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Abstract

The solution of the augmented Lagrangian related system (A4 +r BT B) u = f is a key ingredient of many iterative algo-
rithms for the solution of saddle-point problems in constrained optimization with quasi-Newton methods. However,
such problems are ill-conditioned when the penalty parameter £ = 1/7 > 0 tends to zero, whereas the error vanishes
as O(g). We present a new fast method based on a splitting penalty scheme to solve such problems with a judicious
prediction-correction. We prove that, due to the adapted right-hand side, the solution of the correction step only
requires the approximation of operators independent on &, when ¢ is taken sufficiently small. Hence, the proposed
method is all the cheaper as € tends to zero. We apply the two-step scheme to efficiently solve the saddle-point pro-
blem with a penalty method. Indeed, that fully justifies the interest of the vector penalty-projection methods recently
proposed in [1] to solve the unsteady incompressible Navier-Stokes equations, for which we give the stability result
and some quasi-optimal error estimates. Moreover, the numerical experiments confirm both the theoretical analysis
and the efficiency of the proposed method which produces a fast splitting solution to augmented Lagrangian or penalty
problems, possibly used as a suitable preconditioner to the fully coupled system.

Keywords: Constrained optimization, Saddle-point problems, Augmented Lagrangian, Penalty method, Splitting
prediction-correction scheme, Vector penalty-projection methods
2010 MSC: 49K35, 65F05, 65F08, 65F10, 65F35, 65K05, 65K10, 65K15, 65N22, 76D05, 76D07, 90C25, 90C26

1. The prediction-correction method for augmented Lagrangian problems

By using the ordinary Lagrangian, a nonconvex optimization problem often has a duality gap and the value of
the dual problem is strictly less than the value of the primal problem. A common strategy for bridging this gap is to
augment the ordinary Lagrangian with a penalty term, see [7, 20]. Besides, Bertsekas [7] observes that such a result
also applies to inequality constrained problems, since an inequality can be made equivalent to an equality. Then, by
using quasi-Newton schemes, Daniel, Fletcher-Reeves or Polak-Ribi¢re formulations of conjugate gradient algorithm,
the solution to a linear equality constrained problem with the augmented Lagrangian proves to be a fundamental
ingredient of locally quadratically convergent methods for optimization problems with both equality or inequality
constraints even in the nonconvex case; see also [12, 14, 20] and barrier or interior point methods in [22].

We now focus on the augmented Lagrangian problem for a linear equality constraint. Let us address the solution
to the linear equality constrained problem in the quadratic convex case for sake of simplicity. Let A be an n X n
symmetric positive definite matrix and b € R” defining the strictly convex functional F(x) = x” A x — 2b" x. Let B be
an m X n matrix and d € R™ a vector in Im(B), the range of B, which define the closed convex subset of constraint:
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K = {x € R"; G(x) := Bx —d = 0}. Then, we recall that there exists a unique global minimizer x* € K for F on K,
solution to: F(x*) = miI? F(x) and (x*, 4%) € R" x R™ is solution to the linear block-system of order n + m below [6]:
XE

(5 5))- (o) 8

Moreover, if B is surjective, i.e. B has the maximal rank m, then 1* solution to (1) is unique. The fully coupled
solvers of (1) require Krylov gradient methods with suitable preconditioners, e.g. [9]. Then, the usual approximate
solution to (1) with the Uzawa augmented Lagrangian iterations, i.e. a gradient type method, see [14] or [19] for
applications with finite volume methods, reads with 2° and 0 < p; < 2ry given:

(A +ry BTB) & = b+ BTd-BTA, Q)
A= Ry (B —d), VYkeN. (3)

The conjugate gradient can be used as well instead of the above steepest descent, see [14]. However, a common
criticism of the augmented Lagrangian approach is that the system (2) can be ill-conditioned due to the penalty
term and iterative algorithms for solving the problem converge very slowly as the augmentation parameter r; tends
to infinity. Indeed, the convergence rate of gradient methods for solving (2) is governed by the condition number
cond(A,) = w,/u1, the ratio between the largest eigenvalue y, and the smallest one y; of the matrix A, := A + r BTB.
For example, the error x; — X of the conjugate gradient iteration x; satisfies the energy inequality below, e.g. [17]:

