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ABSTRACT
In this paper we address the problem of location recognition
from visual lifelogs by leveraging visual features and tem-
poral information in an unified framework. The proposed
method features a co-training approach that takes advan-
tage of both labeled and unlabeled data using a confidence
measure we propose for this task. It exploits jointly two
SVM classifiers on two types of visual features as well as
the temporal continuity of the video through temporal ac-
cumulation scheme. We demonstrate experimentally on the
publicly available IDOL2 dataset that the algorithm yields
performance improvement due to its ability to exploit jointly
multiple cues, time and unlabeled data.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing – Indexing methods; I.5.2 [Pattern
Recognition]: Design Methodology – Classifier design and
evaluation, Feature evaluation and selection.

General Terms
Algorithms, Design, Experimentation.

Keywords
Lifelog indexing, semi-supervised learning, co-training, tem-
poral information.

1. INTRODUCTION
Lifelogging and ego-centric video monitoring is now a prac-

tical way for activity and behavior monitoring [7] as well
as a mean for memory aid. Although there exist technical
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solutions for activity log acquisition, the need for efficient
content structuring is still of great importance and remains
an open question. To search multiple hour recordings ef-
ficiently, an indexing method is required. In our study we
focus on the estimation of the location of the monitored per-
son using visual information captured by a wearable wide
angle camera attached to the person’s shoulder.

Indoors localization using image-based approaches is a
widely researched topic in computer vision and robotics.
Discrete features [12] can be used for indoors and outdoors
localization but require explicit matching of local features
which can be costly. Signature based approaches such as
Bag of Features (BOF) [8] or CRFH [5], which are based on
the distribution of quantized local features, produce global
image description that is more easily amenable to efficient
use for video analysis.

An important issue concerns the discrimination power.
A single type of features may not be efficient in all con-
ditions. Fusion of multiple cues is a way to improve the
discriminability by exploiting several feature types that ex-
hibit complementary properties with respect to selectivity
and invariance. A multiple cue integration method exploit-
ing confidence measure for place classification was proposed
in [9], which uses the late fusion of SVM scores obtained on
diverse visual cues. They also propose temporal accumu-
lation of the scores over time, which allows to smooth out
isolated misclassifications.

Another specificity of lifelog indexing is the low amount
of training data. Semi-supervised learning is a way to profit
from abundant unlabeled data together with small labeled
data set. It was used for instance in [3] to improve BOF and
feature matching recognition in the case of sparse labeling.

In this paper we investigate how to combine both semi-
supervised, temporal and multiple visual cues for location
recognition. We show that appearance-based model can be
refined iteratively in a semi-supervised manner using predic-
tions and a confidence measure. Secondly, we show how two
cues can be fused to train a classifier in a co-training setup
for image-based localization while taking into account both
unlabeled data and temporal information.

The paper is organized as follows. In section 2, we intro-
duce a supervised approach featuring multiple cue fusion and
temporal accumulation that is representative of the state of
the art and will serve as a baseline. In section 3, we propose
semi-supervised time-aware co-training method. Results are
presented in section 4.



2. SUPERVISED FUSION OF MULTIPLE
CUES AND TIME INFORMATION

In this section we review a multiple cue fusion method
proposed in [9]. We complement it with a non-linear di-
mensionality reduction step, which allows the rest of the
framework to work on low dimensional features with linear
SVM kernel, and temporal accumulation. This method is
used as a final stage module in the proposed framework.

2.1 Feature extraction and preparation
For each image of the video we extract two visual features:

BOF [8] (hierarchical vocabulary with 1111 words) and very
high dimensional but sparse CRFH [5] gist-like features. The
intersection kernel [1] is used to evaluate affinities between
such distribution based features. Other image kernels such
as local feature matching [12] are not considered here be-
cause of their higher computational cost, but could also be
used.

The extracted visual features are of high dimensionality
which poses a problem of over-fitting when the number of
training samples is low. We reduce the dimensionality us-
ing KPCA [11] to 100 dimensions which decreases the risk
of over-fitting. The selected intersection kernel also takes
into account the non-linearity of the original feature spaces,
yielding a linear embedding space that approximates the
original affinities.

Additionally, we noticed that affinity matrix pruning help
improving the results. A simple k-Nearest Neighbor pruning
decreased harmful influence of distant and non-similar im-
ages. Computation of linear kernel from KPCA embeddings
ensures positive definite kernel for linear kernel classifier.

In the rest of this paper, classification will be done using
linear SVMs applied on the KPCA embeddings.

2.2 SVM-based Discriminative Accumulation
Let x be a pattern (an embedding vector obtained from

the preprocessing step) and y ∈ {−1, 1} the corresponding
label in a two-class context. Given a test pattern x, the
SVM learns a decision function

f (x) =
n�

i=1

yiαik (xn,x) + b

where we selected a linear kernel k (xn,x) = xT
nx.The

patterns{x}ni=1 and associated {α}ni=1 are the training pat-
terns and learned coefficients.

