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ABSTRACT

Solar images in the ultraviolet (UV) are the key to the un
derstanding of the highly dynamic and energetic solar atmo
sphere. Nowadays, several missions provide simultaneous
observations in multiple wavelengths. Such multispectral
images have traditionally been used as inputs to physical
models. However, as the number of wavelengths steadily
increases, empirical approaches such as hyperspectral anal
ysis and blind source separation , become of interest. Two
examples are presented, based respectively on spatial and on
spectral mixtures of UV data.

Index Terms- solar imaging, UV, multispectral imag
ing, blind source separation

1. INTRODUCTION

The Sun is our closest star and yet, more distant objects have
received considerably more attention in terms of image pro
cessing applications. Indeed , until the space age, most solar
images were taken in visible light only, in which many solar
features have a low contrast. More recent images taken from
space in the UV band (typical wavelengths of 10-200 nm)
in comparison reveal a much more complex, highly dynamic
and structured picture [1], whose importance for understand
ing solar activity has stimulated the quest for new image pro
cessing techniques.

Each spectral emission line in the UV provides informa
tion on important parameters such as the temperature, the den
sity and the chemical composition. Multi-wavelength solar
images therefore are the key to the understanding of the solar
atmosphere. For instrumental reasons , however, such images
are usually taken by different instruments (or different satel
lites), and rarely simultaneously. Not surprisingly, image fu
sion is a major challenge and the word hyperspectral imaging
is not appropriate yet. More recent telescopes, however, such
as EUVI onboard STEREO and soon AlA onboard SDO, can
provide 4k x 4k images in up to 10 wavelengths, with a ca
dence of 10 sec. This unprecedented high flow of informa
tion stresses the need for automated extraction of information
from multispectral images. Some attention has already been
given to feature recognition [2] but the concept of multispec
tral analysis still remains largely unknown to the solar physics
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community.
Here we focus on two typical examples: a) spatial mix

tures with low spectral resolution solar images (14 wave
lengths), and b) spectral mixtures with high resolution spectra
(1546 wavelengths) versus time.

2. FIRST EXAMPLE: SPATIAL MIXTURES
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Fig. 1. Images of an active region at the solar limb taken on
March 23, 1998 by the CDS instrument onboard the SoHO
spacecraft; 6 emission lines out of 14 are shown. The char
acteristic temperatures of the lines increases logarithmically
from top left (20,000 K) to bottom right (2.5 MK). The spec
tral lines are indicated on each image. A linear vertical scale
is used for all images.

Figure 1 shows a series of 2D images of the solar limb,
taken by the Coronal Diagnostic Spectrometer (CDS) on
board the SoHO satellite. In this example, CDS was used
to measure the intensity of 14 spectral lines. The intensity
of each spectral line depends on various plasma parameters,
foremost being the temperature. A quantitative picture of the
temperature distribution, however, can only be obtained by
time-consuming comparisons with simulations from radiation
transfer models, and at the price of strong assumptions. An
important issue therefore is to find new and more empirical
means for rapidly inferring pertinent physical properties from
such data cubes.
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Fig. 2. Amount of variance (in %) explained by the compo
nents of the SVD.

is no firm justification, however, for the independence of the
components and the lack of positivity remains a problem.

A more realistic prior is the positivity of both the spatial
components fk (X) and their mixture coefficients gk(A). A
natural approach for this is Bayesian Positive Source Separa
tion (BPSS), which is described in [5]. The same method was
recently compared against the ICA in the frame of hyperspec
tral imaging of Mars [6]. We assume that f (x ) = U k(X)}
and g(A) = {gk(A)} are random matrices whose elements
are independent and distributed according to Gamma proba
bility density functions. The sources !k(x) are normalised to
have unit norm.

We apply the BPSS to the CDS data after normalising
each image to its mean value. No Anscombe transform was
applied beforehand since we assume the each pixel intensity
is a linear mixture ofdifferent sources. A key question is: how
many sources are there ? From the analysis of the root mean
squared error of the difference between the original data and
the reconstructed intensities, this number should be between
3 and 5. An inspection of the sources shows that for 4 sources
and more, 3 of them remain almost unchanged, whereas the
other ones are smaller (when the mixing coefficients are nor
malised to unit norm) and vary significantly with the number
of sources. We therefore consider in the following 3 sources.

