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CONVERGENCE OF GRADIENT-BASED ALGORITHMS FOR THE

HARTREE-FOCK EQUATIONS

ANTOINE LEVITT

Abstract. The numerical solution of the Hartree-Fock equations is a central problem in quantum
chemistry for which many algorithms exist. Attempts to justify these algorithms mathematically have
been made, notably in [2], but no algorithm has yet been proved to convergence satisfactorily. In this
paper, we prove the convergence of a natural gradient algorithm, using a gradient inequality for analytic

functionals due to Łojasiewicz [7]. Then, expanding upon the analysis of [2], we prove convergence results
for the Roothaan and Level-Shifting algorithms. In each case, our method of proof provides estimates
on the convergence rate. We compare these with numerical results for the algorithms studied.

1. Introduction

In quantum chemistry, the Hartree-Fock method is one of the simplest approximations of the elec-
tronic structure of a molecule. By assuming minimal correlation between the N electrons, it reduces
Schrödinger’s equation, a linear partial differential equation on R

3N , to the Hartree-Fock equations, a
system of N coupled nonlinear equations on R

3. This approximation makes it much more tractable
numerically. It is used both as a standalone description of the molecule and as a starting point for
more advanced methods, such as the Møller-Plesset perturbation theory, or multi-configuration meth-
ods. Mathematically, the Hartree-Fock method leads to a coupled system of nonlinear integro-differential
equations, which are discretized by expanding the solution on a finite Galerkin basis. The resulting non-
linear algebraic equations are then solved iteratively, using a variety of algorithms, the convergence of
which is the subject of this work.

The mathematical structure of the Hartree-Fock equations was investigated in the 70’s, culminating in
the proof of the existence of solutions by Lieb and Simon [5], later generalized by Lions [6]. On the other
hand, despite their ubiquitous use in computational chemistry, the convergence of the various algorithms
used to solve them is still poorly understood. A major step forward in this direction is the recent work of
Cancès and LeBris [2]. Using the density matrix formulation, they provided a mathematical explanation
for the oscillatory behavior observed in the simplest algorithm, the Roothaan method, and proposed the
Optimal Damping Algorithm (ODA), a new algorithm inspired directly by the mathematical structure
of the constraint set. This algorithm was designed to decrease the energy at each step, and linking
the energy decrease to the difference of iterates allowed them to prove that this algorithm “numerically
converges” in the weak sense that ‖Dk −Dk−1‖ → 0.

However, this is still mathematically unsatisfactory, as it does not guarantee convergence, and merely
prohibits fast divergence. The difficulty in proving convergence of the algorithms used to solve the
Hartree-Fock equations lies in the lack of understanding of the second-order properties of the functional
(for instance, there are no local uniqueness results available). In other domains, the convergence of
gradient-based methods has been established using the Łojasiewicz inequality for analytic functionals [7]
(see for instance [3, 8]). This method of proof has the advantage of not requiring any second-order
information.

In this paper, we introduce a gradient-based algorithm to solve the Hartree-Fock equations. To our
knowledge, this algorithm is new. Although it is by no means efficient and is unlikely to be of much
practical use, it is the most natural generalisation of the classical gradient descent. It is the only
algorithm for which we were able to prove unconditional convergence towards a solution of the Hartree-
Fock equations. We do so, following the method of proof of [8], and obtain explicit estimates on its
convergence rate. We also apply the method to the widely used Roothaan and Level-Shifting algorithms,
although the conclusions are weaker.
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The structure of this paper is as follows. We first introduce the Hartree-Fock problem in the math-
ematical setting of density matrices and prove a Łojasiewicz inequality on the constrained parameter
space. We then introduce the gradient algorithm, and prove some estimates. We show the convergence
and obtain convergence rates for this algorithm, then extend our method to the Roothaan and Level-
Shifting algorithm, using an auxiliary energy functional following [2]. We finally test all these results
numerically and compare the convergence of the algorithms.

2. Setting

We are concerned with the numerical solution of the Hartree-Fock equations. We will consider for
simplicity of notation the spinless Hartree-Fock equations, where each orbital φi is a function in L2(R3,R),
although our results are easily transposed to other variants such as General Hartree-Fock (GHF) and
Restricted Hartree-Fock (RHF).