Vecond(A4,) — 1
Vcond(A,) + 1

It is shown in [14, 20] that cond(A,) = O(r), which is observed numerically [11], and the iterative algorithm converges
arbitrarily slowly as r tends to infinity. Thus, techniques for handling the instabilities are developed: preconditioning
and/or adjustments with a variable parameter r with criterion for deciding when to increase it, e.g. [12, 16, 14, 20] or
also [15, Chap. 4].

Here, we present a new and simple splitting solution to the augmented Lagrangian system (AL) or (2) with f =
b - BT 2%

2
E(xi1 — %) < ( ) E(x,— %), Yle N where E(x)=x"(A+rB'B)x. 4)

(AL) (A + éBTB) u, = f + éBTd, feR" with 0<e= % <1 (5)

with the following prediction-correction scheme (AL2) where the constraint is handled only in the correction step:
An = f, (6)
(AL2) (A + éBTB) fig

1
—;BT(Ba —d), and u, =i+ . 7

We observe that (6,7) is equivalent to (5) and we prove the crucial result below due to the adapted right-hand side
in the correction step (7) which lies in the range of the operator B” or of the limit operator B” B. Indeed, (7) can be
viewed as a singular perturbation problem with well-suited data in the right-hand side. More precisely, we give in
Theorem 1.1 the asymptotic expansion of the solution &, to (7):

N § RN P o
io=—-——|A+-B'B|] B'(Bui-d (8)
& &
when the penalty parameter ¢ is chosen sufficiently small. We denote by ||.|| the Euclidean norm.

Theorem 1.1 (Solution of the splitting augmented Lagrangian system). Let A be an n X n positive definite matrix and
B an m x n matrix. If the rows of B are linearly independent, rank(B) = m, then for & small enough, 0 < £ < 1/|IS 7|
where S = BA™'BT (=S being the Schur complement of A), there exists an n X m matrix E given in (12) and bounded
independently on & such that the solution of the correction step (8) writes with it = A~ f:

. =(C+eE)Bi-d)=Coii—Cd+cEBi—d) where C=-A"'B'S™', Co=-A"'B"S7'B. (9)

If rank(B) = p < m, there exists a surjective p x n matrix T such that B'B = TTT and the similar result holds
replacing Bby T .



Proor. We first remove redundant rows from B. If the rank of B is p < m, then by the QR factorization [17], there
exists an orthogonal m X m matrix Q such that B = QR, where the first p rows of R are linearly independent and
the next m — p rows are completely zero. Letting 7' be the submatrix of R formed by the first p rows, we have:
B"™B =RTQTQOR = RTR = T™TT. Since BB = TTT and the rows of T are linearly independent, there is no loss of
generality in assuming that the rows of B are linearly independent.

Let us now prove the main result. By using the Woodbury formula [24, 21], a generalization of the Sherman-
Morrison formula [17, Chap. 2], we can express (A + rBTB)! as:

1 ! - 1
(A + —BTB) =A™ - A'B" (e1+BA™'B") "BA™!, forall =~ 0. (10)
& r

Since A is positive definite, A is nonsingular and A~! also positive definite; since rank(B”) = rank(B) = m, we have
ker(BT) = {0}. Thus, the Lagrange multiplier operator S = BA~'B” is nonsingular.

