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Abstract 

Our specific aims were to evaluate the power of bivariate analysis and to compare its 

performance with traditional univariate analysis in samples of unrelated subjects under 

varying sampling selection designs. Bivariate association analysis was based on the 

Seemingly Unrelated Regression (SUR) model that allows different genetic models for 

different traits. We conducted extensive simulations for the case of two correlated 

quantitative phenotypes, with the Quantitative Trait Locus making equal or unequal 

contributions to each phenotype. Our simulation results confirmed that the power of 

bivariate analysis is affected by the size, direction and source of the phenotypic 

correlations between traits. They also showed that the optimal sampling scheme 

depends on the size and direction of the induced-genetic correlation. In addition, we 

demonstrated the efficacy of SUR-based bivariate test by applying it to a real Genome-

Wide Association Study of Bone Mineral Density values measured at the Lumbar Spine 

and at the Femoral Neck in a sample of unrelated males with low Bone Mineral Density 

(LS Zscores <=-2) and with high Bone Mineral Density (LS and FN Zscores >0.5). A 

substantial amount of top hits in bivariate analysis did not reach nominal significance in 

any of the two single-trait analyses. Altogether, our studies suggest that bivariate 

analysis is of practical significance for GWAS of correlated phenotypes. 
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INTRODUCTION 

With the availability of high-density maps of single nucleotide polymorphisms (SNPs), 

association studies have become popular tools for identifying genes underlying complex 

human traits and diseases. For most current population-based genome-wide association 

studies (GWAS) statistical power is often limited due to the complex interplay among 

factors that influence the etiology of diseases 1. Increasing sample size and multilocus 

or multivariate statistical analyses can improve the power for detecting association. 

Sample size is often restricted due to genotyping costs and limited sample resources. 

Several studies have demonstrated that analyzing samples selected with extreme values 

can be more powerful than analyzing samples randomly selected from the population2-4. 

In addition to using selected samples, another approach to increasing association test 

power is to perform joint analysis of multiple correlated phenotypes. For many common 

multifactorial traits, several correlated phenotypes are usually recorded for each 

individual during sample collection, but most often the phenotypes are analyzed 

separately in a univariate framework. Joint analysis of correlated phenotypes can 

theoretically provide greater power than that provided by analysis of individual 

phenotypes 3,5-7. Multivariate analysis can also alleviate the multiple testing problem, 

caused by testing different traits separately, and thereby improve the ability to detect 

genetic variants whose effects are too small to be detected in univariate analysis8. 

Several multivariate approaches have been applied to linkage studies of correlated 

complex phenotypes, as osteoporosis and bone-related phenotypes 9-12. Similarly, 

various methods, often based on Generalized Estimating Equations (GEE), have been 

proposed for performing multivariate association tests on population- or family-based 

data 13-20. Of the two studies that have investigated the power of bivariate association 

test in population-based data, one applied the restricted bivariate association test that 
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assumes same Quantitative Trait Locus effects on each trait 16, 18. Such constraints in the 

model may have overestimated or underestimated the relative performance of bivariate 

over univariate analysis. Finally, GWAS studies using multivariate analysis are rare, 

especially in samples of subjects selected through their phenotype values, and further 

investigations using this approach are warranted 4.  

To this aim, we evaluated the statistical properties of joint association analysis of two 

correlated quantitative traits in samples of unrelated subjects through simulation studies, 

using the Seemingly Unrelated Regression (SUR) bivariate model that allows for 

different QTL effects on traits. The evaluation was conducted under different situations 

according to the sample selection design, genetic effects and residual correlation 

between the traits. We demonstrate the efficacy of SUR-based bivariate test by applying 

it to simultaneous GWAS analysis of two correlated bone phenotypes, Bone Mineral 

Density (BMD) at the Lumbar Spine and at the Femoral Neck, which are major risk 

factors of osteoporosis. 

 

METHODS 

SUR-based bivariate model 

The Seemingly Unrelated Regression (SUR) model 21 is a generalization of a classical 

linear regression model that consists of several regression equations with potentially 

different sets of explanatory variables. It thus allows for a differential effect of 

explanatory variables on phenotypes as well as the possibility that some variables might 

be associated with only one trait. Let’s N be the total number of unrelated subjects 

(i=1,..,N), each having observations on two phenotypes yji (j=1,2). Consider a system of 

2 equations, where the jth equation is of the form: yj = Xj x βj + ej; yj is a Nx1 vector of 

the phenotypic values, Xj is a (Kj+1)xN matrix of explanatory variables with Kj 
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representing the number of explanatory variables in the model for phenotype j excluding 

the intercept; 0 1( , ,..., )
j

j j j t
j Kβ β β β=  is the (Kj+1)x1 vector of coefficients and ej is a Nx1 

vector of the residuals errors. The system of SUR can be written as: 
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The SUR model allow for cross-equation correlation of the residual terms. The 

covariance matrix of all the residuals is assumed to be normally distributed with mean 0 

and covariance matrix ( )t
NE ee I= Ω = Σ ⊗  where NI  is a NxN unit matrix and Σ  a 2x2 

matrix with the following form: 
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2
1σ  and 2

2σ  are the residual variances of Y1 and Y2 respectively and rE is the residual 

correlation between Y1 and Y2.  