We will consider a Galerkin discretization space with finite orthonormal basis (χi)i=1...Nb
. In this

setting, the orbitals φi are expanded on the basis, and the operators we consider become Nb × Nb

matrices.
The Hartree-Fock problem consists in minimizing the total energy of a N-body system. We describe

the mathematical structure of the energy functional and the minimization set, and propose a natural
gradient descent to solve this problem numerically.

2.1. The energy. We consider the quantum N-body problem of N electrons in a potential field V
(in most applications, V is the Coulombian potential created by a molecule or atom). In the spinless
Hartree-Fock model, this problem is simplified by assuming that the N-body wavefunction ψ is a single
Slater determinant of N orthogonal orbitals φi. A simple calculation then shows that the energy of the
wavefunction ψ can be expressed as a function of the orbitals φi,

E(ψ) =

N∑

i=1

∫

R3

1

2
(∇φi)

2 +

∫

R3

V ρ+
1

2

∫

R3

∫

R3

ρ(x)ρ(y) − τ(x, y)2

|x− y|
dxdy,

where τ(x, y) =
∑N

i=1 φi(x)φi(y) and ρ(x) = τ(x, x).
The energy is then to be minimized over all sets of orthogonal orbitals φi. An alternative way of

looking at this problem is to reformulate it using the density operator D. This operator, defined by its
integral kernel D(x, y) = τ(x, y), can be seen to be the projection operator on the space spanned by the
φi’s. The energy can be written as a function of D only:

E(D) = Tr((h+
1

2
G(D))D), (2.1)

where

h = −
1

2
∆ + V,

(G(D)φ)(x) =

(
ρ ⋆

1

| · |

)
(x)φ(x) −

∫

y

φ(y)τ(x, y)

|x− y|
.

This time, the energy is to be minimized over all projection operators of rank N .

2.2. The manifold P. The Hartree-Fock energy is to be minimized over the set of density matrices

D ∈ P = {D ∈ MNb
(R), DT = D,D2 = D,TrD = N}.

The manifold P is equipped with the canonical inner product in MNb
(R)

〈A,B〉 = Tr(ATB).

We denote by‖A‖F =
√

〈A,A〉 the Frobenius (or Hilbert-Schmidt) norm ofA and by‖A‖op = max‖x‖=1‖Ax‖

the operator norm of A. We write ‖A‖ without subscript for the Frobenius norm, which is the most nat-
ural here.

The Riemannian structure of P allows us to compute the gradient of E. The tangent space TDP at
some point D is the set of ∆ such that D+ ∆ verifies the constraints up to first order in ∆, that is, such
that ∆T = ∆, D∆ + ∆D = ∆,Tr ∆ = 0. Block-decomposing ∆ on the two subspaces imD and kerD,
this implies that the tangent space TDP is the set of matrices ∆ of the form

∆ =

(
0 AT

A 0

)
,
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where A is an arbitrary Nb ×N matrix.
Hence, the projection on the tangent space of an arbitrary symmetric matrix M is given by

PD(M) = DM(1 −D) + (1 −D)MD

= [D, [D,M ]].

Note that ifM has decomposition

(
B AT

A C

)
, then [D, [D,M ]] =

(
0 AT

A 0

)
and [D,M ] =

(
0 −AT

A 0

)
,

which shows that
∥∥[D[D,M ]]

∥∥ =
∥∥[D,M ]

∥∥, a property that will be useful in the sequel.
We can now compute the gradient of E. First, the unconstrained gradient in MNb

(R) is

∇E(D) = FD = h+G(D),

the Fock operator describing the mean field generated by the electrons of D. We obtain the constrained
gradient ∇PE by projecting onto the tangent space:

∇PE(D) = PD(∇E(D))

= [D, [D,FD]].

2.3. Łojasiewicz inequality. The Łojasiewicz inequality for a functional f around a critical point x0 is
a local inequality that bounds the gradient of f from below by the value of the functional. This inequality
quantifies the intuition that, around x0, as long as f(x) is larger than f(x0), there is a gradient we can
use to get closer to x0. Its only hypothesis is analyticity. In particular, no second order information is
needed, and the inequality accommodates degenerate critical points.

2.3.1. The classical Łojasiewicz inequality.

Theorem 2.1 (Łojasiewicz inequality in R
n). Let f be an analytic functional from R

n to R. Then, for
each x0 ∈ R

n, there is a neighborhood U of x0 and two constants κ > 0, θ ∈ (0, 1/2] such that when
x ∈ U ,

∣∣f(x) − f(x0)
∣∣1−θ

≤ κ
∥∥∇f(x)

∥∥ .

