
HAL Id: hal-00626197
https://hal.science/hal-00626197

Submitted on 23 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Automated Highway Systems with VeriJ
Yan Zhang

To cite this version:
Yan Zhang. Modeling Automated Highway Systems with VeriJ. MOdelling and VErifying parallel
Processes (MOVEP), Jun 2010, Aachen, Germany. pp.138-143. �hal-00626197�

https://hal.science/hal-00626197
https://hal.archives-ouvertes.fr


Modeling Automated Highway Systems with VeriJ

ZHANG Yan
Université Pierre & Marie Curie, CNRS-UMR7606 (LIP6/MoVe)

Paris, France
yan.zhang@lip6.fr

Abstract

This paper presents VeriJ, a domain specific language (DSL) which consists of a subset of the
Java language, with the aim to help engineers to easily build the state space encoding of a complex
system. This language will allow to apply existing verification and control techniques based on a
hierarchical variant of Decision Diagrams. The example of an automated highway system is used to
present the basic constructs of the language.

1 Introduction

Modeling complex systems for verification purposes is usually a difficult task, and domain experts do not
wish to handle low level models or complex specification formalisms. The area of automated highway
systems with respect to microscopic traffic flow, is a significant example [10]. Several modeling and
verification attempts have been made on such systems with Petri nets [4, 1, 3], transition systems [2],
cellular automata models [7], behavioral models [6] or linear parameter varying models [11]. In these
studies, system complexity and variable number of vehicles make modeling and state space generation a
painful step in the verification process.

On the other hand, widely known general-purpose languages, like Java, can be used to build a system
description using powerful and mature Integrated Development Environments (IDEs) such as Eclipse.
There exists a powerful model checker, Java Path Finder (JPF) [5], for Java programs. JPF implements a
backtrackable Java Virtual Machine (JVM) to provide non-deterministic choices and control over thread
scheduling. But JPF does not scale up due to its internal state representation and to the large scope of
Java.

To alleviate this problem, an approach based on limited programs to establish a formal specifica-
tion could be proposed, inspired by Domain Specific Languages (DSL) [12, 8] that are dedicated to a
particular domain and express a small set of adapted solutions within this restricted scope. Recent de-
velopments in this direction show that DSL, thanks to this limited scope, lead to more efficient solutions
than is possible in more general programming languages (like JPF).

In this work, we propose to combine the advantages of the general-purpose language Java and do-
main specific languages to define VeriJ, a DSL which consists of a Java fragment dedicated to formal
verification. This language will be used to create a model for specific domains. Automatic encoding
of such a model into an efficient structure based on decision diagrams will allow domain experts to ap-
ply any verification technique available for this structure, for instance LTL or CTL model checking, or
control synthesis with the Ramadge and Wonham framework [9]. Also, VeriJ provides an easy way to
simulate the model. We first describe an example of highway system, then we present VeriJ through this
example and conclude with future work.



2 ZHANG Yan

1

4

delays

lane1

lane0

2 3 4 5 6

Figure 1: Highway

2 A Highway system

We consider a 1km highway section similar to the one in [2], with the aim to control vehicles and to
avoid collisions. A small part of such a section is depicted in Fig. 1 (shadowed rectangles are explained
later). This section is modeled as a discrete system that consists of a set of vehicles, moving on n lanes
of length L, numbered from 0 to n−1. Moves of a vehicle include driving forward and changing lanes.
And vehicles exiting the range of the section are deleted from the set.

To be consistent with our future purpose of verification and control, we consider a labeled transition
system with at most one uncontrollable vehicle operated by the environment (dark colored in Fig. 1), the
rest of the vehicles being controllable by the controller. With two (or more) uncontrollable vehicles, the
environment could always produce a crash.