For C > 2 classes, we train C functions {fj}Cj=1 in a one-
versus-all setup. For a test pattern xi we therefore obtain
C decision values or scores sij = fj (xi) , j = 1, . . . , C. The
class estimation is obtained as

ŷi = arg max
j=1..C

sij

The Discriminative Accumulation Scheme (DAS) proposed
in [9] improves the performance by fusing the information
from two different classifiers in a late fusion approach: the
new scores are built by combining linearly the two indepen-
dent SVM classifier outputs

sij,DAS = β sij,BOF + (1− β) sij,CRFH

As pointed out by the authors and reference in [9], the accu-
mulation scheme makes the decision more robust compared
to the majority vote approach.

2.3 Temporal Accumulation Scheme
Additionally, images from the video that are close in time

are likely to belong to the same class. This can be taken
into account by using Temporal Accumulation (TA)

sij,TA =
τ�

∆i=−τ

w(∆i)si+∆i
j

where w(∆i) represents the weight of a temporal window of
size 2τ + 1. Effectively, large score variation for neighbor
images is lessened by this operation of smoothing.

3. SEMI-SUPERVISED TIME-AWARE CO-
TRAINING APPROACH

We now extend the previously introduced supervised frame-
work to a semi-supervised approach using the co-training
paradigm.

3.1 Co-training Architecture
The idea of self-training [10] consists in supplying the most

confident estimations to the labeled set where the procedure
can be repeated on the remaining unlabeled patterns. This
type of learning can be extended to two visual cues, giv-
ing rise to co-training [2] where each single classifier trains
another one with the most confident estimates. For a sin-
gle view, [4] proposed a method which trains two learners
by using two different learning algorithms. Tri-training [14]
teaches a third classifier the consensus obtained of two other
classifiers. The co-training approach is interesting for our
application as it brings together the advantages of multi-cue
fusion with semi-supervised learning [13].

We now review the co-training algorithm which iteratively
learns two SVM classifiers. The method is part of architec-
ture shown in Fig. 1.

At round t = 0 two SVM classifiers are learned indepen-
dently on the training set in a one-against-all setup. Initial
estimations are produced on the unlabeled data set. Ap-
plying the DAS method on theses two outputs represent a
baseline supervised method.

At round t = n the p most confident estimates from each
view are selected and appended to the opposite training set.
The concerned patterns are then removed from both testing
sets and a new pair of classifiers is learned after this feedback
loop. The procedure may be repeated until exhaustion of
unlabeled patterns. Applying the DAS method on the SVM
scores produced by these new classifiers corresponds to what
we call the co-training-DAS approach (CO-DAS).

In the experimental section we will consider only one it-
eration of CO-DAS in order to investigate the gain of the
proposed feedback loop compared to other approaches.

The performance of the approach is highly dependant on
the selection of the most confident estimates to be used in
the feedback loop. Ideally, only correct estimates should be
used. Finally, complementary visual cues will allow to learn
an enriched model in order to avoid over-fitting. For this
task, in the following discussion, we contribute a confidence
measure, and introduce the framework incorporating time
information which provides more diverse training patterns
into the learning loop.

3.2 Selection of confident predictions
The proposed selection scheme exploits the SVM scores

to construct a scalar confidence measure zi = z(xi). It is
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Figure 1: (Left) Pre-processing for embedding computation. (Right) Time-aware co-training workflow

designed to be positive and larger for confident and close to
zero for less confident estimates. Our confidence measure zi
is computed in two steps. First the contrast between the
best score and the rest is computed

z0i = sij∗ −
�

j �=j∗

sij

It is then penalized in case of class overlap

zi = z0i max

�
0, 1− pi − 1

C

�

where pi = Card({j = 1..C|sij > 0}) represents the number
of classes for which xi has positive scores. In the degenerate
case of all positive or negative scores values, we set zero
confidence (zi ← 0).

3.3 Time-aware feedback
Time information can be injected using the Temporal Ac-

cumulation Scheme (TA) proposed in section 2.3 prior the
final decision. The main contribution of this paper shows
that temporal information should be used in the co-training
loop. It is done by applying TA on the scores in the inner
feedback loop, thus defining a new time-aware co-training
approach. One of the main advantages is that TA is not a
mere post-processing, but can help bringing new patterns
that are visually different from the training samples, pro-
vided they are temporally close to confident samples. More
diversity is introduced, thus yielding models that general-
ize better. The temporal window should not be selected
too large, in order to avoid accumulating over the temporal
boundaries between classes. The experiments presented in
the next section confirm the interest of this approach.

4. EXPERIMENTAL PERFORMANCES
In this section we report the performances obtained on

public real-world data to evaluate the gain brought by the
proposed approach.

4.1 Considered approaches
All approaches compared in this section can defined from

a set of building blocks that have been defined previously.
We define three main categories. In each of them the TA

variant appends Temporal Accumulation as a post-processing
before taking final decision on the class. For the sake of read-
ability, only the DAS decision approach is considered here,
as it provides consistently better results than classifying the
BOF or CRFH features separately.