The SUR model is estimated using the generalized least squares method where the 

covariance matrix Ω  is first estimated using ordinary least squares regression in system 

(1). Linear restrictions on coefficients can be tested by an F test. The F statistic for 

systems of equations is:   F = [ (Cβ') t (C cov (β') Ct )-1 (Cβ')] /2  

where, C is the matrix of restrictions on coefficients. Under the null hypothesis, the F 

statistic has a central Fisher distribution with 2 and 2xN-K degrees of freedom where K 

is the total number of estimated coefficients (K=K1+K2+2). The goodness of fit of the 

whole system can be measured by the McElroy’s r-square (R2). R2 is the proportion of 

co-variance due to X taking into account the residual matrix covariance Ω 22. 

Here, we applied the SUR model to test association to two continuous phenotypes in 

unrelated subjects genotyped at one SNP marker, and Xj is the Nx1 vector of genotypes 

at the SNP. Under an additive model, the genotype for each individual i, noted gi, is 
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coded as a function of the number of minor alleles, that is, 0, 1 or 2. We computed the 

SUR model free of constraints on the regression coefficients, that is, β1 and β2 were 

freely estimated. Under the null hypothesis of no association to either one or both 

phenotypes, the F statistic has a central Fisher distribution with 2 and 2 x (N-2) degrees 

of freedom. Separate association analyses of Y1 and Y2 can be conducted using 

traditional univariate linear regression model:  yj = g x βj + ej, where yj, g, and βj are as 

described above but now ej is assumed to follow a normal distribution N (0, 2
jσ ). The 

null hypothesis of no association (βj = 0) can be tested against the alternative (βj ≠ 0) 

with a Student statistic (t-test) with N-2 degrees of freedom. 

 

Simulation study:  

We considered genetic models of complex traits and specifically tried to generate 

correlated data mimicking as much as possible our real Bone Mineral Density (BMD) 

GWAS data (see below). Since a strong (~0.5) and positive phenotypic co-variation 

exists for BMD values at the Lumbar Spine (LS) and at the Femoral Neck (FN) 23, we 

generated data for two positively correlated quantitative phenotypes. Further, in real 

datasets, as causal loci usually contribute a small proportion to the total phenotypic 

correlation, residual correlation approximates phenotypic correlation between traits. It is 

also more realistic to assume that the investigator has a priori knowledge on the 

magnitude and sign of the co-variation of the studied phenotypes than on the magnitude 

and sign of the QTL effect on each phenotype. Therefore, in all our scenarios, the sign 

of the residual correlation (rE) was positive, but the sign of the induced QTL correlation 

(rG) was either positive or negative. Also, our BMD GWAS study used a sampling 

design, with extreme truncate selection of unrelated males, aiming to improve power. 
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Therefore, we also generated samples of subjects drawn from the extremes of the 

phenotype(s) population distribution.  

The main scenarios and parameter settings are shown in Table 1. The different settings 

allowed us to generate data for a QTL having same or different effect on the two 

positively correlated phenotypes, and the two sources of co-variation (QTL and 

residual) have same or opposite sign. Briefly, we assumed a bi-allelic QTL having 

additive effects (aj) on Yj (j=1,2), with minor and major allele frequency q and p, 

respectively. The QTL contribution to Yj is the trait-specific QTL heritability, h2
j. Here, 

we focussed our power investigation to QTLs explaining a relatively small part of the 

trait variance, i.e., from 0.5% to 3% which, for complex traits, seemed to us more 

realistic. The genotypic means (mjk) of Yj are equal to 2q x aj, (q-p) x aj and -2p x aj 

when k, the number of minor alleles, is equal to 0, 1 and 2 respectively and with aj = 

√[h2
j./2pq]. We varied the sign of aj: both were of same or opposite sign and the QTL 

correlation (rG) was, thus, equal to +1 or -1, respectively.  We first generated samples 

of subjects unselected for their traits values (denoted as Su). Second, we generated 

subjects selected from the 2.5% (i.e., trait value ≤-2) and 30% (i.e., trait value >0.5) left 

and right tail of the population distribution of Y1 (denoted as S1). Third, we included Y2 

in the selection design, that is, we selected subjects from the 2.5% and 30% left and 

right tail of the population distribution of Y1 and Y2 (denoted as S2). These truncate 

selection criteria (trait value ≤-2 or >0.5) are the values we have used in our real BMD 

GWAS. Under S1 and S2, we generated samples with equal number of subjects drawn 

from the left (N/2) and the right (N/2) side of the phenotypes distributions.  

Traits values of N (300, 1000) unrelated subjects were generated as follows. For a given 

combination of parameter values (rE, h2
1, h2

2, rG), we first draw QTL alleles from a 

binomial distribution with parameter q, and built genotypes under Hardy-Weinberg 
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equilibrium. Then, conditionally on the generated genotype, gk (k=0,1,2), we jointly 

drew the values of Y1 and Y2 via a bivariate normal distribution with mean (m1k, m2k)t 

and variance matrix Ω, given in equation (2). Third, under sampling S1 or S2, we 

applied the corresponding truncate selection, that is individuals not fulfilling the 

selection criteria were withdrawn from the sample. Steps 1 to 3 were repeated until 

reaching the required left and right truncated sample sizes of (N/2) subjects.  