The 3 sources obtained by BPSS and their mixing co
efficients are shown in Fig. 4. In contrast to the SVD and
the ICA, the BPSS identifies sources that can be linked to
known processes in the solar atmosphere. Interestingly, the
mixing coefficient reveal a clear temperature ordering , with
the 3 components capturing emissions that respectively origi
nate from the coolest layers (1), the medium hot ones (2) and
the hot corona (3). The cold component is associated with
the lowest layers of the solar atmosphere, in which the solar
surface comes out as a bright disk. The small loops that stand
out against the dark horizon are structured by the solar mag-

Fig. 3. The 6 first spatial components jj, (x) obtained by SVD
of the data. The same colour scaling is used for all images.
Except for component I, intensities are both negative and pos
itive.
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Figure 2 shows the distribution of the relative variance
Ek = 100 AULiA;of each component. The strong order
ing confirms the redundancy of the data and suggests that the
salient features are expressed by 2 to 5 components only. Sim
ilar results are obtained when no Anscombe transform is ap
plied, but the ordering of the components then is less strong.

The 6 first spatial components are shown in Fig. 3. They
are not realistic because the intensities are non-positive. A
deeper inspection reveals that most components actually mix
different types of solar structures. A more appropriate prior
would be the statistical independence of the components.
Independent Component Analysis (lCA) indeed reveals a
clearer picture with a better temperature ordering [4]. There

A conspicuous feature in Fig. I is the high correlation be
tween the different images. There are two reasons for this.
First, the same line of sight (i.e. pixel) may capture contribu
tions coming from regions with different temperatures. Sec
ond, the temperature response associated with each spectral
line is generally wide, and sometimes not even unimodal.

One can reasonably assume that the intensity of each pixel
is a linear mixture of a large set of pure component spectra.
The number of pure spectra is much too large to extract them
individually, even using a supervised method. Blind source
separation, however, in which both the spectra and their mix
ture coefficients are unknown, may provide a realistic descrip
tion of the solar atmosphere.

As a first step of data processing, we compute the Singu
lar Value Decomposition (SVD) of the images. Each image is
85 x 87 pixels in size. We unfold the 85 x 87 x 14 data cube
into a 7395 x 14 matrix by lexicographically ordering each
image. In doing so, we implicitly assume that the pixel in
tensities I(x, A) = Lk~l Ak fk(X) gk(A) are expressed as
a separable set of orthonormal spatial and wavelength com
ponents.

The CDS spectrometer counts photons , and for each pixel
the noise obeys a mixture of Poisson and normal laws. The
variance can then be stabilised by applying the generalised
Anscombe transform [3], which is equivalent here to taking
the square root of the intensity. Each image is subsequently
normalised to its mean value.



netic field. Particle acceleration processes can locally heat the
plasma to several million degrees, leading to the hot diffuse
structures that appear in component 3. An important result is
that all 14 spectral lines, in spite of their differences, can be
classified in 3 temperature bands only, whose properties can
be inferred from the data without imposing a physical model.
Our results are robust, in the sense that the same temperature
ordering is obtained for other regions or events, provided all
three layers are represented in the data.
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Fig. 4. Spatial components obtained by BPSS of the data, us
ing 3 sources (top) and their associated mixing coefficients,
plotted versus the characteristic emission temperature ofeach
spectral line (bottom). Also shown (bottom right) is a mul
tispectral representation of the Sun in which component I is
assigned to the blue channel, component 2 to the green chan
nel and component 3 to the red channel. This colour figure
can only be properly interpreted in the online version of the
article.

A useful outcome is the possibility to condense the salient
features of all 14 spectra into a single three-temperature rep
resentation of the Sun. We do so by assigning the blue, green
and red channels respectively to the cold, intermediate and
hot components. This multichannel representation of the Sun
is shown in Fig. 4. We are currently adapting this representa
tion for delivering in real-time approximate temperature maps
of the Sun based on high resolution (4kx4k) images from the
future SDO satellite.