This inequality is trivial when x0 is not a critical point. In the special case where the Hessian ∇2f(x0)
is invertible, a simple Taylor expansion shows that we can choose θ = 1

2
and κ > 1√

2λ1
, where λ1 is the

lowest eigenvalue of ∇2f(x0). When ∇2f(x0) is singular (meaning that x0 is a degenerate critical point),
the analyticity hypothesis ensures that the derivatives cannot all vanish, and that a similar result holds
with a smaller θ.

2.3.2. Łojasiewicz inequality on P. We now extend this inequality to functionals defined on the manifold
P.

Theorem 2.2 (Łojasiewicz inequality on P). Let f be an analytic functional from P to R. Then, for
each D0 ∈ P, there is a neighborhood U of D0 and two constants κ > 0, θ ∈ (0, 1/2] such that when
D ∈ U ,

∣∣f(D) − f(D0)
∣∣1−θ

≤ κ
∥∥∇Pf(D)

∥∥ .

Proof. Let D0 ∈ P. Define the map RD0
from TD0

P to P by

RD0
(∆) = UD0U

T ,

U = exp(−[D0,∆]).
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D0

RD0

D

∆

PTD0
P

Figure 2.1. The map RD0

This map is analytic and verifies RD0
(0) = D0, dRD0

(0) = idTD0
P . Therefore, by the inverse function

theorem, the image of a neighborhood of zero contains a neighborhood of D0. We now compute the

gradient of f̃ = f ◦RD0
at a point ∆, with D = RD0

(∆).

f̃(∆ + δ) = f(D) +
〈
∇Pf(D),dRD0

(∆)δ
〉

+O(δ2)

= f(D) +
〈
dRD0

(∆)∗∇Pf(D), δ
〉

+O(δ2)

= f(D) +
〈
PD0

dRD0
(∆)∗∇Pf(D), δ

〉
+O(δ2)

We deduce

∇TD0
P f̃(∆) = PD0

dRD0
(∆)∗∇Pf(D).

We can now apply the Łojasiewicz inequality to f̃ , which is an analytic functional defined on the
Euclidean space TD0

M. We obtain a neighborhood of zero in TD0
P, and therefore a neighborhood U of

D0 on which
∣∣f(D) − f(D0)

∣∣1−θ
≤ κ

∥∥PD0
dRD0

(∆)∗∇Pf(D)
∥∥ .

As dR∗
D0

is continuous in ∆, up to a change in the neighborhood U and the constant κ,
∣∣f(D) − f(D0)

∣∣1−θ
≤ κ

∥∥∇Pf(D)
∥∥ .

�

3. The gradient method

3.1. Description of the method. The gradient flow

dD

dt
= −∇PE(D)

= −[D, [D,FD]] (3.1)

is a way of minimizing the energy over the manifold P. The naive discretization

Dk+1 = Dk − t[Dk, [Dk, Fk]]

is not suitable because it does not stay on P. Instead, we must look for Dk+1 on a curve on P that is
tangent to ∇PE(Dn). A natural curve on P is the change of basis

D′(t) = UtDU
T
t ,

where Ut is a smooth family of orthogonal matrices. If we take

Ut = exp(t[D,FD]),

we get

dD′

dt

∣∣∣∣∣
t=0

= −[D, [D,FD]],
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so D′(t) is a smooth curve on P, tangent to the gradient flow at 0.
Our gradient method is then

Dk+1 = UtDkU−t, (3.2)

with

Ut = exp(t[Dk, Fk]). (3.3)

We now prove a number of lemmas which are the main ingredients of the convergence proof. First, we
bound the second derivative of the energy to obtain quantitative estimates on the energy decrease, then
we link the difference of iterates Dk+1 −Dk to the gradient ∇PE(Dk), and finally we use the Łojasiewicz
inequality to establish convergence.

3.2. Derivatives. We start from a point D0 and compute the derivatives of E along the curve Dt =
UtD0U−t. For ease of notation we will write Ft = F (Dt) and Ct = [Dt, Ft].

dD

dt
=

dUt

dt
D0U−t + UtD0

dU−t

dt
= [C0, Dt]

dnD

dtn
=

dn−1

dtn−1
[C0, Dt]

= [C0, [C0, . . . [C0, Dt]]]︸ ︷︷ ︸
n times C0

dE

dt
= Tr(Ft[C0, Dt])

dE

dt

∣∣∣∣∣
t=0

= −‖C0‖
2

d2E

dt2
= Tr(Ft[C0, [C0, Dt]]) + Tr(G([C0, Dt])[C0, Dt])

3.3. Control on the curvature.

Lemma 3.1. There exists α > 0 such that for every D0 and t,
∣∣∣∣∣
d2E

dt2

∣∣∣∣∣ (t) ≤ α‖C0‖
2
.