Each replicate was analyzed with SUR-based bivariate and with two separate univariate 

analyses using the systemfit package of R software (http://www.r-project.org/) using the 

genotypes at the QTL, that is, the SNP is the causal variant. The mean and standard 

deviation of each association statistic (F test and t1, t2 tests) were derived from K 

replicates. Power and type I error rates of each association test were calculated as the 

proportion of replicates with a test statistic exceeding a given theoretical threshold (Rα) 

value, at nominal significance levels, α=5%, 1%, 0.1% and 10-5. Type 1 errors were 

estimated in the settings were h2
1=h2

2=0 with K=20 000 replicates. Power rates were 

derived with K=1 000 replicates. To compare the performance of bivariate and that of 

univariate association analysis, we computed the proportion of replicates where t1 and t2 

were both lower than Rα. One minus this proportion estimated the probability to detect 

association to either one of the two phenotypes. To adjust for the two univariate 

association tests, we applied the Bonferroni correction, that is, we used the theoretical 

thresholds Rα/2. 

 

RESULTS 

SIMULATION STUDY 

Tables 2 and 3 present the mean (and sd) association statistic of the SUR-based 

bivariate (F test) and of the traditional univariate tests (t test), respectively when N=1 
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000 for 66 scenarios under the alternative hypothesis and when q=0.4. For a given QTL 

heritability value, the results did not vary, as expected, with q.  

Bivariate association statistics: In randomly selected samples, the results in Table 2 

show several well-established power figures. First, mean F statistics of bivariate 

association analysis increase with the size of the trait-specific QTL heritability (h2
1 

and/or h2
2) irrespective of rG and rE. Second, the power is highest in presence (rG≠0) 

than in absence (rG=0) of pleitropic effects: the highest power is achieved when rG=-1, 

that is, when the correlation induced by the QTL effect and the residual correlation are 

opposite in sign. Third, the results also confirm that the power of bivariate association 

test varies with the size of the residual correlation: when rG=0 or rG=-1, the power 

increases with rE; conversely, when rG=+1 it decreases with rE. These general trends 

are observed irrespective of the sampling selection designs. Applying extreme truncate 

selection increases the power of bivariate association analysis, but the optimal selection 

design depends on the true genetic model. When rG=0 or rG=-1, extreme selection on 

one trait (S1) is more efficient than extreme selection on both traits (S2). Conversely, 

when rG=+1, S2 is more efficient than S1. Overall, under Su or S1, the highest mean F 

statistics are obtained when rG=-1, irrespective of rE. Under S2, the highest power is 

achieved when rG=+1 or when rG=-1, depending on the size of rE. Interestingly, when 

the traits are moderately (rE=0.20) correlated, mean F statistics have greater values 

when rG=+1 than when rG=-1.  

Univariate association statistics Table 3 shows again several well-established power 

figures. In randomly selected samples, the power of univariate analysis increases with 

the QTL heritability (h2
1/h2

2) and varies little with the size of the residual correlation, 

rE. For phenotype Y1, under a given QTL heritability (h2
1) value, the mean statistic 

values of all models are similar in the randomly selected samples. Applying extreme 
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truncate selection increases the power of univariate association analysis of Y1. Under 

S1, the power remains similar whichever rG. Under S2, the power is the highest and the 

lowest for the pleiotropic models rG=+1 and rG=-1, respectively. When rG=-1 or rG=0, 

the power of univariate association analysis is greater under S1 than under S2. The 

reverse trend is obtained when rG=+1. For phenotype Y2, the power of univariate 

analysis depends on rG and rE. Further, applying extreme selection does not always 

lead to a gain in power. Indeed, when rG=-1 the power of univariate analysis is the 

greatest in the unselected samples (Su). When rG=0 the mean t statistic values in the 

selected samples are biased and inflated. The magnitude of the bias is greater under S2 

than under S1. Under S1, the bias increases with rE. 

Overall, applying selection criteria on one or both traits is an optimal sampling design 

when rG=+1: the power of each separate univariate analysis is improved over that in 

randomly selected samples. When rG=-1, applying extreme truncate selection leads to 

both a substantial gain and decrease in power for Y1 and Y2, respectively. For the 

situations in which the QTL does not exert pleiotropic effects (rG=0), the highest power 

of univariate analysis of Y1 is obtained in the selected samples. However, the mean t 

statistic values for Y2, the trait no associated to the QTL, are also increased. Type I error 

rates of separate univariate analyses may thus be inflated, especially in selected samples 

and when the residual correlation is high.  

 Type I error rates: When the QTL/SNP has no effect on Y1 and Y2, the values of the 

mean and standard deviation of both bivariate and univariate association tests are close 

to the theoretical values, regardless of the residual correlation, minor allele frequency of 

the studied SNP and of the selection sampling design (Supplementary Table 1.A). 

Indeed, SUR-based bivariate and each separate univariate association tests have correct 

type I error rates (Supplementary Table 1.B). However, the false-positive rates of 
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univariate association analyses for detecting association to either or both the two traits 

are, as expected, inflated: the estimated rates are roughly two times higher than the 

theoretical rates. Applying a Bonferroni correction (denoted as U_b) leads to slightly 

conservative significance levels, especially when the residual correlation between the 

traits is strong.  

Power comparisons : The power to detect association to either or both of the two traits 

using SUR-based bivariate analysis was compared to the power of separate univariate 

analysis of Y1 and Y2 adjusted for multiple testing by the Bonferroni correction 

(denoted as U_b). Figure 1.A shows the power curves (at significance of 10-5) against 

the QTL heritability (h2
1, h2

2) when N=1 000, for moderately (rE=0.2) or strongly 

(rE=0.6) correlated traits.  Power curves under S1 and S2 are shown in Figure 1.B, 

when h2
1 =h2

2=0.005, N=1 000 and rE=0.2 or 0.6.  