Now, writing (¢ +5)™! = (I + £S~!)71S !, we can expand this inverse matrix in the Neumann geometric series
if £ is sufficiently small, e.g. £ < 1/||S ~!||. Thus, with & < (1 — £)/|IS ~!|| for any £ > 0, we have:

(e1+ BA-lBT)’1 =S —eS24 Z(—nk ST for e<(1-8)/IS7Y, VESO.

k=2

Combining with (10), we get by a simple calculation the asymptotic expansion below:

-1 )
1
(A + —BTB) =A"'-AT'B"ST'BAT' + e AT'BTS ?BA™" - Z(—l)k "AT'BTS AT (11)
&
k=2
Then, multiplying (11) by the right-hand side in (7), observing that the coefficient of the 1/ term is zero and the
coefficient of the £° term is C(Bii — d) with C = —A"'BTS 1, it yields (9) where

E=A"'B's? Z(—l)" eSsh=A"1BTg? (1 + gs-l)_1 with  |IE|| < |A7'BTS 2| ¢! (12)
k=0
which completes the proof since: ||(/ + eSH N <-glS7n " <&l O

Hence, for £ small enough, the computational effort required to solve (7) amounts to approximate the matrices C
or C. Moreover, the following corollaries can be easily proved, showing that the estimate (4) is far from being optimal
as far as the right-hand side in (7) is adapted to the left-hand side operator.

Corollary 1.2 (Adapted conditioning property). In the solution procedure for (7), assume that some perturbations
exist: either i + oti in i # 0 or Cy + 6Cy in Cq from Theorem 1.1. Then, the perturbed solution ii, + il respectively
satisfies for € sufficiently small, with H = E B:

lloa| lloa|l

llod|| - 1y 16C0l|
2= < |ICo + e HINICo +eH) = or =8 <ICollIl(Co + & H) ™'l ===
1| llz] llits | IColl

13)

This defines the effective condition number for the linear system (7) by cond, = ||Col||(Co+< H)™ || for & small enough.

Corollary 1.3 (Fast solution for A = I + e M or A = BB” and d = 0). Assume the framework of Theorem 1.1 with
A = I the n x n Identity matrix and d = 0. Then for all &€ small enough: 0 < & < 1/||S || where S = BBT, we have:

0, =Coii+eC @i where Coy=-B'S™'B=-B"(BB")Y'B, C,=EB=B"(BB")?2 (1 + e(BBT)‘l)_l B. (14)

Moreover, if rank(B) = p < m < n, the zero-order solution it = Cy @i in (14) is the solution of minimal Euclidean
norm in R" to the linear system: Bt = —Bii by the least-squares method, and the matrix B = BT (BBT)™! is the
Moore-Penrose pseudo-inverse of B such that Co = —B'B. Indeed, a singular value decomposition (SVD) or a QR
factorization of B yields: Co = —Iy where Iy is the n X n diagonal matrix having only 1 or 0 coefficients, the zero
entries in the diagonal being the n — p null eigenvalues of the operator BT B.

The same result also holds with any perturbation of Identity A = [ + ¢ M, whatever the n X n matrix M, if
0 <& <min(|M]l, 1/1IS 1)

If A = BB” with m = n and B nonsingular, a similar result also holds, i.e. we get: Co = —I.
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2. The splitting penalty method for saddle-point problems

We now illustrate the splitting augmented Lagrangian method by applying the two-step scheme to solve saddle-
point problems for continuous or discrete operators with a penalty method. For sake of simplicity here, we restrict
ourselves to the Hilbertian framework although the result can be extended to reflexive Banach spaces.

2.1. The two-step penalty augmented Lagrangian method

Let V and X be two Hilbert spaces and V’, X’ the dual spaces with (., .) denoting the duality pairing. Introduce the
linear and continuous (bounded) operators A and BsuchthatA: V -V’ B: V — X’ andthus B" : X ~ X" - V',
For f € V' and g € X’, we consider the abstract saddle-point problem:

roo_
seek (u,p) € VxX  such that { 2Z+B P ;{; (15)

Assume that the operator A is coercive on V and that the inf-sup condition holds, i.e.

Bw, )y
@) Fa>0, Ay > alull, vueV i) 38> 0, sup Lrdxx

> Bliqllx, Vg € X. (16)
wev Iwlly

Then, it is well-known that the problem (15) is well-posed with (16): there exists a unique solution (u,p) € V x X
which continuously depends on the data f and g, see [13].