Each vehicle is defined as a tuple (xpos,ypos,xspeed,yspeed, isControlled), where the value xpos
denotes relative position with respect to its predecessor in the horizontal direction and ypos is the number
of the lane. Integer value xspeed denotes the horizontal speed, non-deterministically chosen within
a fixed interval [speedmin,speedmax], and yspeed is the value of vertical speed, non-deterministically
chosen in {−1,0,1}, allowing a vehicle to move in adjacent lanes (−1 or 1) or stay in the current lane
(value 0). The boolean label isControlled indicates the status of the vehicle with respect to the controller.
The speed of those vehicles can be modified and new vehicle arrivals are constrained by setting a lower
bound dmin for a delay parameter, which represents the time elapsed between two successive arrivals on
a given lane. Crashes are detected by estimating overlaps of dangerZones, which are the areas covered
from the current to the next step, shown as shadowed rectangles in Fig. 1. If there exists a crash, the
configuration is regarded as bad, and given a specific state label.

Several standard constructs are needed to implement the description above: for each is needed to
update delays for each lane or move each vehicle in the set, exists is used for predicates indicating a
collision, and non-deterministic choice has to be applied in adapting speed, adding new vehicles and
setting the uncontrolled vehicle. We now show how to build a DSL interface for highway systems in
Java.

3 A DSL interface for the highway system

As mentioned in section 1, VeriJ chooses a restricted part of Java. For instance, VeriJ includes basic
data types, arithmetic operators, assignments, decision and control statements, public or private access
modifiers, construction of classes with instantiation, and standard instructions from logic. VeriJ does not
support the features such as libraries or native code.

The VeriJ specification of the highway system described above is illustrated in Fig. 2. It contains four
classes: Highway, Delays, Vehicle and VehiclesSet. We introduce the different classes and emphasize
several difficult operations with corresponding VeriJ code for explanation.



Modeling Automated Highway Systems with VeriJ 3

Highway. This class has a vehicles typed VehiclesSet and a delays typed Delays. The main operation
consists of a transition from the current state to the next state. This transition contains five steps shown
in the code below.
void t r a n s i t i o n ( ) {

v e h i c l e s . moveEachVehicle ( ) ; / / a p p l y speed
v e h i c l e s . r e o r d e r V e h i c l e s ( ) ; / / t o be d e s c r i b e d i n c l a s s V e h i c l e s S e t
p l a y E n v i r o n m e n t ( ) ;
p l a y C o n t r o l l e r ( ) ;
d e l a y s . u p d a t e D e l a y ( ) ;

}

Figure 2: Class Diagram describing the VeriJ model of Highway Systems

In this function, playController only control the speed of controlled vehicles, the other actions are all
performed by playEnvironment, described as below.
p r i v a t e vo id p l a y E n v i r o n m e n t ( ) {

addNewVehicles ( ) ;
v e h i c l e s . d e l e t e E x i t V e h i c l e ( ) ;
v e h i c l e s . s e t U n c o n t r o l l e d I f N o n e ( ) ;
v e h i c l e s . c h o o s e S p e e d O f U n c o n t r o l l e d V e h i c l e ( ) ;

}
p r i v a t e vo id p l a y C o n t r o l l e r ( ) {

v e h i c l e s . c h o o s e S p e e d O f C o n t r o l l e d V e h i c l e s ( ) ;
}

The synchronization of delays and vehicles lies in addNewVehicles() with the non-deterministic op-
eration NDChoice(), a random boolean generator. It allows to specify free choice semantics of a system
and will be used to build the different target states of the model.
p r i v a t e vo id addNewVehicles ( ) {

f o r ( i n t l a n e =0; l ane<NBLane ; l a n e ++){
i f ( d e l a y s . canAddVehic le ( l a n e ) && V e r i J . NDChoice ( ” add v e h i c l e ? ” ) ) {

v e h i c l e s . a d d V e h i c l e ( l a n e ) ;
d e l a y s . r e s e t ( l a n e ) ;

}



4 ZHANG Yan

}
}

Delays. This class uses a Java data type ”array” to store ”integer” data delay on each lane. For an
integer counter j ∈ {0,1, ...,n− 1}, a vehicle may be added on jth lane if delays[ j] > dmin. At the
moment a vehicle enters this lane, delays[ j] is reset to 0.

Operations in this class are thus reset and updateDelay, where a loop statement is used to update
time for each lane. Predicate canAddVehicle allows synchronization with the vehicle set.