In randomly selected samples (Figure 1.A), the relative advantage of SUR-based 

bivariate over univariate association analysis is more obvious when rG=-1 and/or the 

traits are strongly correlated (rE=0.6) but also when rG=+1 and the traits are moderately 

correlated (rE=0.2). Under S1 (Figure 1.B), SUR-based bivariate is slightly less 

powerful than univariate analysis when rG=+1 and rE=0.6 or when rG=0 and rE=0.2. 

For strongly correlated traits, the power rates are equal to 94.5% (SUR) vs. 29.3% 

(U_b) when rG=-1; 44.0% (SUR) vs 32.3% (U_b) when rG=0; 36.8% (SUR) vs 39.9% 

(U_b) when rG=+1. For moderately correlated traits, the power rates are equal to 64.6% 

(SUR) vs 31.7% (U_b) when rG=-1; 32.9% (SUR) vs 34.9% (U_b) when rG=0; 43.7% 

(SUR) vs 32.6% (U_b) when rG=+1. Under S2 (Figure 1.B), SUR-based bivariate 

shows same or slightly lower power than univariate analysis except when rG=-1 or 

when rG=0 and rE=0.6 where it outperforms univariate test. As already noted above 

selecting on Y1 (S1) is the most efficient sampling design when rG=-1 or when rG=0 
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and the traits are strongly correlated (rE=0.6). Selecting on both traits (S2) is the most 

efficient design when rG=+1. Overall, when rE=0.6, the power of SUR is the greatest 

(94.5%) when rG=-1 and under S1, while the power of univariate analysis is the greatest 

(56.8%) when rG=+1 and under S2. When rE=0.2, the power of SUR and univariate 

analysis are both the greatest (72.5% and 72.9%) when rG=+1 and under S2. As shown 

in Supplementary Table 2, all these trends are confirmed under various parameter 

settings.  

 

ANALYSES OF EMPIRICAL BMD-GENOME-WIDE ASSOCIATION DATA 

BMD GWAS data: Subjects were recruited from the Network in Europe on Male 

Osteoporosis study 24,25. Subjects selected from this cohort were unrelated males > 18 

and < 68 years of age. In addition, the subjects were selected by bone densitometry 

(measured at the Lumbar Spine and at the Femoral Neck) criteria, having either low 

BMD (LS-Z-scores ≤-2, n=175) or high BMD (both LS- and FN-Z-scores >0.50, 

n=155). Further details of the study sample are provided in Supplementary Table 3. 

Genotyping was carried out at the Centre National de Génotypage (CNG, Evry, France) 

using the Illumina 370K platform. SNPs and DNA data were subjected to standard 

quality control analyses with PLINK 26 (details are provided in Supplementary 

Methods).  

Association analysis: Our primary analysis was the joint association analysis of LS-

Zscores and FN-Zscores by means of SUR-based bivariate test. For comparison 

purpose, we also applied separate univariate association analyses of LS and FN Z-

scores. We used single marker analysis assuming additive genetic effects. The mean F 

statistic of our SUR-based genome-wide association analysis was equal to 1.018 

(sd=1.022, median= 0.70). The mean t statistic of LS and FN were -0.0167 (sd=1.011, 
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median=-0.0165) and -0.0129 (sd=1.006, median=0.0104), respectively. These results 

indicated that there was no meaningful inflation of univariate as well as bivariate 

association analyses. 

Results: SUR-based bivariate analyses identified a substantial number (35) of SNPs 

with strong evidence of association (P-value<10-4). Interestingly, several of the 

identified SNPs failed to reach nominal (P-value <5%) significance under separate 

univariate analyses for either one or the two BMD phenotypes. Genome-wide bivariate 

and univariate association results were compared in terms of statistical significance and 

ranks of the SNPs identified in either one of the two approaches. For each SNP, we kept 

the lowest P-value (denoted as Best_U) of LS or FN univariate association analysis. 

Univariate P values were not corrected for multiple testing. We ranked the Best_U P-

values from the lowest to the highest. We similarly ranked the P-values from SUR-

based bivariate analysis of LS and FN. Figure 2 plots the significance levels in each 

procedure for the top 100 most associated SNPs identified from SUR-based (Figure 

2.A) or from univariate (Figure 2.B) analyses. We found that a majority (52) of the top 

SNPs in SUR-based bivariate analysis also show strong (P<3x10-4) association signal in 

univariate analyses. For a substantial number (16) of the remaining SNPs, univariate 

analyses fail to reach nominal (P<5%) significance (Figure 2.A) On the other hand, all 

of the top 100 SNPs in univariate analyses (Figure 2.B) are also highly significant 

(P<8x10-4) in bivariate analysis.  Table 4 shows details of the association results for the 

top 10 SNPs in SUR-based and in each separate univariate analysis. The table also 

shows P-values and ranks found in each of the two other procedures. The genetic 

contributions (R2 values) of the 10 top SNPs are not great, as expected for any relatively 

common polymorphic locus. Three of the top 10 SNPs from bivariate analysis also rank 

well (i.e., are in the set of top 300 SNPs) in univariate analyses of LS and/or FN. They 
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are located on 6q25: rank=2, P=1.3x10-5 (LS) and rank=1, P=1.2x10-5 (FN); on 15q14-

q15: rank= 2 635, P=8.4x10-3 (LS) and rank=3, P=1.7x10-5 (FN); and on 22q13: rank=1, 

