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INTRODUCTION

The Sun is our closest star and yet, more distant objects have received considerably more attention in terms of image processing applications. Indeed , until the space age, most solar images were taken in visible light only, in which many solar features have a low contrast. More recent images taken from space in the UV band (typical wavelengths of 10-200 nm) in comparison reveal a much more complex, highly dynamic and structured picture [1], whose importance for understanding solar activity has stimulated the quest for new image processing techniques.

Each spectral emission line in the UV provides information on important parameters such as the temperature, the density and the chemical composition. Multi-wavelength solar images therefore are the key to the understanding of the solar atmosphere. For instrumental reasons , however, such images are usually taken by different instruments (or different satellites), and rarely simultaneously. Not surprisingly, image fusion is a major challenge and the word hyperspectral imaging is not appropriate yet. More recent telescopes, however, such as EUVI onboard STEREO and soon AlA onboard SDO, can provide 4k x 4k images in up to 10 wavelengths, with a cadence of 10 sec. This unprecedented high flow of information stresses the need for automated extraction of information from multispectral images. Some attention has already been given to feature recognition [START_REF] Zharkova | Feature recognition in solar images[END_REF] but the concept of multispectral analysis still remains largely unknown to the solar physics community.

Here we focus on two typical examples: a) spatial mixtures with low spectral resolution solar images (14 wavelengths), and b) spectral mixtures with high resolution spectra (1546 wavelengths) versus time. Figure 1 shows a series of 2D images of the solar limb, taken by the Coronal Diagnostic Spectrometer (CDS) onboard the SoHO satellite. In this example, CDS was used to measure the intensity of 14 spectral lines. The intensity of each spectral line depends on various plasma parameters, foremost being the temperature. A quantitative picture of the temperature distribution, however, can only be obtained by time-consuming comparisons with simulations from radiation transfer models, and at the price of strong assumptions. An important issue therefore is to find new and more empirical means for rapidly inferring pertinent physical properties from such data cubes. is no firm justification, however, for the independence of the components and the lack of positivity remains a problem.

FIRST EXAMPLE: SPATIAL MIXTURES

A more realistic prior is the positivity of both the spatial components fk (X) and their mixture coefficients gk(A). A natural approach for this is Bayesian Positive Source Separation (BPSS), which is described in [START_REF] Moussaoui | Separation ofnon-negative mixture ofnonnegative sources using a bayesian approach and mcmc sampling[END_REF]. The same method was recently compared against the ICA in the frame of hyperspectral imaging of Mars [START_REF] Moussaoui | On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation[END_REF]. We assume that f (x ) = U k(X)} and g(A) = {gk(A)} are random matrices whose elements are independent and distributed according to Gamma probability density functions. The sources !k(x) are normalised to have unit norm. We apply the BPSS to the CDS data after normalising each image to its mean value. No Anscombe transform was applied beforehand since we assume the each pixel intensity is a linear mixture ofdifferent sources. A key question is: how many sources are there ? From the analysis of the root mean squared error of the difference between the original data and the reconstructed intensities, this number should be between 3 and 5. An inspection of the sources shows that for 4 sources and more, 3 of them remain almost unchanged, whereas the other ones are smaller (when the mixing coefficients are normalised to unit norm) and vary significantly with the number of sources. We therefore consider in the following 3 sources.

The 3 sources obtained by BPSS and their mixing coefficients are shown in Fig. 4. In contrast to the SVD and the ICA, the BPSS identifies sources that can be linked to known processes in the solar atmosphere. Interestingly, the mixing coefficient reveal a clear temperature ordering , with the 3 components capturing emissions that respectively originate from the coolest layers (1), the medium hot ones (2) and the hot corona (3). The cold component is associated with the lowest layers of the solar atmosphere, in which the solar surface comes out as a bright disk. The small loops that stand out against the dark horizon are structured by the solar mag- Independent Component Analysis (lCA) indeed reveals a clearer picture with a better temperature ordering [START_REF] De | Inferring Temperature from Morphology in Solar EUV Images[END_REF]. There A conspicuous feature in Fig. I is the high correlation between the different images. There are two reasons for this. First, the same line of sight (i.e. pixel) may capture contributions coming from regions with different temperatures. Second, the temperature response associated with each spectral line is generally wide, and sometimes not even unimodal.