Proof.

d2E

dt2
= Tr(Ft[C0, [C0, Dt]]) + Tr(G([C0, Dt])[C0, Dt]). (3.4)

First,
∥∥F (D)

∥∥
op

≤
1

2
‖−∆‖op +‖V ‖op +

∥∥G(D)
∥∥

op

≤
1

2
‖−∆‖op + 2(2N + Z)

√
‖−∆‖op

by the Hardy inequality. Next, making use of the operator inequality Tr(AB) ≤‖A‖op‖B‖, we show that

Tr(Ft[C0, [C0, Dt]]) ≤ 2

(
1

2
‖−∆‖op + 2(2N + Z)

√
‖−∆‖op

)
‖C0‖

2
.

For the second term of (3.4),

Tr

(
G

(
dD

dt

)
dD

dt

)
= Tr(G([C0, Dt])[C0, Dt])

≤
∥∥G([C0, Dt])

∥∥
op

Tr
(∣∣[C0, Dt]

∣∣
)

≤ 4
√

‖−∆‖op Tr
(∣∣[C0, Dt]

∣∣
)2

≤ 16N
√

‖−∆‖op‖C0‖
2
.
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The result is now proved with

α =‖−∆‖op + 4(6N + Z)
√

‖−∆‖op.

�

3.4. Choice of the stepsize. We can now expand the energy:

E(t) ≤ E0 − t‖C0‖
2

+
t2

2
α‖C0‖

2
.

If we choose

t <
2

α
, (3.5)

we obtain a decrease of the energy

E(t) ≤ E0 − β‖C0‖
2

(3.6)

with β = t− t2

2
α > 0.

The optimal choice of t with this bound on the curvature is t = 1
α

, with β = 1
2α

. Of course it could be
that the actual optimal t is different, and could vary wildly, which is why we will not consider optimal
stepsizes.

3.5. Study of Dk+1 − Dk. We now prove that our iteration coincides with an unconstrained gradient
method up to first order in t.

We say that M ∈ o(‖N‖) when for all ε > 0, there is a neighborhood U of zero such that when N ∈ U ,
‖M‖ ≤ ε‖N‖. Note that this neighborhood U is not allowed to depend on N , meaning that the resulting
bound is uniform, which will allow us to manipulate the remainders more easily.

Lemma 3.2. For any D0 and t,

Dt = D0 + t[C0, D0] + o(t‖C0‖).

Proof.

Dt −D0 − t[C0, D0] =

∞∑

n=2

tn

n!
[C0, [C0, . . . [C0, D0]]]︸ ︷︷ ︸

n times C0

∥∥Dt −D0 − t[C0, D0]
∥∥ ≤ t

∥∥[C0, D0]
∥∥

∞∑

n=2

tn−1‖C0‖
n−1

≤ t
∥∥[C0, D0]

∥∥ t‖C0‖

1 − t‖C0‖

�

4. Convergence of the gradient algorithm

Theorem 4.1 (Convergence of the gradient algorithm). Let D0 ∈ P be any density matrix and Dk

be the sequences of iterates generated from D0 by Dk+1 = UtDkU−t, with t < 2
α

. Then Dk converges
towards a solution of the Hartree-Fock equations.

Proof. The energy E(D) is bounded from below on P, and therefore Ek converges to a limit E∞. In

the sequel we will work for convenience with Ẽ(D) = E(D) − E∞ and drop the tildes. Immediately,
summing 3.6 implies that Ck converges to 0, and therefore so does Dk − Dk−1. This is the result that

Cancès and LeBris obtained for their ODA algorithm. Note that we only get that ‖Dk −Dk−1‖
2

is

summable, which alone is not enough to guarantee convergence (the harmonic series xk =
∑k

l=1 1/l is a
simple counter-example). To obtain convergence, we shall use the Łojasiewicz inequality.