P=3.5x10-6 (LS) and rank=8, P=3x10-5 (FN). All the remaining 7 SNPs show a much 

stronger association signal in bivariate than in univariate analyses, including 2 of the 3 

best SUR-based association signals. For the most significant result, on 22q11.2 

(P=5.44x10-6), the QTL explains 3.85% of the joint (co)variance of LS and FN. This 

value likely over-estimates the contribution in unselected populations. Nonetheless, 

univariate analyses failed to detect association (P>0.07) with this SNP. Conversely, all 

top 20 SNPs identified from univariate analysis of either LS or FN belong to the set of 

top 42 SNPs from SUR-based bivariate analysis. Overall, our analyses showed that 

univariate analysis did not identify new strongly associated SNPs as compared to those 

detected in bivariate analysis. Conversely, SUR-based analysis identified strongly 

associated SNPs that were not detected in univariate analysis. 

Our study used a design, with extreme truncate selection of unrelated males, aiming to 

improve power. The approach of studying samples drawn from the extremes of the 

population distribution of BMD has been used in several linkage studies of BMD 

variation 25,27, but rarely in association studies28, and to our knowledge, never in 

samples drawn from the population of males. Due to our relatively small GWA sample 

size, no SNP showed evidence of association to either one or both BMD phenotypes at 

genome-wide significance threshold of 1.7x10-7 (0.05/ 298 783 SNPs). However, we 

used an extreme truncate selection design that, as shown by our simulation studies, has 

increased power over unselected samples. Our SUR-based bivariate association analyses 

identified strong association (P<8.4x10-6) with 3 genomic regions (6q22.1, 15q14 and 

22q11). These SNPs have not yet been reported to be associated with bone density in 

previous GWAS 29-31. Two of them, on 15q14-15 and 22q11, are located in genes that 
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are known to be expressed in skeletal muscle 32-33: GLUT 11 encoded by SLC2A11 on 

22q11 and RYR3, on 15q14-15. Because muscle contraction has a major impact on bone 

density, this might represent an indirect role of these genes on bone density.These 

genetic variants, whether they are site-specific or possibly shared (pleiotropic), may 

warrant further follow-up genetic studies on BMD and other bone-related phenotypes.  

 

DISCUSSION 

We have evaluated the performance of bivariate association analysis based on the 

Seemingly Unrelated Regression (SUR) model, which allows different genetic models 

for different traits. To our knowledge, this is the first study to specifically derive the 

power and the relative performance of bivariate association analysis in selected samples 

of unrelated subjects. Our main results coincide with well-known power figures 6-8 and 

confirmed that bivariate association analysis outperforms univariate analysis when the 

QTL exerts pleiotropic effects and the relative increase in power is greatest when 

correlation of the QTL is opposite in sign to the residual correlation. The most powerful 

sampling selection design varied with the genetic model, specifically with the size and 

the direction of the induced-QTL correlation. Applying truncate selection on one trait 

was found the most efficient sampling design when the genetic and the residual 

correlations are opposite in signs. The same most efficient design was found when the 

QTL does not exert pleiotropic effects: the power of the SUR-based bivariate 

association test was found as good as or better than that of univariate association test, 

depending on the size of the residual correlation. Finally, when the QTL exerts 

pleiotropic effects and both sources (QTL and residual) of co-variation are of same sign, 

applying selection criteria on both traits was found the optimal sampling selection 
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design. Under this sampling design, the performance of SUR-based bivariate test 

relatively to univariate analysis decreases with the size of the residual correlation.  

So far, two studies have investigated the power of bivariate association in unselected 

population-based data, and they both applied bivariate association test based on 

Generalized Estimating Equations 16,18. The former applied a general GEE-based model 

that allows, as the SUR model, for different QTL effects on the two traits. The second 

study used a GEE-based bivariate model that assumed same QTL effects on the 

phenotypes. Our results are congruent with those reported by the first study. The 

restricted bivariate test estimates, as the univariate test, a single parameter (i.e., the SNP 

regression coefficients on each trait are all set equal). Under the restricted bivariate 

model, the gain in power of bivariate analysis is enhanced and reduced when the QTL 

has similar effect and when it affects one trait only, respectively. Clearly, rarely, 

knowledge of this magnitude about a complex trait is known a priori. Thus, we do not 

recommend using restricted bivariate models even in unselected data.  

Our bivariate genome-wide association analysis of Lumbar Spine and Femoral Neck 

BMD values, conducted in a sample of unrelated males with low BMD (LS Zscores ≤-

2) and high BMD (LS and FN Zscores >0.5), consistently demonstrated the advantage 

of the SUR-based bivariate test over separate univariate analysis. All of the top hits in 

univariate analysis also showed strong evidence of association in bivariate analysis. 

Conversely, additional SNP associations were detected with the bivariate method that 

did not reach nominal significance in single-trait analyses: this was achieved without 

adjusting significance of univariate analyses for multiple testing.  