Vehicle. Vehicles using relative (instead of absolute) positions (see Section 2) for the horizontal co-
ordinate will lead to a more compact representation of the state space and make the collision detection
easier. Let i denote the ith vehicle in the list, a horizontal move from time k to time k+1 is obtained by:

xposi(k+1) = xposi(k)+ xspeedi(k)− xspeedi−1(k) (1)

Hence, class Vehicle has operations updatePosition according to the formula above, updateSpeed,
where non-deterministic xspeed is given in terms of a random value, and setControlled to set a vehicle
as a uncontrolled one. It also contains a dangerZone defined by horizontal and vertical speeds.

The tricky point for this class will be the constructor. When class Vehicle is instantiated by calling
Vehicle(int lane), a new vehicle is added on the lane corresponding to the parameter.
p u b l i c V e h i c l e ( i n t l a n e ) {

xpos = 0 ;
ypos = l a n e ;
xspeed = V e r i J . random ( MIN X SPEED , MAX X SPEED) ;
yspeed = 0 ;
i s C o n t r o l l e d = t rue ;

}

VehiclesSet. A vehicle set is a list of vehicles, described by a ”list” with type Vehicle. The size of this
list is variable to allow adding new vehicles and deleting exiting vehicles.

Vehicles are added to the list one by one from the beginning. Thus, the list has an order. Since
vehicles have different speeds, it is possible that the relative position xposi becomes negative in the
update operation, when overtaking occurs. In this case, the list must be reordered. It also suggests
a risk of collision if dangerZones overlap with each other. Predicate isBad returns a boolean value
labeling a configuration where a collision occurs. If there is no uncontrolled vehicle in the section, a
nondeterministic operation may be applied to set (at most) one. Class VehiclesSet includes operations
addVehicle, deleteExitVehicle, moveEachVehicle, reorderVehicles, chooseSpeed, setUncontrolledifNone
and a predicate isBad.

The operation reorderVehicles is a difficult point in this class. It must carry out two actions, changing
order in the list and assigning correct values to relative position xpos. To take into account the case where
a high-speed vehicle overtakes more than one vehicle, we introduce the predecessor and successor for
each vehicle with negative xpos. A for loop with index is used to apply reorder to each vehicle.
p u b l i c vo id r e o r d e r V e h i c l e s ( ) {

f o r ( i =0 ; i<v e h i c l e s . s i z e ( ) ; i ++){
V e h i c l e v e h i c l e = v e h i c l e s . g e t ( i ) ;
i f ( v e h i c l e . hasNega t iveXpos ( ) ) {

/ / s e t p r e d e c e s s o r
V e h i c l e vpred = v e h i c l e s . g e t ( i −1) ;



Modeling Automated Highway Systems with VeriJ 5

/ / r e c o r d c u r r e n t n e g a t i v e xpos
i n t c u r r e n t p o s = v e h i c l e . xpos ;
/ / up da t e xpos o f c u r r e n t v e h i c l e
v e h i c l e . xpos = v e h i c l e . xpos + vpred . xpos ;
/ / up da t e xpos o f p r e d e c e s s o r
vpred . xpos = − c u r r e n t p o s ;
/ / s e t s u c c e s s o r
V e h i c l e vsucc = v e h i c l e s . g e t ( i +1) ;
/ / up da t e xpos o f s u c c e s s o r
vsucc . xpos = v e h i c l e . xpos + c u r r e n t p o s ;
/ / swap t h e o r d e r o f c u r r e n t v e h i c l e and p r e d e c e s s o r
v e h i c l e s . s e t ( i , vp red ) ;
v e h i c l e s . s e t ( i −1, v e h i c l e ) ;

}
}

}

The configuration label bad is determined by the answer to ”does a vehicle set contains at least an
item with the crash property?”. This labeling is performed by the exists predicate, which returns true if
predicate dangerZoneOverlap() returns true for at least one item in the iterable object vehicles.
p u b l i c boolean i sBad ( ) {
re turn V e r i J . e x i s t s ( dange rZoneOver l ap ( ) , v e h i c l e s ) ;
}

The syntax of VeriJ was explained on the highway system and will then be used to automatically
generate a model for state space exploration. In the same way, VeriJ can be used on other engineering
specifications to handle formal verification.