One can reasonably assume that the intensity of each pixel is a linear mixture of a large set of pure component spectra. The number of pure spectra is much too large to extract them individually, even using a supervised method. Blind source separation, however, in which both the spectra and their mixture coefficients are unknown, may provide a realistic description of the solar atmosphere.

As a first step of data processing, we compute the Singular Value Decomposition (SVD) of the images. Each image is 85 x 87 pixels in size. We unfold the 85 x 87 x 14 data cube into a 7395 x 14 matrix by lexicographically ordering each image. In doing so, we implicitly assume that the pixel intensities I(x, A) = Lk~l A k f k(X) gk(A) are expressed as a separable set of orthonormal spatial and wavelength components.

The CDS spectrometer counts photons , and for each pixel the noise obeys a mixture of Poisson and normal laws. The variance can then be stabilised by applying the generalised Anscombe transform [START_REF] Starck | Astronomical Image and Data Analysis[END_REF], which is equivalent here to taking the square root of the intensity. Each image is subsequently normalised to its mean value. netic field. Particle acceleration processes can locally heat the plasma to several million degrees, leading to the hot diffuse structures that appear in component 3. An important result is that all 14 spectral lines, in spite of their differences, can be classified in 3 temperature bands only, whose properties can be inferred from the data without imposing a physical model. Our results are robust, in the sense that the same temperature ordering is obtained for other regions or events, provided all three layers are represented in the data. A useful outcome is the possibility to condense the salient features of all 14 spectra into a single three-temperature representation of the Sun. We do so by assigning the blue, green and red channels respectively to the cold, intermediate and hot components. This multichannel repres entation of the Sun is shown in Fig. 4. We are currently adapting this representation for delivering in real-time approximate temperature maps of the Sun based on high resolution (4kx4k) images from the future SDO satellite.

SECOND EXAMPLE: SPECTRAL MIXTURES

Let us now consider the Sun as a point source, with high resolution UV spectra. Such spectra are important for space weather applications since different wavelengths are absorbed at different altitudes of the Earth's atmosphere. Variations in the UV flux can affect radio communications, satellite orbits (through increased air drag) and positioning by GPS.

We concentrate here on 6 years of daily measurements made since Feb. 2002 by the SEE spectrometer onboard the TIMED satellite. This data set has been described in detail in [START_REF] Dudok De Wit | Retrieving the solar EUV spectrum from a reduced set of spectral lines[END_REF]. SEE continuously measures the UV spectrum from 27 to 192.5 nm with 0.1 nm spectral bins; the instrumental resolution is 0.4 nm. Each spectral bin integrates emissions that are emitted by various spectral lines and come from all parts of the Sun. All these contributions are mixed in a linear way, so blind source separation is again justified. As in the previous section, we assume that the spectral irradiance matrix 1(>" , t) = Lk A k f k(t ) gk(>") can be decomposed into a series of elementary spectra gk(>") with their associated mixing coefficients f k(t). The data are stored in a 2142 x 1546 matrix, in which columns correspond to spectral bins. All spectral bins exhibit the same downward trend, which coincides with the decaying solar cycle. On smaller time scales, however, significant differences arise. Note the conspicuous 27-day modulation that is caused by solar rotation. In a previous study [START_REF] Dudok De Wit | Retrieving the solar EUV spectrum from a reduced set of spectral lines[END_REF], based on SVD and multidimensional scaling, we showed that very few degrees of freedom are at play in the spectral variability.

The elementary spectra associated with the solar irradiance have to be positive, so we again consider BPSS. As in the previous example, there is no crisp criterion for determining the number of sources. By running the BPSS with different numbers of sources, however, we find that with more than 3 sources, the method starts using instrumental artefacts to separate different contributions. That is, the signal-to-noise ratio is insufficient to allow more than 3 sources to be properly identified. Incidentally, we discovered that wayan instrumental artefact that had been insufficiently corrected in the data.