In conclusion, our results showed that SUR-based models are useful to detect 

association for correlated phenotypes. However, our results also showed that similar 

power levels can be achieved whether the QTL exerts or not pleiotropic effects. Thus, 
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disentangling pure pleiotropic from residual covariation remains a challenge even in 

bivariate association analysis. 
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Titles and legends to figures 

 

Figure 1: Power rates at α=10-5 of SUR-based bivariate analysis and univariate analysis 

adjusted for multiple testing by Bonferroni correction (U_b), in samples of N=1 000 

subjects and under various parameters settings: QTL heritability (h2
1/h2

2), sign of the 

induced genetic correlation (rG), residual correlation (rE). 

(A) Power estimates against QTL heritability for moderately (rE=0.2) or strongly 

(rE=0.6) correlated traits, in randomly selected samples (Su) 

(B) Power estimates under extreme selection (S1 or S2) for moderately (rE=0.2) or 

strongly (rE=0.6) correlated traits and QTL heritability (h2
1=h2

2=0.005) 

 

Figure 2: Overlap in significance of results from bivariate and univariate (Best_U) 

association analysis. 

(A) Top 100 hits in SUR-based bivariate association test: -log10 P-values of univariate 

analysis against –log10 P-values of SUR-based bivariate analysis  

(B) Top 100 hits in univariate association test: -log10 P-values of SUR-based bivariate 

analysis against –log10 P-values of univariate analysis  
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Su S1 S2
rE rG h2

1/h
2
2 μF (sd) μF (sd) μF (sd)

0.2 0 0.005/0 3.69 (2.61) 10.10 (4.34) 9.23 (4.18)
0.01/0 6.17 (3.32) 18.94 (5.86) 17.97 (5.74)
0.03/0 17.02 (6.08) 59.02 (10.56) 55.3 (10.32)

+1 0.005/0.005 5.08 (2.99) 11.42 (4.86) 15.17 (5.41)
0.005/0.01 7.45 (3.66) 14.07 (5.04) 19.08 (6.58)
0.01/0.01 9.50 (4.42) 22.89 (6.86) 29.84 (7.89)
0.03/0.03 26.90 (7.34) 72.04 (12.89) 92.88 (14.41)

-1 0.005/0.005 7.26 (3.92) 13.91 (5.30) 9.57 (4.48)
0.005/0.01 10.57 (4.36) 17.22 (5.65) 11.05 (4.88)
0.01/0.01 13.69 (5.42) 27.72 (7.40) 19.29 (6.56)
0.03/0.03 39.95 (9.40) 89.83 (13.86) 68.63 (13.23)

0.6 0 0.005/0 4.88 (3.04) 11.26 (4.51) 9.96 (4.47)
0.01/0 8.79 (4.04) 22.54 (6.75) 19.78 (6.16)
0.03/0 25.04 (7.34) 69.67 (11.85) 62.92 (11.30)

+1 0.005/0.005 4.09 (2.69) 10.41 (4.49) 12.22 (4.78)
0.005/0.01 6.36 (3.60) 12.67 (5.06) 15.60 (5.52)
0.01/0.01 7.33 (3.85) 20.35 (6.34) 23.81 (6.76)
0.03/0.03 20.42 (6.53) 63.56 (11.19) 73.11 (11.61)

-1 0.005/0.005 13.70 (5.32) 20.94 (6.59) 16.02 (5.84)
0.005/0.01 19.71 (6.52) 27.35 (7.55) 21.20 (6.92)
0.01/0.01 26.06 (7.40) 42.83 (9.58) 34.26 (8.87)
0.03/0.03 78.65 (14.17) 143.61 (19.15) 124.18 (17.77)

1Sampling

Table 2: Mean (and sd) of the SUR-based bivariate association statistic (F test) in 

samples of N=1 000 subjects for various parameter settings: QTL heritability (h2
1/h2

2), 

sign of the induced genetic correlation (rG), residual correlation (rE), and sampling 

selection design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Su: unselected sample; S1: sample selected on Y1 distribution; S2: sample selected on 

Y1 and Y2 distributions. 
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rE rG h2
1/h

2
2 Y1 μt (sd) Y2 μt (sd) Y1 μt (sd) Y2 μt (sd) Y1 μt (sd) Y2 μt (sd)

0.2 0 0.005/0 2.26 (1.01) -0.03 (1.00) 4.23 (0.99) 0.98 (1.02) 4.02 (1.00) 2.59 (1.05)
0.01/0 3.15 (1.01) -0.02 (0.97) 5.95 (0.98) 1.41 (1.00) 5.78 (0.96) 3.60 (1.00)
0.03/0 5.53 (1.06) 0.00 (1.00) 10.69 (0.96) 2.33 (0.96) 10.34 (0.98) 6.34 (1.01)

+1 0.005/0.005 2.23 (1.00) 2.20 (0.98) 4.15 (0.97) 3.21 (1.07) 4.99 (0.97) 4.83 (1.03)
0.005/0.01 2.19 (0.97) 3.23 (1.02) 4.19 (0.97) 4.21 (0.99) 5.36 (1.02) 5.69 (1.07)
0.01/0.01 3.18 (1.00) 3.19 (1.04) 5.96 (1.01) 4.72 (1.04) 7.06 (0.96) 6.93 (1.09)
0.03/0.03 5.57 (1.01) 5.57 (0.98) 10.64 (1.01) 8.60 (1.07) 12.28 (0.96) 12.57 (1.13)