Let us denote by Γ the level set Γ = {D ∈ P, E(D) = 0}. It is non-empty and compact. We apply
the Łojasiewicz inequality to every point of Γ to obtain a cover (Ui)i∈I of Γ in which the Łojasiewicz
inequality holds with constants κi, θi. By compactness, we extract a finite subcover from the Ui, from
which we deduce δ > 0, κ > 0 and θ ∈ (0, 1/2] such that whenever d(D,Γ) < δ,

E(D)1−θ ≤ κ‖CD‖ . (4.1)

To apply the Łojasiewicz inequality to our iteration, it remains to show that d(Dk,Γ) tends to zero.
Suppose this is not the case. Then we can extract a subsequence, still denoted by Dk, such that
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d(Dk,Γ) ≥ ε for some ε > 0. By compactness of P we extract a subsequence that converges to a D
such that d(D,Γ) ≥ ε and (by continuity) E(D) = 0, a contradiction. Therefore d(Dk,Γ) → 0, and for
k larger than some k0,

E(Dk)1−θ ≤ κ‖Ck‖ . (4.2)

For k ≥ k0,

E(Dk)θ − E(Dk+1)θ ≥
θ

E(Dk)1−θ
(E(Dk) − E(Dk+1))

≥
θ

κ‖Ck‖
(E(Dk) − E(Dk+1))

≥
θβ

κ
‖Ck‖

≥
θβ

κt
‖Dk+1 −Dk‖ + o(‖Dk+1 −Dk‖)

hence

θβ

κt
‖Dk+1 −Dk‖ + o(‖Dk+1 −Dk‖) ≤ E(Dk)θ − E(Dk+1)θ. (4.3)

As the right-hand side is summable, so is the left-hand side, which implies that
∑

‖Dk+1 −Dk‖ < ∞.
Dk is therefore Cauchy and converges to some limit D∞. Ck → 0, so D∞ is a critical point.

Note that now that we know that Dk converges to D∞, we can replace the θ and κ in this inequality
by the ones obtained from the Łojasiewicz inequality around D∞ only. �

Let

ek =
∞∑

l=k

‖Dl+1 −Dl‖ .

This is a (crude) measure of the error at iteration number k. In particular, ‖Dk −D∞‖ ≤ ek.

Theorem 4.2 (Convergence rate of the gradient algorithm).

(1) If θ = 1/2 (non-degenerate case), then for any ν′ < β
2κ2 , there is a c > 0 such that

ek ≤ c(1 − ν′)k. (4.4)

(2) If θ 6= 1/2 (degenerate case), then there exists c > 0 such that

ek ≤ ck− θ
1−2θ . (4.5)

Proof. Summing 4.3 from l = k to ∞ with k ≥ k0, we obtain

ek + o(‖ek‖) ≤
κt

θβ
E(Dk)θ

(
θβ

κt
ek + o(‖ek‖)

) 1−θ
θ

≤ E(Dk)1−θ

≤ κ‖Ck‖

≤
κ

t
(ek − ek+1) + o(‖ek − ek+1‖)

Hence,

ek+1 ≤ ek − νe
1−θ

θ

k + o(‖ek‖
1−θ

θ ), with

ν =
t

κ

(
θβ

κt

) 1−θ
θ

Two cases are to be distinguished. If θ = 1
2
, the above inequality reduces to

ek+1 ≤ (1 − ν + o(1))ek

with ν = β
2κ2 and the result follows.

The case θ 6= 1/2 is more involved. We define

yk = ck−p,
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which verifies

yk+1 = c(k + 1)−p

= ck−p(1 + 1/k)−p

≥ ck−p(1 −
p

k
)

≥ yk(1 − pc− 1
p y

1
p

k )

We set p = θ
1−2θ

and c large enough so that c > ( ν
p
)−p and yk0

≥ ek0
. We then prove by induction

ek ≤ yk for k ≥ k0. The result follows by increasing c to ensure that ek ≤ yk, for k < k0. �

In the non-degenerate case θ = 1/2 (which was the case for all the numerical simulations we performed,
see Section 7), the convergence is asymptotically geometric with rate 1 − ν, where

ν =
β

2κ2
.

With the choice t = 1
α

suggested by our bounds, the convergence rate is

ν =
1

4κ2α
.