Let us now consider the penalty method, originally introduced by Courant [10] in the context of constrained
optimization, for the approximate solution of problem (15) where X and X’ are identified using the Riesz-Fréchet
representation theorem. For all &€ > 0, seek u, € V and p, € X such that:

1 1
Aug,+B"p, = f, @+—Mﬂ%=f+$%,
(AL) H & (17)

Ps = _(B”s_g)
&

Pe = (Bus_g)-

T e
The corresponding augmented Lagrangian problem can be efficiently solved by the prediction-correction scheme for
the penalty augmented Lagrangian method to get the solution of (17) with 0 < ¢ <« 1:

Al =f,
A IBTBA = 1BTB~
(AL2) * B Bt =—"B(Bi-g) (18)
U, =iit+a, and p.,=-(Bu,—g).
E

For numerical applications, V and X are finite-dimensional spaces and the two-step scheme (AL2) is all the cheaper
as the penalty parameter ¢ tends to zero, as proved in Section 1. Moreover, (18) yields an O(e) accurate approxima-
tion of the saddle-point solution, as stated below where the proof, slightly different from [13], does not require the
smallness of &; see also the case of the Stokes problem in [23].

Theorem 2.1 (Error estimate of the penalty method for saddle-point problems). Under the above framework, there
exists ¢ = c(||All, @, B) > O such that the following error estimate holds for all € > 0:

lleee — ullv + llpe = plix + 1B(ue — wllx < c(lAll, @, B) (Ifllv: + ligllx) . (19)
SKETCH OF PROOF. Indeed, (18) and (17) are equivalent and the error equation with (15) writes:
1 1
A, —uw)+ BT (p.—p)=0 or A, —-u)+ -B'Bu,—u)=B'p=f—-Au and p, = —B(u, — u).
£ e
Taking the duality brackets with u, — u and using B(u, — u) = € p. = € (ps — p) + € p, we have:

(A(we — u),us — uyyry +&llpe — plly = e (p, pe — P)x < lIplix lIps = plix &.
4



From the inf-sup condition (16(ii)), we deduce that S ||pllx < ||B” pllv < |All |lully +||fllv-, giving the bound on p from
the bound on u, and similarly for the bound on p, — p. Thus, we have:

lIpllx < co(lAll @ B) (Ifllv: +llgl)  and  Bllpe = pllx < 1B (pe = Pllv: < NIAllllug — ully.

Combining with the previous inequality and using the coercivity (16(7)), it yields the error estimates:

llug — ully < c1(llAll . B) AIfllv: + ligllx) e and then  |lp, — pllx < c2(l|All, @.B) (Ifllv- + llgllx) &.

We conclude the proof of (19) with: [|B(u, — u)|lx < &(l|ps — pllx + ||pllx), and the previous bounds. A refined result
can be also derived with an asymptotic expansion of (u,, p.) in powers of &, see [13, 23]. O

We now observe that Theorem 1.1 can be generalized to some continuous problems with assumptions allowing to
write the asymptotic expansion (11). It is the case in the following result.

Corollary 2.2 (Generalization of Theorem 1.1 for the Stokes problem). Let the domain Q@ c R? (d =2 or 3 in
practice) be an open bounded and connected set with a Lipschitz continuous boundary I' = 0Q. We consider the
following Stokes problem where the viscosity i > 0 and f € H-'(Q)? are given:

—uAv+Vp=f,  with V.v=0 inQ, and vp=0. (20)
Then, Theorem 1.1 holds and the solution V. in (8) satisfies the asymptotic expansion given in (9,12).

SKETCH OF PROOF. In the case of the Stokes problem, the velocity correction ¥, in the splitting augmented Lagrangian
problem (6,7) satisfies an homogeneous Dirichlet boundary condition on I'. Thus, the concerned Hilbert spaces are:
V= Hé Q4 V' =H ' (Q)and X = X' = Lé(Q). The operators are now: A = —uA = u BBT, a self-adjoint coercive
operator of compact inverse, B = V and B = —div, which is a surjective operator onto L%(Q), see [8].