-1 0.005/0.005 2.20 (1.01) -2.26 (1.01) 4.18 (1.00) -1.26 (0.99) 3.15 (0.99) 0.36 (1.02)
0.005/0.01 2.26 (0.99) -3.22 (0.97) 4.21 (0.92) -2.16 (0.99) 2.69 (1.03) -0.60 (0.99)
0.01/0.01 3.18 (1.04) -3.17 (1.04) 5.95 (0.98) -1.95 (1.01) 4.56 (0.96) 0.44 (0.97)
0.03/0.03 5.57 (1.01) -5.58 (1.04) 10.68 (0.97) -3.91 (1.01) 8.51 (0.96) 0.29 (0.95)

0.6 0 0.005/0 2.23 (1.00) 0.00 (0.96) 4.19 (0.97) 2.35 (0.98) 3.89 (0.99) 2.69 (0.97)
0.01/0 3.13 (0.99) -0.05 (0.98) 6.01 (1.00) 3.26 (0.97) 5.64 (0.97) 3.87 (0.98)
0.03/0 5.55 (1.02) 0.01 (0.98) 10.62 (0.98) 5.44 (0.96) 10.08 (0.96) 6.63 (0.96)

+1 0.005/0.005 2.22 (1.00) 2.24 (0.99) 4.17 (1.00) 4.06 (1.02) 4.58 (0.99) 4.59 (1.01)
0.005/0.01 2.25 (1.01) 3.24 (1.03) 4.17 (1.00) 4.79 (1.03) 4.90 (0.94) 5.40 (0.99)
0.01/0.01 3.17 (1.03) 3.18 (1.00) 5.97 (1.01) 5.83 (1.01) 6.52 (0.96) 6.58 (1.00)
0.03/0.03 5.55 (1.01) 5.60 (1.03) 10.70 (0.98) 10.47 (0.99) 11.48 (0.93) 11.75 (0.99)

-1 0.005/0.005 2.20 (1.02) -2.30 (1.02) 4.13 (0.97) 0.48 (0.95) 3.23 (0.97) 0.81 (0.92)
0.005/0.01 2.23 (1.00) -3.21 (1.00) 4.15 (1.00) -0.20 (1.00) 2.97 (0.99) 0.03 (0.97)
0.01/0.01 3.10 (1.02) -3.22 (1.01) 5.99 (0.96) 0.70 (0.97) 4.75 (0.97) 1.11 (0.95)
0.03/0.03 5.52 (1.04) -5.60 (1.05) 10.68 (0.95) 0.57 (0.93) 8.89 (0.92) 1.69 (0.88)

1Sampling
SU S1 S2

Table 3: Mean (and sd) of the traditional univariate association statistic (t test) in 

samples of N=1 000 subjects for various parameter settings: QTL heritability (h2
1/h2

2), 

sign of the induced genetic correlation (rG), residual correlation (rE), and sampling 

selection design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1Su: unselected sample; S1: sample selected on Y1 distribution; S2: sample selected on 

Y1 and Y2 distributions.  
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QTL Model Heritability  (h2
j)

1effect size (aj) rG q h2
j rE N Sampling Design

I. Null h2
1 = h2

2 = 0 a1 = a2 = 0 0 0.1/0.4 h2
1 = 0 &  h2

2 = 0 0.4 / 0.6  1000 / 300 Su / S1 / S2

II. No pleiotropic effect h2
1 >0;  h2

2 = 0 a1>0 ;  a2 =0 0 0.1/0.4 h2
1={0.5% / 1% / 3%} & h2

2=0 0.4 / 0.6  1000 / 300 Su / S1 / S2

III. Pleiotropic effect 

aj: same direction h2
1 = h2

2 a1 = a2 + 0.1/0.4 h2
1= h2

2= {0.5% / 1% / 3%} 0.4 / 0.6  1000 / 300 Su / S1 / S2

h2
1 ≠ h2

2 a1 ≠ a2 + 0.1/0.4
h2

1= 0.5% & h2
2={1% / 3%) ; 

h2
1=1% & h2

2 =3%
0.4 / 0.6  1000 / 300 Su / S1 / S2

aj: opposite direction h2
1 = h2

2 a1 = - a2 - 0.1/0.4 h2
1= h2

2= {0.5% / 1% / 3%} 0.4 / 0.6  1000 / 300 Su / S1 / S2

h2
1 ≠ h2

2 a1 ≠ -a2 - 0.1/0.4
h2

1= 0.5% & h2
2={1% / 3%) ; 

h2
1=1% & h2

2 =3%
0.4 / 0.6  1000 / 300 Su / S1 / S2

Main scenarios Parameter values

Table 1: Outline of the main scenarios and varying parameter values in the bivariate data simulations 

 

 

 

 

 

 

 

 

 

 

1aj = √[h2
j./2pq], where q is the Minor Allele Frequency 
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Chr. (Locus) Closest Gene Pos (bp) SNP 1Min. 2MAF P 4Rank 3R (%) 5P 4Rank 5R2 (%) 5P 4Rank 5R2 (%)
2q37.1 SP100 231 037 761 rs1649866 A 0.33 2.03E-05 8 3.41% 0.539 162064 0.12% 0.086 25794 0.95%

231 042 007 rs1678160 G 0.33 1.45E-05 4 3.52% 0.574 172327 0.10% 0.072 21500 1.04%
3q25 LEKR1 158 200 574 rs6799034 C 0.43 1.81E-05 6 3.45% 0.970 289752 0.00% 2.41E-02 7166 1.63%