5. Convergence of the Roothaan algorithm

The Roothaan algorithm (also called simple SCF in the literature) is based on the observation that a
minimizer of the energy satisfies the Aufbau principle: D is the projector onto the first N eigenvectors of
F (D). A simple fixed-point algorithm is to take for Dk+1 the projector onto the first N eigenvectors of
F (Dk). Unfortunately, this procedure does not always work: in some circumstances, oscillations between
two states occur, and the algorithm never converges. This behavior was explained mathematically in [2],
who noticed that the Roothaan algorithm minimizes the bilinear functional

E(D,D′) = Tr(h(D +D′)) + Tr(G(D)D′)

with respect to its first and second argument alternatively. Thanks to the Łojasiewicz inequality, we can
improve on their result and prove the convergence or oscillation of the method.

The bilinear functional verifies E(D,D′) = E(D′, D), E(D,D) = 2E(D). In fact, 1
2
E(·, ·) is the

symmetric bilinear form associated with the quadratic form E(·). We use the uniform well-posedness
hypothesis of [2], i.e. assume that there is a uniform gap of at least γ > 0 between the eigenvalues
number n and n + 1 of F (Dk). Under this assumption, it can be proven [1] that there is a decrease of
the bilinear functional at each iteration

E(Dk+1, Dk+2) = E(Dk+2, Dk+1)

= min
D∈P

E(D,Dk+1)

≤ E(Dk, Dk+1) − γ‖Dk+2 −Dk‖
2

Since E(·, ·) is bounded from below on P × P, this immediately shows that Dk − Dk+2 → 0, which
shows that D2k and D2k+1 converge up to extraction, which was noted in [2]. We now prove convergence
of these two subsequences. To do that, we need to relate Dk − Dk+2 to the gradient of the bilinear
functional. We first prove

Lemma 5.1. For all F symmetric and D ∈ P, if we let D′ be the density matrix constructed by the
Aufbau principle from F , then

∥∥[D,F ]
∥∥ ≤ 2‖F‖

op

∥∥D′ −D
∥∥+ o(

∥∥D′ −D
∥∥). (5.1)

Proof. We choose a basis in which D is diagonal. We write F = UΛUT , with U = I + ∆, and we
expand the quantities of interest in powers of ∆. U is orthogonal, so ∆ = −∆T + o(‖∆‖), and F =
Λ + [∆,Λ] + o(‖∆‖). We now relate D′ −D and [D,F ] via ∆

D′ −D = ∆D +D∆T + o(‖∆‖)

= [∆, D] + o(‖∆‖)

8



[D,F ] = [D,Λ + [∆,Λ] + o(‖∆‖)]

= [D, [∆,Λ]] + o(‖∆‖)

= [[D,∆],Λ] + [∆, [D,Λ]] + o(‖∆‖)

= [[D,∆],Λ] + o(‖∆‖)

Therefore,
∥∥[D,F ]

∥∥ ≤ 2‖F‖op

∥∥D′ −D
∥∥+ o(

∥∥D′ −D
∥∥).

�

Note that, to first order, if we write ∆ =

(
A B

−BT C

)
, then

∥∥[[D,∆],Λ]
∥∥2

= 2
∑

i,j(λN+j − λi)
2B2

ij .

Hence, for the inequality to be sharp, B must be concentrated on the lower i. This is not the case in
numerical simulations, because the orbitals associated to the lowest energy levels converge faster (which
we have not been able to explain). Therefore, in practice, the constant is much smaller.

Now, a reasoning similar to Theorem 2.2 shows that we can apply the Łojasiewicz inequality to E(·, ·)
defined on P × P equipped with the natural Riemannian structure

〈
(D1, D

′
1), (D2, D

′
2)
〉

= 〈D1, D2〉 +〈
D′

1, D
′
2

〉
. In this setting, the gradient is

∇P×PE(D,D′) =

(
[D,F (D′)]
[D′, F (D)]

)

and therefore
∥∥∇P×PE(Dk, Dk+1)

∥∥ =
∥∥[Dk, F (Dk+1)]

∥∥

≤ 2
∥∥F (Dk+1)

∥∥
op

‖Dk+2 −Dk‖ + o(‖Dk+2 −Dk‖)

Therefore, by the same compactness argument as before, the Łojasiewicz inequality

E(Dk, Dk+1)1−θ′

≤ κ′∥∥∇P×PE(Dk, Dk+1)
∥∥

≤ 2κ′∥∥F (Dk+1)
∥∥

op
‖Dk+2 −Dk‖ + o(‖Dk+2 −Dk‖)

holds for k large enough, with constants κ′ > 0 and θ′ ∈ (0, 1
2
]

The exact same reasoning as for the gradient algorithm proves the following theorems

Theorem 5.1 (Convergence/oscillation of the Roothaan algorithm). Let D0 ∈ P such that the sequence
Dk of iterates generated by the Roothaan algorithms verifies the uniform well-posedness hypothesis with
uniform gap γ > 0. Then the two subsequences D2k and D2k+1 are convergent. If both have the same
limit, then this limit is a solution of the Hartree-Fock equations.

