-
form of P(t) provides directly the full spectrum of the
optical susceptibility χ̂(ω). Beyond the linear regime,
higher order response functions, χ̂(2), χ̂(3), . . . can be ob-
tained (to calculate e.g. the second- or third-harmonic
generation) by using a (quasi)monochromatic field as in
e.g. Ref. 4; non-perturbative phenomena, such as high-
harmonic generation, can be analyzed instead from the
power spectrum (|P (ω)|2).
To summarize, the schematic flow of a time-dependent

BSE simulation is shown in Fig. 1 as has been imple-
mented in the development version of theYambo code.33
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FIG. 3. h-BN: Percentage of valence electrons pumped to the con-
duction bands (Nc) by a quasi-monochromatic pulse as a function
of the fluence. The pulse is centered either at 5.65 eV (blue boxes)
or 8.1 eV (green circles) calculated within the TD-BSE (black line)
and the td-HARTREE (red dashed line) approximations. In either
case, each point corresponds to a separate simulation and the lines
are drawn to help guide the eye. The inset shows the absorption
spectra within the TD-BSE (black line) and TD-HARTREE (red
dashed line) with the arrows pointing at the pump frequencies.

B. Dissipative effects

In an excited electronic system dissipative effects are
present due to inelastic electron scattering and (quasi)-
elastic scattering processes with other degrees of freedom,
such as defects or phonons. Both effects contribute to

the relaxation and decay of excited electronic population
as well as of the decay of phase coherence, that is to a
finite dephasing rate. Our approach, Eq. (11), does not
account for dissipative effects: on the one hand the COH-
SEX self-energy is real, so that the excitations lifetimes
are infinite, on the other hand the electronic systems is
perfectly isolated [Eq. (1)], so that there is no dephasing
due to interaction with other degrees of freedom.
In practical calculations then we introduce a phe-

nomenological damping to simulate dissipative effects.
We implemented two different approaches. An a pos-
teriori treatment, where at the end of the simulation (in
the post-processing block of Fig. 1) the polarization (and
the electric field) are multiplied by a decaying exponen-
tial function, e−t/τ , where τ is an empirical parameter.
This parameter, that is compatible with the simulation
length, effectively simulates the dephasing and introduces
a Lorentzian broadening in the resulting absorption spec-
trum. This is in the same spirit of the Lorentzian broad-
ening introduced in the linear response treatment to sim-
ulate the experimental optical spectra, and has the ad-
vantage of producing spectra with different broadening
from the same real-time simulation. Nevertheless this
approach is limited to the linear response case.
In order to treat dissipative effects beyond the linear

regime, an imaginary term is added to the self-energy

in the form of an additional term Γk

(

G<
k (t)− G̃<

k

)

ap-

pearing on the r.h.s. of Eq. (11), with:

i [Γk]n1,n2
= Γph

n1k
+ Γph

n2k
+ Γpop

n1k
δn1,n2

, (34)

where Γpop
n1k

and Γph
n1k

are respectively the lifetime of the
perturbed electronic population and the dephasing rate,
and are given as input parameters of the simulation.

IV. EXAMPLES

To illustrate and validate the time-dependent BSE ap-
proach and our numerical implementation, we present
two examples on h-BN. This is a wide gap insulator
whose optical properties are strongly renormalized by ex-
citonic effects and for which all the parameters necessary
in DFT, G0W0 and response calculations,34 are known
from previous studies.35

In these examples we used Eq. (11), with and with-
out including the self-energy term. We refer to the for-
mer approximation as TD-BSE, and to the latter as TD-
HARTREE. Within equilibrium MBPT these two ap-
proximations would correspond to the BSE and RPA,
and in fact they reduce to BSE and RPA within the lin-
ear response limit (Sec. II C).
In the first example (Fig. 2), we simulated h-BN inter-

acting with a weak delta-like laser field.36 As explained
in Sec. III A a delta-like laser field probes all frequencies
of the system and the Fourier transform of the macro-
scopic polarizability provides directly the susceptibility
[Eq. (33)], and thus the dielectric constant [Eq. (32)].
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FIG. 4. h-BN: Percentage as function of time of valence electrons pumped to the conduction bands (Nc) by a quasi-monochromatic pulse
with intensity 109 kW/cm2 centered either at 5.65 eV (blue boxes) or 8.1 eV (green circles) and calculated either within the TD-BSE [(a)]
or the TD-HARTREE [(b)] approximations. The brown shadow represents the fluence as function of time. The inset shows the absorption
spectra within the TD-BSE (black line) and TD-HARTREE (red dashed line) with the arrows pointing at the pump frequencies.

Since we use a weak field, we expect negligible nonlinear
effects. Then accordingly with Sec. II C, the results from
TD-BSE and TD-HARTREE can be directly compared
with the BSE and RPA within the standard Ai-MBPT
approach. Indeed, in Figs. 2(b), 2(d) the imaginary part
of the dielectric constant (optical absorption) obtained by
Fourier transform of the polarization in Figs. 2(a), 2(c) is
indistinguishable from that obtained within equilibrium
Ai-MBPT, validating our numerical implementation.