6q22.1 LOC643884 113 858 994 rs2049924 A 0.29 8.42E-06 3 3.69% 1.80E-03 607 3.09% 0.363 109135 0.27%
6q25 TIAM2 155 533 083 rs998318 G 0.31 2.94E-05 10 3.30% 1.30E-05 2 5.94% 1.22E-05 1 5.98%

12p13-p12 PZP - A2MP 9 254 198 rs1017301 C 0.34 2.24E-05 9 3.38% 0.223 67841 0.48% 1.13E-03 348 3.36%
15q14-15 RYR3 31 680 776 rs2437143 C 0.38 6.97E-06 2 3.75% 8.41E-03 2635 2.21% 1.65E-05 3 5.80%
19p13.11 FAM125A 17 392 450 rs2303680 G 0.41 1.92E-05 7 3.43% 0.743 222673 0.03% 4.66E-02 13886 1.27%
22q11.2 SLC2A11 22 534 158 rs2275979 A 0.18 5.44E-06 1 3.85% 0.523 157609 0.13% 0.067 20101 1.08%
22q13 LL22NC03 43 026 421 rs3935378 T 0.49 1.64E-05 5 3.48% 3.54E-06 1 6.69% 2.95E-05 8 5.47%

1q32-41 CAMK1G 207 787 465 rs996146 T 0.11 6.39E-05 24 3.06% 1.65E-05 3 5.80% 5.19E-05 10 5.14%
1q41 ESRRG 214 946 534 rs2813711 A 0.13 7.13E-05 29 3.02% 3.68E-05 10 5.34% 2.36E-05 5 5.59%
2q11.2 AFF3 99 943 239 rs11887597 C 0.48 1.08E-04 36 2.90% 2.42E-05 7 5.60% 0.0005639 156 3.77%
3q22.3 PIK3CB 139 883 989 rs531577 C 0.49 1.37E-04 40 2.85% 2.89E-05 9 5.53% 0.0004341 113 3.95%
6q25.2 TIAM2 155 533 083 rs998318 G 0.31 2.94E-05 10 3.30% 1.30E-05 2 5.94% 1.22E-05 1 5.98%
7q11.23 CCDC146 76 658 736 rs10252204 A 0.40 6.29E-05 23 3.07% 1.97E-05 5 5.72% 0.001236 382 3.32%
10q21.2 LOC729184 62 158 387 rs1904418 G 0.32 7.68E-05 31 3.06% 1.71E-05 4 5.89% 0.0004438 115 3.97%
16p13 NPM1P3 5 551 122 rs1969139 C 0.31 1.38E-04 42 2.82% 2.88E-05 8 5.48% 0.0003619 93 4.01%
16q21 SLC38A7 57 262 362 rs9806843 G 0.43 8.55E-05 33 2.97% 1.99E-05 6 5.69% 0.0005906 169 3.73%

22q13.31 LL22NC03 43 026 421 rs3935378 T 0.49 1.64E-05 5 3.48% 3.54E-06 1 6.69% 2.95E-05 8 5.47%

1p21.1 LOC126987 106 644 698 rs1330226 C 0.30 8.56E-05 34 2.97% 4.64E-05 18 5.20% 2.70E-05 6 5.52%
1q32-41 CAMK1G 207 787 465 rs996146 T 0.11 6.39E-05 24 3.06% 1.65E-05 3 5.80% 5.19E-05 10 5.14%

1q41 ESRRG 214 946 534 rs2813711 A 0.13 7.13E-05 29 3.02% 3.68E-05 10 5.34% 2.36E-05 5 5.59%
2p21 C2orf34 44 846 991 rs11679997 T 0.15 6.73E-05 28 3.05% 2.99E-03 960 2.81% 3.14E-05 9 5.45%

6q25.2 TIAM2 155 533 083 rs998318 G 0.31 2.94E-05 10 3.30% 1.30E-05 2 5.94% 1.22E-05 1 5.98%
7p22.2 SDK1 3 411 837 rs6952184 C 0.09 5.97E-05 20 3.08% 4.09E-05 14 5.28% 1.68E-05 4 5.79%

12q21.31 TSPAN19 83 921 735 rs1581563 G 0.16 8.36E-05 32 2.97% 4.31E-05 15 5.25% 2.73E-05 7 5.51%
15q14-15 RYR3 31 680 776 rs2437143 C 0.38 6.97E-06 2 3.75% 8.41E-03 2635 2.21% 1.65E-05 3 5.80%

20p12-p11.2 NXT1 23 219 822 rs4815192 T 0.46 6.45E-05 26 3.06% 9.81E-05 41 4.78% 1.39E-05 2 5.92%
22q13.31 LL22NC03 43 026 421 rs3935378 T 0.49 1.64E-05 5 3.48% 3.54E-06 1 6.69% 2.95E-05 8 5.47%
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Table 4: Association results: Top 10 most associated SNPs from SUR-based bivariate or from separate univariate analysis of LS and FN BMD 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

1: 
 
 1Minor allele; 2Minor allele frequency; 3r-square of the whole system taking into account the residual (co)variance matrix; 4rank of the identified 

SNP; 5r-square from linear regression; 5Unadjusted univariate P values.  
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A -- Top 100 SNPs -- Bivariate analysis
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B -- Top 100 SNPs -- Univariate analyses
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