Yan Zhang
email: yan.zhang@lip6.fr

Modeling Automated Highway Systems with VeriJ

This paper presents VeriJ, a domain specific language (DSL) which consists of a subset of the Java language, with the aim to help engineers to easily build the state space encoding of a complex system. This language will allow to apply existing verification and control techniques based on a hierarchical variant of Decision Diagrams. The example of an automated highway system is used to present the basic constructs of the language.

Introduction

Modeling complex systems for verification purposes is usually a difficult task, and domain experts do not wish to handle low level models or complex specification formalisms. The area of automated highway systems with respect to microscopic traffic flow, is a significant example [START_REF] Shladover | Modelling and control issues for automated highway systems[END_REF]. Several modeling and verification attempts have been made on such systems with Petri nets [START_REF] Demongodin | Modeling and analysis of transportation networks using batches petri nets with controllable batch speed[END_REF][START_REF] Aitouche | Multiagent model using coloured petri nets for the regulation traffic of an automated highway[END_REF][START_REF] Bonnefoi | An approach to model variations of a scenario: Application to intelligent transport systems[END_REF], transition systems [START_REF] Bérard | Collision Avoidance in Intelligent Transport Systems: towards an Application of Control Theory[END_REF], cellular automata models [START_REF] Knospe | Towards a realistic microscopic description of highway traffic[END_REF], behavioral models [START_REF] Jochen | New Behavioral Model for Microscopic Freeway Traffic-Flow Simulation[END_REF] or linear parameter varying models [START_REF] Tamás | Parameter-dependent modeling of freeway traffic flow[END_REF]. In these studies, system complexity and variable number of vehicles make modeling and state space generation a painful step in the verification process.

On the other hand, widely known general-purpose languages, like Java, can be used to build a system description using powerful and mature Integrated Development Environments (IDEs) such as Eclipse. There exists a powerful model checker, Java Path Finder (JPF) [START_REF] Gvero | State extensions for Java PathFinder[END_REF], for Java programs. JPF implements a backtrackable Java Virtual Machine (JVM) to provide non-deterministic choices and control over thread scheduling. But JPF does not scale up due to its internal state representation and to the large scope of Java.

To alleviate this problem, an approach based on limited programs to establish a formal specification could be proposed, inspired by Domain Specific Languages (DSL) [START_REF] Visser | WebDSL: A Case Study in Domain-Specific Language Engineering[END_REF][START_REF] Maraninchi | Mode-Automata: a new Domain-Specific Construct for the Development of Safe Critical Systems[END_REF] that are dedicated to a particular domain and express a small set of adapted solutions within this restricted scope. Recent developments in this direction show that DSL, thanks to this limited scope, lead to more efficient solutions than is possible in more general programming languages (like JPF).

In this work, we propose to combine the advantages of the general-purpose language Java and domain specific languages to define VeriJ, a DSL which consists of a Java fragment dedicated to formal verification. This language will be used to create a model for specific domains. Automatic encoding of such a model into an efficient structure based on decision diagrams will allow domain experts to apply any verification technique available for this structure, for instance LTL or CTL model checking, or control synthesis with the Ramadge and Wonham framework [START_REF] Ramadge | Supervisory Control of a Class of Discrete-Event Processes[END_REF]. Also, VeriJ provides an easy way to simulate the model. We first describe an example of highway system, then we present VeriJ through this example and conclude with future work.

A Highway system

We consider a 1km highway section similar to the one in [START_REF] Bérard | Collision Avoidance in Intelligent Transport Systems: towards an Application of Control Theory[END_REF], with the aim to control vehicles and to avoid collisions. A small part of such a section is depicted in Fig. 1 (shadowed rectangles are explained later). This section is modeled as a discrete system that consists of a set of vehicles, moving on n lanes of length L, numbered from 0 to n -1. Moves of a vehicle include driving forward and changing lanes.

And vehicles exiting the range of the section are deleted from the set.

To be consistent with our future purpose of verification and control, we consider a labeled transition system with at most one uncontrollable vehicle operated by the environment (dark colored in Fig. 1), the rest of the vehicles being controllable by the controller. With two (or more) uncontrollable vehicles, the environment could always produce a crash.