3. SECOND EXAMPLE: SPECTRAL MIXTURES

Let us now consider the Sun as a point source, with high
resolution UV spectra. Such spectra are important for space
weather applications since different wavelengths are absorbed
at different altitudes of the Earth's atmosphere. Variations in
the UV flux can affect radio communications, satellite orbits
(through increased air drag) and positioning by GPS.

We concentrate here on 6 years of daily measurements

made since Feb. 2002 by the SEE spectrometer onboard the
TIMED satellite. This data set has been described in detail
in [7]. SEE continuously measures the UV spectrum from
27 to 192.5 nm with 0.1 nm spectral bins; the instrumental
resolution is 0.4 nm. Each spectral bin integrates emissions
that are emitted by various spectral lines and come from all
parts of the Sun. All these contributions are mixed in a linear
way, so blind source separation is again justified. As in the
previous section, we assume that the spectral irradiance ma
trix 1(>" , t) = Lk Ak f k(t ) gk(>") can be decomposed into a
series of elementary spectra gk(>") with their associated mix
ing coefficients f k(t). The data are stored in a 2142 x 1546
matrix, in which columns correspond to spectral bins.
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Fig. 5. Time evolution of 4 characteristic spectral lines. The
intensities have been renormalized and shifted vertically to
ease comparison.

Fig. 5 shows the time evolution of 4 typical spectral lines
and reveals the remarkable coherency of the solar spectrum.
All spectral bins exhibit the same downward trend, which co
incides with the decaying solar cycle. On smaller time scales,
however, significant differences arise. Note the conspicuous
27-day modulation that is caused by solar rotation. In a pre
vious study [7], based on SVD and multidimensional scaling,
we showed that very few degrees of freedom are at play in the
spectral variability.

The elementary spectra associated with the solar irradi
ance have to be positive, so we again consider BPSS. As in
the previous example, there is no crisp criterion for determin
ing the number of sources. By running the BPSS with dif
ferent numbers of sources, however, we find that with more
than 3 sources, the method starts using instrumental artefacts
to separate different contributions. That is, the signal-to-noise
ratio is insufficient to allow more than 3 sources to be properly
identified. Incidentally, we discovered that wayan instrumen
tal artefact that had been insufficiently corrected in the data.

The mixing coefficients fk (t ) are shown in Fig. 6. The
first two components and their spectra tum out to be directly
associated with known solar contributions, and are further dis
cussed in [8]. The third component, however, is enigmatic
as it increases while all spectral lines are decaying. Its as-
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Fig. 6. Time evolution of mixing coefficients obtained by ap
plying BPSS to TIMED/SEE spectra. The vertical scale is
arbitrary.

sociated spectrum (not shown here) is also puzzling, since it
captures emissions coming from coolest layers of the solar
atmosphere. This component probably does not represent a
true physical contribution to the spectra as it is sensitive to
the preprocessing; it should rather be considered as a differ
ential correction.

4. CONCLUSIONS

The central result is the existence of 3 sources only for
adequately describing the salient features of spectral- and
spatially-resolved UV emissions from the solar atmosphere.
This finding contrasts with the complexity of the underlying
physical processes and confirms the remarkable structuring of
the atmosphere by the solar magnetic field. The existence of
three characteristic sources only had already been suggested
by some [9, 10] but the BPSS for the first time provides direct
quantitative evidence for it.

The sources we identify in spatial and in spectral linear
mixtures are similar but not identical. Both reveal a clear tem
perature ordering, and confirm the importance of the latter.
The two sets of sources, however, are not fully comparable
since they are estimated from different spectral ranges.

The major advantage of such empirical methods over ex
isting physical models is the ability to perform fast data reduc
tion and deliver inputs for segmentation schemes. They also
ease the comparison between observations and the outcome
of physical models. We are presently investigating whether
the sources from complementary data-sets (one with spatial
and one with spectral mixtures) can help improve improve
the spatial or spectral resolution where it is lowest. Another
field of study is the association of source separation tech
niques with multiscale analysis for improving the separation.
Hot coronal regions, for example, are often diffuse, thereby
providing additional leverage for the source separation proce
dure.
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