The mixing coefficients fk (t ) are shown in Fig. 6. The first two components and their spectra tum out to be directly associated with known solar contributions, and are further discussed in [START_REF] Amblard | The EUV Sun as the superposition of elementary Suns[END_REF]. The third component, however, is enigmatic as it increases while all spectral lines are decaying. Its as-oL-_----'__----L__---'-__---'-__--'-'-------L:....l sociated spectrum (not shown here) is also puzzling, since it captures emissions coming from coolest layers of the solar atmosphere. This component probably does not represent a true physical contribution to the spectra as it is sensitive to the preprocessing; it should rather be considered as a differential correction.

CONCLUSIONS

The central result is the existence of 3 sources only for adequately describing the salient features of spectral-and spatially-resolved UV emissions from the solar atmosphere. This finding contrasts with the complexity of the underlying physical processes and confirms the remarkable structuring of the atmosphere by the solar magnetic field. The existence of three characteristic sources only had already been suggested by some [START_REF] Lean | A threecomponent model of the variability of the solar ultraviolet flux 145-200 nm[END_REF][START_REF] Feldman | The temperature structure of solar coronal plasmas[END_REF] but the BPSS for the first time provides direct quantitative evidence for it. The sources we identify in spatial and in spectral linear mixtures are similar but not identical. Both reveal a clear temperature ordering, and confirm the importance of the latter. The two sets of sources, however, are not fully comparable since they are estimated from different spectral ranges.

The major advantage of such empirical methods over existing physical models is the ability to perform fast data reduction and deliver inputs for segmentation schemes. They also ease the comparison between observations and the outcome of physical models. We are presently investigating whether the sources from complementary data-sets (one with spatial and one with spectral mixtures) can help improve improve the spatial or spectral resolution where it is lowest. Another field of study is the association of source separation techniques with multiscale analysis for improving the separation. Hot coronal regions, for example, are often diffuse, thereby providing additional leverage for the source separation procedure.
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 1 Fig. 1. Images of an active region at the solar limb taken on March 23, 1998 by the CDS instrument onboard the SoHO spacecraft; 6 emission lines out of 14 are shown. The characteristic temperatures of the lines increases logarithmically from top left (20,000 K) to bottom right (2.5 MK). The spectral lines are indicated on each image. A linear vertical scale is used for all images.
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 2 Fig. 2. Amount of variance (in %) explained by the components of the SVD.
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 342 Fig. 3. The 6 first spatial components jj, (x) obtained by SVD of the data. The same colour scaling is used for all images. Except for component I, intensities are both negative and positive.

Fig. 4 .

 4 Fig. 4. Spatial components obtained by BPSS of the data, using 3 sources (top) and their associated mixing coefficients, plotted versus the characteristic emission temperature of each spectral line (bottom). Also shown (bottom right) is a multispectral representation of the Sun in which component I is assigned to the blue channel, component 2 to the green channel and component 3 to the red channel. This colour figure can only be properly interpreted in the online version of the article.
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 35 Fig. 5. Time evolution of 4 characteristic spectral lines. The intensities have been renormalized and shifted vertically to ease comparison.
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 5 Fig.5shows the time evolution of 4 typical spectral lines and reveals the remarkable coherency of the solar spectrum. All spectral bins exhibit the same downward trend, which coincides with the decaying solar cycle. On smaller time scales, however, significant differences arise. Note the conspicuous 27-day modulation that is caused by solar rotation. In a previous study[START_REF] Dudok De Wit | Retrieving the solar EUV spectrum from a reduced set of spectral lines[END_REF], based on SVD and multidimensional scaling, we showed that very few degrees of freedom are at play in the spectral variability.The elementary spectra associated with the solar irradiance have to be positive, so we again consider BPSS. As in the previous example, there is no crisp criterion for determining the number of sources. By running the BPSS with different numbers of sources, however, we find that with more than 3 sources, the method starts using instrumental artefacts to separate different contributions. That is, the signal-to-noise ratio is insufficient to allow more than 3 sources to be properly identified. Incidentally, we discovered that wayan instrumental artefact that had been insufficiently corrected in the data.
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 6 Fig. 6. Time evolution of mixing coefficients obtained by applying BPSS to TIMED/SEE spectra. The vertical scale is arbitrary.
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