Each vehicle is defined as a tuple (xpos, ypos, xspeed, yspeed, isControlled), where the value xpos denotes relative position with respect to its predecessor in the horizontal direction and ypos is the number of the lane. Integer value xspeed denotes the horizontal speed, non-deterministically chosen within a fixed interval [speed min , speed max], and yspeed is the value of vertical speed, non-deterministically chosen in {-1, 0, 1}, allowing a vehicle to move in adjacent lanes (-1 or 1) or stay in the current lane (value 0). The boolean label isControlled indicates the status of the vehicle with respect to the controller. The speed of those vehicles can be modified and new vehicle arrivals are constrained by setting a lower bound d min for a delay parameter, which represents the time elapsed between two successive arrivals on a given lane. Crashes are detected by estimating overlaps of dangerZones, which are the areas covered from the current to the next step, shown as shadowed rectangles in Fig. 1. If there exists a crash, the configuration is regarded as bad, and given a specific state label.

Several standard constructs are needed to implement the description above: for each is needed to update delays for each lane or move each vehicle in the set, exists is used for predicates indicating a collision, and non-deterministic choice has to be applied in adapting speed, adding new vehicles and setting the uncontrolled vehicle. We now show how to build a DSL interface for highway systems in Java.

A DSL interface for the highway system

As mentioned in section 1, VeriJ chooses a restricted part of Java. For instance, VeriJ includes basic data types, arithmetic operators, assignments, decision and control statements, public or private access modifiers, construction of classes with instantiation, and standard instructions from logic. VeriJ does not support the features such as libraries or native code.

The VeriJ specification of the highway system described above is illustrated in Fig. 2. It contains four classes: Highway, Delays, Vehicle and VehiclesSet. We introduce the different classes and emphasize several difficult operations with corresponding VeriJ code for explanation.

Highway. This class has a vehicles typed VehiclesSet and a delays typed Delays. The main operation consists of a transition from the current state to the next state. This transition contains five steps shown in the code below. The synchronization of delays and vehicles lies in addNewVehicles() with the non-deterministic operation NDChoice(), a random boolean generator. It allows to specify free choice semantics of a system and will be used to build the different target states of the model. Delays. This class uses a Java data type "array" to store "integer" data delay on each lane. For an integer counter j ∈ {0, 1, ..., n -1}, a vehicle may be added on j th lane if delays[j] > d min . At the moment a vehicle enters this lane, delays[j] is reset to 0.

Operations in this class are thus reset and updateDelay, where a loop statement is used to update time for each lane. Predicate canAddVehicle allows synchronization with the vehicle set.

Vehicle. Vehicles using relative (instead of absolute) positions (see Section 2) for the horizontal coordinate will lead to a more compact representation of the state space and make the collision detection easier. Let i denote the i th vehicle in the list, a horizontal move from time k to time k + 1 is obtained by:

xpos i (k + 1) = xpos i (k) + xspeed i (k) -xspeed i-1 (k) (1)
Hence, class Vehicle has operations updatePosition according to the formula above, updateSpeed, where non-deterministic xspeed is given in terms of a random value, and setControlled to set a vehicle as a uncontrolled one. It also contains a dangerZone defined by horizontal and vertical speeds.

The tricky point for this class will be the constructor. When class Vehicle is instantiated by calling Vehicle(int lane), a new vehicle is added on the lane corresponding to the parameter. Vehicles are added to the list one by one from the beginning. Thus, the list has an order. Since vehicles have different speeds, it is possible that the relative position xpos i becomes negative in the update operation, when overtaking occurs. In this case, the list must be reordered. It also suggests a risk of collision if dangerZones overlap with each other. Predicate isBad returns a boolean value labeling a configuration where a collision occurs. If there is no uncontrolled vehicle in the section, a nondeterministic operation may be applied to set (at most) one. Class VehiclesSet includes operations addVehicle, deleteExitVehicle, moveEachVehicle, reorderVehicles, chooseSpeed, setUncontrolledifNone and a predicate isBad.

The operation reorderVehicles is a difficult point in this class. It must carry out two actions, changing order in the list and assigning correct values to relative position xpos. To take into account the case where a high-speed vehicle overtakes more than one vehicle, we introduce the predecessor and successor for each vehicle with negative xpos. A for loop with index is used to apply reorder to each vehicle. The configuration label bad is determined by the answer to "does a vehicle set contains at least an item with the crash property?". This labeling is performed by the exists predicate, which returns true if predicate dangerZoneOverlap() returns true for at least one item in the iterable object vehicles. The syntax of VeriJ was explained on the highway system and will then be used to automatically generate a model for state space exploration. In the same way, VeriJ can be used on other engineering specifications to handle formal verification.