Then, the “pressure” operator S = BA™'B' is a coercive, self-adjoint isomorphism from L3(€2) onto L3(€), see [14,
Theorem 5.10], i.e. a zero-order operator. Hence, the asymptotic expansion (11) is valid and Theorem 1.1 also holds
for the continuous Stokes problem where the operator Cy = —A~'B7 S ~!B to calculate in (9) is only of zero-order. O

Remark 1 (Navier-Stokes problem with periodic boundary conditions). In the case of periodic boundary conditions for
the Navier-Stokes equations, the operators B and A~ commute and we have S = I and Cy reduces to Co = —A"'BTB.
That can be used for the numerical simulation of turbulence.

2.2. Vector penalty-projection methods (VPP, ;) for unsteady incompressible Navier-Stokes problems

We use below the usual functionnal setting for the unsteady Navier-Stokes equations, see [23, 13, 8]. Let the
domain Q ¢ R? (d=2 or 3 in practice) be an open bounded and connected set with a Lipschitz continuous boundary
I' = 0Q. For T > 0, we consider the following unsteady Navier-Stokes problem governing incompressible flows at a
given Reynolds number Re where Dirichlet boundary conditions for the velocity vir = vp on I, f and an initial data
v(t=0) = vy are given:

1
v+ (v V)v — ﬁAV+Vp =f with Vev=0 inQx(0,T). 21

The following family of vector penalty-projection methods recently proposed in [1] is indeed designed on the basis
of the previous two-step augmented Lagrangian method with: r = rg + 1/¢, yielding a correction step for the velocity
vector at each time step. We also refer to [18, 5, 11] for the interest of the augmented term to drastically reduce the
splitting error. We describe hereafter the two-step vector penalty-projection (VPP, ) methods with an augmentation
parameter o > 0 and a penalty parameter 0 < & < 1. For ¥, v, 90 = v0 — 0 € L2(Q)¢ and p° € Lé(Q) given, they
read as below with usual notations for the semi-discrete setting in time, 6¢ > 0 being the time step. For all n € N such
that (n + 1)6t < T, find v**! and p"*! satisfying vl’}” = vp, with \7"}“ =vp and ff"{.” =0, such that:

on+l _ gn 1
\{ T V" )y - §M"” -V (v- v"“) +Vp' = inQ, (22)
gl 1, 1 . 1 . _
— SV - EAv"” - ;v(v- ) = ;v(v- 1) ingQ, (23)
1
Vn+l — V’Hl + ‘A,nJrl’ and pn+l — pn _ rOV' "~,n+l _ —V' Vn+l in Q (24)
E
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Let us notice that in the (VPP, ;) method (22-24), the operator A in (17) also includes the discrete time derivative
and the linearized convection term in addition to the diffusion term. A slightly modified version of the present (VPP, ;)
scheme giving similar results was early presented in [1], as well as preliminary theoretical and numerical results. The
complete analysis of the (VPP,..) methods is carried out in [4], but the present study fully justifies the interest of such
methods. We conclude by giving below the stability result of the (VPP,..) method for the Navier-Stokes equations and
some quasi-optimal error estimates for smooth solutions of the Stokes problem, see [4] for the details.

Theorem 2.3 (Stability of (VPP,.) for Navier-Stokes problem with v, = 0). For f € L*(0,T; H-'(Q)%), v* € L>(Q)?
and p° € Lé(Q), there exists C = C (Q, T,Re, [fll;20.7:5-1), [IV°llos ||p0||0) > 0 such that, for allrg > 0,0 < & < 1 and
0 < 6t <T, the solution (V"', p") of the (VPP,..) method (22-24) satisfies: for alln € N with (n+ 1)6t < T,