Theorem 5.2 (Convergence rate of the Roothaan algorithm). Let Dk be the sequence of iterates gener-
ated by a uniformly well-posed Roothaan algorithm, and let

ek =

∞∑

l=k

‖Dl+2 −Dl‖ .

Then,

(1) If θ′ = 1/2 (non-degenerate case), then for any ν′ < γ

8κ′2‖F ‖2
op

, there is a c > 0 such that

ek ≤ c(1 − ν′)k. (5.2)

(2) If θ′ 6= 1/2 (degenerate case), then there exists c > 0 such that

ek ≤ ck
− θ′

1−2θ′ . (5.3)

6. Level-shifting

The Level-Shifting algorithm was introduced in [9] as a way to avoid oscillation in the Roothaan algo-
rithm. By shifting the energy levels (eigenvalues of F ), one can force convergence, although denaturing
the equations in the process. We now prove the convergence of this algorithm.
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The same arguments as before apply to the functional

Eb(D,D′) = Tr(h(D +D′)) + Tr(G(D)D′) +
b

2

∥∥D −D′∥∥2

= Tr(h(D +D′)) + Tr(G(D)D′) − bTr(DD′) + bN

with associated Fock matrix F b(D) = F (D) − bD. The difference with the Roothaan algorithm is that
for b large enough, there is a uniform gap γb > 0, and Dk −Dk+1 converges to 0 [2]. Therefore, we have
the following theorems

Theorem 6.1 (Convergence of the Level-Shifting algorithm). Let D0 ∈ P. Then there exists a b0 > 0
such that for every b > b0, the sequence Dk of iterates generated by the Level-Shifting algorithm with
shift parameter b verifies the uniform well-posedness hypothesis with uniform gap γ > 0 and converges.

Theorem 6.2 (Convergence rate of the Level-Shifting algorithm). Let Dk be the sequence of iterates
generated by the Level-Shifting with shift parameter b > b0, and let

ek =

∞∑

l=k

‖Dl+2 −Dl‖ .

Then,

(1) If θ′ = 1/2 (non-degenerate case), then for any ν′ < γb

8κ′2‖F b‖
2

op

, there is a c > 0 such that

ek ≤ c(1 − ν′)k. (6.1)

(2) If θ′ 6= 1/2 (degenerate case), then there exists c > 0 such that

ek ≤ ck
− θ′

1−2θ′ . (6.2)

We can use this result to heuristically predict the behaviour of the algorithm when b is large. γb

and
∥∥F b

∥∥
op

both scale as b for b large. We can take κ′ > 1√
2λ1

, where λ1 is the smallest eigenvalue of

HP×PE(D∞, D∞). HP×P
∥∥D −D′∥∥2

has zero eigenvalues (for instance,
∥∥∥D −D

′

∥∥∥
2

is constant along the

curve (Dt, D
′
t) = (UtDU

T
t , UtD

′UT
t ), where Ut is a family of orthogonal matrices), so λ1 stays bounded

as b → ∞. Therefore, ν scales as 1
b
, which shows that b should not be too large for the algorithm to

converge quickly.

7. Numerical results

We illustrate our results using a Galerkin discretization of the basis functions φi. The gradient method
was implemented using the software Expokit [10] to compute matrix exponentials. The computational
cost of a gradient step is not much higher than a step of the Roothaan algorithm, since the limiting step
is computing the Fock matrix, not the exponential.

First, the Łojasiewicz inequality with exponent 1
2

held in all the molecular systems and basis sets we
encountered, suggesting that the minimizers are non-degenerate. Consequently, we never encountered
sublinear convergence of any algorithm.