• DAS, TA-DAS: supervised approaches;

• CO-DAS, CO-TA-DAS: semi-supervised approaches;
the confidence values used in co-training are based on
the raw scores from the individual classifiers;
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Figure 2: Effect of both multi-cue fusion and tem-
poral accumulation on supervised classifier

• TA-CO-DAS, TA-CO-TA-DAS: semi-supervised time-
aware approaches; the confidence values used in co-
training are based on temporally accumulated scores.

4.2 Data corpus
In our experiments we used the IDOL2 video database [6]

which is representative of the appearance of a camera moved
across an indoor environment. It includes visual variabilities
due to different lighting conditions (sunny, cloudy, night)
and natural change of scene due to human activities over
time. We used the part called “minnie”, which contains 12
individual sequences captured at 5 fps, for a total duration of
38 minutes, representing repeated visits through 5 different
rooms at various times and light conditions. More details
on this corpus can be found in [6].

All possible pairs of sequences have been tested, using one
sequence for training and one for testing. 12 pairs represent
same light conditions with close in time recording, 48 pairs
represent different light conditions with several weeks be-
tween the recording. Average performances are considered.

4.3 Effect of temporal smoothing
In Fig. 2 the effect of both multi-cue fusion using DAS

and Temporal Accumulation is shown.
The results show that the TA scheme yields an improve-

ment over the DAS baseline by around 10% where no smooth-
ing corresponds to the leftmost value (temporal window of
1 sample). This is true in cases of different levels of anno-
tations,for different light conditions and sequence capture
times. The optimal values is around 50 frames which is not
surprising if we take into account the fact that the robot was
constantly moving and did not spend more than 10 seconds
in the same room. Larger temporal window may result in
severe misclassifications around class boundaries. For sub-
sequent tests we selected a temporal window of 50 frames.
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Figure 3: Performance of co-training and its interaction with temporal accumulation schemes.

4.4 Effect of co-training
In Fig. 3 the performance of the proposed approach is

shown, as well as a detailed comparison to other approaches
including temporal information. The figure shows a sum-
mary of average performance for all possible sequence pairs
(a), as well as the average performance for the most extreme
cases: same light, close in time sequence pairs (b) and differ-
ent light, far in time sequence pairs (c). In each summary the
baseline DAS scheme is compared to the TA-DAS baseline
and three extended methods involving co-training, tempo-
ral accumulation and DAS scheme in different setups. We
plot the average performance for each method as a function
of the amount of training samples used for the co-training
feedback loop.

First, we can note strikingly different performances due
to different light conditions and complexity of the scenes
caused by a difference in time for certain sequence pairs.
Nevertheless, the relative ranking of the studied approaches
remains the same in both extreme cases, which is why we
will discuss only the global average.

Indeed, the TA-CO-DAS and TA-CO-TA-DAS methods
show a consistent improvement compared to their respective
baselines (DAS and TA-DAS) not using co-training.

It is of interest to note that co-training without any tem-
poral information (CO-DAS) improves on its baseline, reach-
ing almost the level of TA-DAS. Nevertheless, temporal in-
formation is best used both in the co-training loop and
at post-processing step yielding TA-CO-TA-DAS method.
This yields the best performances, showing the ability of
the proposed method to include all considered sources of
information.

5. CONCLUSION
In this paper, we have presented a semi-supervised ap-

proach within the co-training framework for video lifelog in-
dexing which profits both from discriminative kernel learn-
ing methods and from the complementarity of two visual
features integrated in a time-aware semi-supervised frame-
work.

The proposed approach, by selecting the most reliable
samples for the iterative co-training steps, allows us to adapt
the model initially trained to the characteristics of the un-
labelled data, thus improving the performances. Based on
our experiments on the IDOL2 database, the improvement
in performance is larger when time information is taken into
account, both during co-training feedback and as a post-
processing. This confirms that the semi-supervised closed-
loop brings relevant information, that could not be extracted
in the supervised approach, and that the use of time infor-
mation is a central part of this improvement.

6. REFERENCES
[1] A. Barla, F. Odone, and A. Verri. Histogram

Intersection Kernel for Image Classification. Int. Conf.
on Image Processing (ICIP), 2003.

[2] A. Blum and T. Mitchell. Combining Labeled and
Unlabeled Data with Co-Training. Int. Conf. on
Learning Theory (COLT), 1998.

[3] V. Dovgalecs, R Mégret, H. Wannous, and
Y. Berthoumieu. Semi-Supervised Learning for
Location Recognition from Wearable Video.
Content-Based Multimedia Indexing (CBMI), 2010.

[4] S. Goldman and Y. Zhou. Enhancing Supervised
Learning with Unlabeled Data. Int. Conf. on Machine

Learning (ICML), 2000.
[5] O. Linde and T. Lindeberg. Object Recognition using

Composed Receptive Field Histograms of Higher
Dimensionality. Int. Conf. on Pattern Recognition

(ICPR), 2004.
[6] J. Luo, A. Pronobis, B. Caputo, and P. Jensfelt. The

KTH-IDOL2 Database. Technical report, Kungliga
Tekniska Hoegskolan, CVAP/CAS, 2006.

[7] R. Mégret, V. Dovgalecs, H. Wannous, S. Karaman,
J. Benois-Pineau, E. El Khory, J. Pinquier, P. Joly,
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