Simulation

In this section, we apply VeriJ to execute a highway system, running on top of a host JVM. Three implementation modes are designed for particular purposes.

• Random Mode: This mode randomly generates a value for each non-deterministic situation;

• Keyboard Mode: It allows engineers to set up their own scenario for the system by assigning the non-deterministic choice an expected value from keyboard; a scaled number of vehicles can be added on the highway section;

• Trace Mode: In this mode, a recorder is built to keep the values set in the other two modes to offer a means to observe the system.

Figure 3: Highway Execution Fig. 3 shows a configuration of an execution in a random mode. In this diagram, each grid represents a position one vehicle may occupy, with the correct order for vehicles and vehicle4 labeled as uncontrollable. Overlaps exist between dangerZones of vehicle1 and vehicle2 and between vehicle3 and vehicle4, hence producing a bad configuration.

ZHANG Yan

This example shows how VeriJ benefits from standard Java execution, while also offering a nice basis to build a complete representation for formal analysis.

Conclusion

This paper presents VeriJ, a DSL for modeling, simulation and verification of complex systems. The next step will be to translate this fragment in a framework based on Decision Diagrams, allowing to provide a compact encoding of the state space for a system described in VeriJ. Verification techniques (like LTL or CTL model checking) and control synthesis will then be directly applied on the translation.

Figure 1 :

 1 Figure 1: Highway

Figure 2 :

 2 Figure 2: Class Diagram describing the VeriJ model of Highway Systems

 p r i v a t e v o i d p l a y E n v i r o n m e n t () { a d d N e w V e h i c l e s () ; v e h i c l e s . d e l e t e E x i t V e h i c l e () ; v e h i c l e s . s e t U n c o n t r o l l e d I f N o n e () ; v e h i c l e s . c h o o s e S p e e d O f U n c o n t r o l l e d V e h i c l e () ; } p r i v a t e v o i d p l a y C o n t r o l l e r () { v e h i c l e s . c h o o s e S p e e d O f C o n t r o l l e d V e h i c l e s () ; }

 p r i v a t e v o i d a d d N e w V e h i c l e s () { f o r (i n t l a n e = 0 ; l a n e <NBLane ; l a n e ++) { i f (d e l a y s . c a n A d d V e h i c l e (l a n e) && V e r i J . NDChoice (" add v e h i c l e ? ")) { v e h i c l e s . a d d V e h i c l e (l a n e) ; d e l a y s . r e s e t (l a n e) ; } ZHANG Yan } }

 p u b l i c V e h i c l e (i n t l a n e) { x p o s = 0 ; y p o s = l a n e ;x s p e e d = V e r i J . random (MIN X SPEED , MAX X SPEED) ; y s p e e d = 0 ; i s C o n t r o l l e d = t r u e ; } VehiclesSet. A vehicle set is a list of vehicles, described by a "list" with type Vehicle. The size of this list is variable to allow adding new vehicles and deleting exiting vehicles.

 p u b l i c v o i d r e o r d e r V e h i c l e s () { f o r (i = 0 ; i <v e h i c l e s . s i z e () ; i ++) { V e h i c l e v e h i c l e = v e h i c l e s . g e t (i) ; i f (v e h i c l e . h a s N e g a t i v e X p o s ()) { / / s e t p r e d e c e s s o r V e h i c l e v p r e d = v e h i c l e s . g e t (i -1) ; / / r e c o r d c u r r e n t n e g a t i v e x p o s i n t c u r r e n t p o s = v e h i c l e . x p o s ; / / u p d a t e x p o s o f c u r r e n t v e h i c l e v e h i c l e . x p o s = v e h i c l e . x p o s + v p r e d . x p o s ; / / u p d a t e x p o s o f p r e d e c e s s o r v p r e d . x p o s =c u r r e n t p o s ; / / s e t s u c c e s s o r V e h i c l e v s u c c = v e h i c l e s . g e t (i + 1) ; / / u p d a t e x p o s o f s u c c e s s o r v s u c c . x p o s = v e h i c l e . x p o s + c u r r e n t p o s ; / / swap t h e o r d e r o f c u r r e n t v e h i c l e and p r e d e c e s s o r v e h i c l e s . s e t (i , v p r e d) ; v e h i c l e s . s e t (i -1 , v e h i c l e) ; } } }

 p u b l i c b o o l e a n i s B a d () { r e t u r n V e r i J . e x i s t s (d a n g e r Z o n e O v e r l a p () , v e h i c l e s) ; }