In the second example (Figs. 3-4) we exploit the po-
tentiality of the TD-BSE approach by going beyond the
linear regime and using a strong quasi-monochromatic
laser field (see Sec. III A). This field excites the system
selectively at one given frequency, moreover it is strong
enough to induce changes in the electronic population of
the system. To track these changes, during the dynamics
we followed the evolution of Nc(%), that is the percent-
age of valence electrons that are pumped by the electric
field in the conduction bands (in our simulation we have
16 valence electrons in the h-BN unit cell, since core elec-
trons are accounted using pseudopotentials). The total
number of valence electrons in the system is given by the
trace of G<, while Nc(t) = −i

∑

ckG
<
cck(t) where c labels

the empty states in the unperturbed system.

We performed the simulations37 for different intensi-
ties of the field (from 106 kW/cm to 109 kW/cm) and
for two values of the field frequency, 5.65 eV and 8.1 eV,

that depending on the level of the theory, are either at
resonance or off-resonance with the system characteristic
frequencies. More precisely, within TD-BSE 5.65 eV cor-
responds to the strong excitonic feature in the absorption
spectrum, while at 8.1 eV the absorption is negligible;
conversely within RPA at 5.65 eV the absorption is neg-
ligible, while 8.1 eV corresponds to the strongest feature
in the spectrum (see inset of Figs. 3-4). The results of the
various simulations are summarized in Fig. 3 that shows
Nc(%) as a function of the fluence—the pulse energy per
unit area. For a comparison the ablation threshold of h-
BN has been determined as 78mJ/cm2 in the femtosec-
ond laser operational mode.38

Finally, Figs. 4(a) and 4(b) show the evolution of
Nc(%) during the simulation for a field intensity of
109 kW/cm: one can clearly observe the enhancement in
the electronic-population change due to resonance effects.
The very different picture that is obtained within the two
different approximations emphasizes the importance of
accounting for excitonic effects (also) in the strong field
regime.

V. SUMMARY

We presented a novel approach to the ab-initio calcu-
lation of optical properties in bulk materials and nano-
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structures that uses a time-dependent extension of the
BSE. The proposed approach combines the flexibility of
a real-time approach with the strength of MBPT in cap-
turing electron-correlation. It allows to perform compu-
tationally feasable simulations beyond the linear regime
of e.g. second- and third-harmonic generation, four-
wave mixing, Fourier spectroscopy or pump-probe ex-
periments. Furthermore, being the approach based on
the non-equilibrium Green’s Function theory, it is possi-
ble to include effects such as lifetimes, electron-electron
scattering27 and electron-phonon coupling39 in a system-
atic way. Finally, we have applied the TD-BSE to the
case of h-BN. First, we have calculated the optical ab-
sorption and compared it with the results from equilib-
rium Ai-MBPT validating our approach and numerical
implementation. Then, we have shown the potentialities
of the TD-BSE approach beyond the linear-regime by cal-
culating the change in the electronic population due to
the interaction with a strong quasi-monochromatic laser
field.
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Appendix A: An efficient method to update the

COHSEX self–energy during the time evolution

In this appendix we show how we store and update
the Σcohsex self-energy in a efficient manner. First of
all we neglect the variation of the screened interaction

W (r, r′;G<(t)) with respect to the G<(r, r′, t) by setting
to zero the functional derivative ∂W/∂G (see Sec. II C).
Within this approximation the Σcoh does not contribute
to the time evolution, therefore only Σsex needs to be
updated:

Σsex(r, r′, t) = iW (r, r′)
∑

n,n′k

ϕn,k(r)ϕ
∗

n′,k(r
′)G<

n,n′,k(t).

(A1)

The KBE involves the matrix elements 〈m,k|Σsex|m′,k〉:

Σsex
m,m′,k(t) =

∑

G,G′,q
n,n′

ρm,n
k,q

(G′)ρ∗m′,n′

k,q

(G)WG,G′(q)G<
n,n′

k−q

(t),

(A2)

where

ρm,n
k,q

(G) =

∫

ϕ∗

m,k(r)ϕn,k−q(r)e
i(G+q)r. (A3)

In order to rapidly update Σsex after a variation of
G<(r, r′, t), we store the matrix elements:

Mm,m′,n,n′

q,k

=
∑

G,G′

ρm,n(k,q,G
′)ρ∗m′,n′(k,q,G)WG,G′(q),

(A4)
in such a way that Σsex

m,m′ can be rewritten as

Σsex
m,m′,k(t) =

∑

n,n′

q

Mm,m′,n,n′

q,k

·G<
n,n′

k−q

(t). (A5)

The M matrix can be very large, but its size can be
reduced by noticing that: (i) the matrix M is Hermitian
respect to the (m,m′) indexes; (ii) the number of k and q
points is reduced by applying the operation symmetries
that are left unaltered by the applied external field; (iii)
for converging optical properties only the bands close to
the gap are needed (see section IV). As an additional
numerical simplification we neglected all terms such that
Mm,m′,n,n′

q,k

/max{Mm,m′,n,n′

q,k

} < Mc, whereMc is a cutoff

that, if chosen to be Mc ≃ 5 · 10−3 does not appreciably
affect the final results. In principle by using an auxiliary
localized basis set40 one can obtain a further reduction
of the matrix dimensions, but in the present work we did
not explore this strategy.
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