O IV + oot 2 D IV 3 (V= VAR + S - ) < €
k=0 k=0
n n 4
(ii) chzuv-vk“ng <Ce and Z(Szun’“‘ng <C  with 7' = Nt p*t for d =2.
k=0 k=0
Theorem 2.4 (Error estimates of (VPP, ) for the Stokes problem). Assume the solution (v, p) of the Stokes-Dirichlet
problem smooth enough in time and space, well-prepared initial conditions and sufficiently small parameters such
that: 4ro(Re + &) < 1 and 4c(Q)\/R_e rog < \ot, c(Q) being the Poincaré constant. Then, there exists C =
C(Q,T,Re,f, Vo,eo,qo) > 0 such that the velocity error e" = v" — v(t,) and the pressure error " = p" — p(t,) of
the (VPP,.) method (22-24) satisfy: for alln € Nwith (n+ 1)6t < T,

n n
ot 3
. n+l)2 n+l)12 k112 2. 2¢.3 k+112 2, .2
@ ey +eotlig" Iy + kéo —eIIVe Iy < C(dt +& 6t2), ,;20 otllg™ Iy < C((St +& 6[)

n n
@) > otIV-v R = D stlIv- e < C (ot + )2, and  |[Ve"!|F < CRe? (ot + ).
k=0 k=0

With compactness arguments from Aubin-Lions-Simon, see e.g. [8], Theorem 2.3 allows us to prove the con-
vergence of the (VPP, ) solution of (22-24) to Navier-Stokes solutions of (21), when & = ¢t tends to zero, without
additional regularity assumption; see [4] for the details.

3. Numerical experiments

The (VPP, ) method is implemented with a Navier-Stokes finite volumes solver on the staggered uniform MAC
mesh of size & issued from previous works; see [19]. The first test case is the unsteady Green-Taylor vortex such that
the mean steady velocity field is of order 1 at Re = 100. The scheme is O(dt) accurate in time for the velocity and
pressure with ry > 1074, whereas it is O(h?) in space; see [1, 4] for additional results. We observe in Figure 1 (left)
that the L?-norm of the velocity divergence vanishes like O(e 6t), as expected from Theorems 2.1 and 2.4 for & < 6t.

The second benchmark problem is the Rayleigh-Bénard thermal convection inside a square differentially heated
vertical cavity at Ra=10°, the vertical walls being isothermal and the horizontal walls insulating. Here, we study the
convergence properties of the velocity correction step (23) for this sharp test case. Again, we get the convergence of
the velocity divergence as O(e 6t), whatever the viscosity term included in the penalty-correction step and also for a
viscosity coefficient y =0, see [1]. We can reach the machine precision of 10~!% for double precision floating point
computations. Besides, the solution of the penalty-correction step (23) proves to be all the cheaper as n = /¢ tends
to zero, as expected from Theorem 1.1 and Corollary 1.2. Indeed, we dropped both the diffusion and convection terms
in the correction step (23), i.e. we get: A = 1/6tI as in Corollary 1.3 with the discrete operators in space: B = —Divy,
BT = Grad,, such that rank(B) = m < n. Then, we observe in Figure 1 (right) that, for n = /6t < 107, only one
iteration of the ILU(0)-BiCGStab2 preconditioned Krylov solver, is sufficient to get an accurate approximation of the
operator Cy = —Ij in Corollary 1.3, and that independently on the mesh size A.

Hence, the key feature of the proposed splitting scheme is that the solution to the linear system associated with
the vector projection step can be very fast and cheap because of the adapted form of the right-hand side. Indeed, we
really take advantage of that feature to design the new fast vector penalty-projection method (VPP,) in [2, 3].
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st=10""
10° b| —*—3t=10"2
——5t=10"°

Divergence — L?-norm

10" | . | 0 1 1 1 1
107 10 102 10 10 10 10° 10? 10* 10° 10* 10"
penalty parameter €

Figure 1: Lert: (VPP, ) velocity divergence versus penalty ¢ for the Green-Taylor vortex at Re =100, t=10- h=1/512, ro =1, [Ires|l2 < 10710,
RigHT: number of ILU(0)-BiCGStab2 iterations versus =g/t for natural convection at Ra= 10° with =261, 6t=1, h=1/256, ||res|l, < 107°.
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