For a given molecular system and basis, we checked that the Level-Shifting algorithm converged as
(1 − ν)k, where ν is proportional to 1

b
, which we predicted theoretically in Section 6. This means that

the estimates we used have at least the correct scaling behavior.
Next, we compared the efficiency of the Roothaan algorithm and of the gradient algorithm, in the

case where the Roothaan algorithm converges. Our analysis leads to the estimate ν = γ

8κ′2‖F ‖2
op

for the

Roothaan algorithm, and ν = 1
4κ2α

for the gradient algorithm with stepsize t = 1
α

.
It is immediate to see that, up to a constant multiplicative factor, κ′ > κ, γ ≤‖F‖op and for the cases

of interest α ≈ ‖F‖op, so from our estimates we would expect the gradient algorithm to be faster than
the Roothaan algorithm. However, in our tests the Roothaan algorithm was considerably faster than the
gradient algorithm, even when the stepsize was adjusted at each iteration, for instance by a line search.

The reason for this is that, as we mentioned in the proof of Lemma 5.1, the inequality (5.1) is sharp
only when Dk+1 − Dk has components on the lower eigenvectors. We conjecture that since the lower
eigenvectors converge quickly, the bound of Lemma 5.1 is too large, and actual convergence is faster than
what our estimates lead us to expect. A quantitative explanation of this effect is still an open question.
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The outcome of these tests seems to be that the gradient algorithm is slower. It might prove to be
faster in situations where the gap is small, or whenever κ′ is much larger than κ. We have been unable
to find concrete examples of such cases.

8. Conclusion, perspectives

In this paper, we introduced an algorithm based on the idea of gradient descent. By using the
analyticity of the objective function and of the constraint manifold, we were able to derive a Łojasiewicz
inequality, and use that to prove the convergence of the gradient method, under the assumption of a
small enough stepsize. Next, expanding on the analysis of [2], we extended the Łojasiewicz inequality to
a Lyapunov function for the Roothaan algorithm. By linking the gradient of this Lyapunov function to
the difference in the iterates of the algorithm, we proved convergence (or oscillation), an improvement
over previous results which only prove a weaker version of this. In this framework, the Level-Shifting
algorithm can be seen as a simple modification of the Roothaan algorithm, and as such can be treated
by the same methods. In each case, we were also able to derive explicit bounds on the convergence rates.

The strength of the Łojasiewicz inequality is that no higher-order hypothesis are needed for its use.
As a consequence, the rates of convergence we obtain weaken considerably if the algorithm converges to
a degenerate critical point. A more precise study of the local structure of critical points is necessary to
understand why the algorithms usually exhibit geometric convergence. This is related to the problem of
local uniqueness and is likely to be hard (and, indeed, to our knowledge has not been tackled yet).

Even though our results hide the complexity of the local structure in the constants of the Łojasiewicz
inequality, they still provide insight as to the influence of the basis on the speed of convergence, and can be
used to compare algorithms. All of our results use crucially the hypothesis of a finite-dimensional Galerkin
space. For the gradient algorithm, we need it to ensure the existence of a stepsize that decreases the
energy. This is analogous to a CFL condition for the discretization of the equation dD

dt
= −[D, [D,FD]],

and can only be lifted with a more implicit discretization of this equation. For the Roothaan and Level-
Shifting algorithms, we use the finite dimension hypothesis in Lemma 5.1. As noted, this is not sharp,
so it could be that the infinite-dimensional version of the Roothaan and Level-Shifting algorithms still
converge. More research is needed to examine this.

Let us note that among the algorithms we considered, the gradient algorithm with sufficiently small
step is the only one for which a completely satisfying local behavior can be expected. Indeed, the
Roothaan algorithm can exhibit oscillations, and the Level-Shifting may converge towards a limit that is
not an Aufbau solution of the Hartree-Fock equations. Although the gradient algorithm was found to be
slower than other algorithms on the numerical tests we performed, it is more robust, and can probably
outperform the other algorithms when the gap λN+1 − λN is small.

An algorithm that could achieve the speed of the fixed-point algorithms with the robustness granted
by the energy monotonicity seems to be the ODA algorithm of Cancès and LeBris [2], along with variants
such as EDIIS, or combinations of EDIIS and DIIS algorithms [4]. We were not able to examine these
algorithms in this paper. At first glance, the ODA algorithm should fit into our framework (indeed, the
ODA algorithm was built to satisfy an energy decrease inequality similar to 3.6). However, it works in

a relaxed parameter space P̃ , and using the commutator to control the differences of iterates as we did

only makes sense on P, the border of P̃. Therefore, other arguments have to be used.
Also missing from this study is the study of other commonly used algorithms, such as DIIS or Bacskay’s

quadratically convergent algorithm. DIIS numerically exhibits a complicated behavior that is probably
hard to explain analytically, and the QC algorithm requires a study of the second-order structure of the
critical points.
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