4 Simulation

In this section, we apply VeriJ to execute a highway system, running on top of a host JVM. Three
implementation modes are designed for particular purposes.

• Random Mode: This mode randomly generates a value for each non-deterministic situation;

• Keyboard Mode: It allows engineers to set up their own scenario for the system by assigning the
non-deterministic choice an expected value from keyboard; a scaled number of vehicles can be
added on the highway section;

• Trace Mode: In this mode, a recorder is built to keep the values set in the other two modes to offer
a means to observe the system.

Figure 3: Highway Execution

Fig. 3 shows a configuration of an execution in a random mode. In this diagram, each grid represents
a position one vehicle may occupy, with the correct order for vehicles and vehicle4 labeled as uncontrol-
lable. Overlaps exist between dangerZones of vehicle1 and vehicle2 and between vehicle3 and vehicle4,
hence producing a bad configuration.



6 ZHANG Yan

This example shows how VeriJ benefits from standard Java execution, while also offering a nice basis
to build a complete representation for formal analysis.

5 Conclusion

This paper presents VeriJ, a DSL for modeling, simulation and verification of complex systems. The next
step will be to translate this fragment in a framework based on Decision Diagrams, allowing to provide
a compact encoding of the state space for a system described in VeriJ. Verification techniques (like LTL
or CTL model checking) and control synthesis will then be directly applied on the translation.

References
[1] A. Aitouche and S. Hayat. Multiagent model using coloured petri nets for the regulation traffic of an auto-

mated highway. Journal of Intelligent Transportation Systems, IEEE, 1:37–42, 2003.
[2] B. Bérard, S. Haddad, L. Hillah, F. Kordon, and Y. Thierry-Mieg. Collision Avoidance in Intelligent Transport

Systems: towards an Application of Control Theory. In Proceedings of the 9th International Workshop on
Discrete Event Systems (WODES’08), pages 346–351, Göteborg, Sweden, May 2008. IEEE Press.

[3] F. Bonnefoi, L. Hillah, F. Kordon, and G. Frémont. An approach to model variations of a scenario: Applica-
tion to intelligent transport systems. In Fourth International Workshop on Modelling of Objects, Components
and Agents (MOCA ’O6), pages 65–86, Universität Hamburg, 2006.

[4] I. Demongodin. Modeling and analysis of transportation networks using batches petri nets with controllable
batch speed. In PETRI NETS ’09: Proceedings of the 30th International Conference on Applications and
Theory of Petri Nets, pages 204–222, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] T. Gvero, M. Gligoric, S. Lauterburg, M. d’Amorim, D. Marinov, and S. Khurshid. State extensions for Java
PathFinder. In Proceedings of the 30th international conference on Software Engineering (ICSE’08), pages
863–866, New York, NY, USA, 2008. ACM.

[6] H. Jochen. New Behavioral Model for Microscopic Freeway Traffic-Flow Simulation. Transportation Re-
search Record: Journal of the Transportation Research Board, 2088:10–17, 2008.

[7] W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. Towards a realistic microscopic descrip-
tion of highway traffic. Journal of Physics A: Mathematical and General, 33(48):L477–L485, 2000.

[8] F. Maraninchi and Y. Rémond. Mode-Automata: a new Domain-Specific Construct for the Development of
Safe Critical Systems. Science of Computer Programming, 46:219–254, 2003.

[9] P. Ramadge and W. Wonham. Supervisory Control of a Class of Discrete-Event Processes. SIAM Journal of
Control and Optimization, 25(1):206–230, 1987.

[10] S. E. Shladover. Modelling and control issues for automated highway systems. Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 215(4):335–343, 2001.

[11] L. Tamás, K. Balázs, V. István, and J. Bokora. Parameter-dependent modeling of freeway traffic flow. Trans-
portation Research, 18(4):471–488, Aug. 2010.

[12] E. Visser. WebDSL: A Case Study in Domain-Specific Language Engineering. In Generative and Transfor-
mational Techniques in Software Engineering (GTTSE 2007), LNCS, pages 291–373. Springer, 2008.


	Introduction
	A Highway system
	A DSL interface for the highway system
	Simulation
	Conclusion

