
HAL Id: hal-00625917
https://hal.science/hal-00625917v1

Preprint submitted on 8 Oct 2011 (v1), last revised 17 Feb 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Is it possible to find the maximum clique in general
graphs?

José Ignacio Alvarez-Hamelin

To cite this version:
José Ignacio Alvarez-Hamelin. Is it possible to find the maximum clique in general graphs?. 2011.
�hal-00625917v1�

https://hal.science/hal-00625917v1
https://hal.archives-ouvertes.fr

IS IT POSSIBLE TO FIND THE MAXIMUM CLIQUE IN

GENERAL GRAPHS?

JOSÉ IGNACIO ALVAREZ-HAMELIN

Abstract. Find the maximum clique is a know NP-Complete problem and
it is also hard to approximate. This work propose an efficient algorithm to
obtain it. If the presented theorem holds, this algorithm run in polynomial
time in terms of the size of the graph.

1. Introduction

Finding cliques in graphs is a very known problem, mainly the maximum clique
was fond to be a NP-Complete problem [Karp, 1972]. Indeed, from any vertex, to
discover the maximum clique to which it belongs, we should take all combinations
of k neighbors and verify whenever they are mutually adjacent, which yields an
exponential time as function of vertex degree. Moreover, [Johnson, 1973] shows
that there exists no sublinear approximation algorithm. This problem was largely
treated and an extensive survey can be found in [Bomze et al., 1999]. In this work,
we present an algorithm to find maximum cliques based in a reduction of the prob-
lem complexity. We decompose the graph from the vertex of highest degree until
no vertices remains, then we re-build the graph computing the maximum clique at
each step, restoring each one of their vertices. Next section is devoted to present
the algorithm and the theorem showing its correctness. A section showing the al-
gorithm applied to real graphs is presented to illustrate how it works. The paper
is concluded with a discussion about the complexity of the problem.

2. Algorithm

Let G = (V,E) be a simple undirected graph with n = |V | vertices and m =
|E| ≤ |V | × |V | edges. The neighborhood of a vertex is the the set composed by
vertices directly connected to it, i.e., w ∈ N(v) such as {v, w} ∈ E. Then, the
degree of vertex v is denoted as d(v) = |N(v)|. Call H = (V,E,A) the annotated
graph G, where |A| = |V | such that if v ∈ V then av is a list of attributes of vertex
v. In this work, each of these attributes is a set called aiv, and i ∈ N(v). Abusing
of the notation, we use av = ∅ when N(v) = ∅.

The attribute axv have the properties presented in Definition 1, and it is computed
by Algorithm 1.

Definition 1. Let a vertex v ∈ V and one neighbor x ∈ N(v) the axv is a set of

vertices such that the three following properties holds:

(i) this set denotes a clique having v and x;

Date: October 8, 2011.
Key words and phrases. algorithms, graphs, complexity.
Acknowledgements: Juan Ignacio Giribet, Pablo Jacovkis, Mario Valencia-Pabon.

1

2 J.I. ALVAREZ-HAMELIN

(ii) the maximum clique Kmax(v) in which v participates is found as

(1) Kmax(v) = axv : max(|axv |, ∀x ∈ N(v)) ;

(iii) and, if Kmax(v) = axv and w ∈ Kmax(v), then awv ⊆ Kmax(v).

Notice that we call av = {axv , ∀x ∈ N(v)}.
Finally, the maximum clique of the graph G according to Definition 1 is,

(2) Kmax(G) = axv : max (|axv |/v ∈ V, x ∈ N(v)) ,

where its cost is O(m) for a connected graph or O(n+m) in general.
The following theorem proof the correctness of Algorithm 1, verifying how this

algorithm accords with Definition 1.
Theorem 1. Algorithm 1 ends if G = (V,E) has finite size, computing correctly

attributes axv for all vertices v ∈ V and their corresponding neighbors, according to

Definition 1.

Proof. Let us start with the winding phase of the recursion, that is, steps 1.2, 1.4
and 1.8 are executed until we reach an empty graph G′ (see 1.7). At this step, the
end of recursion (step 1.7) is found because each call to find cliques(G′) function
is done with a reduced set of vertices |V ′| = |V − 1| (and its induced graph), and
G has finite size; i.e., the recursion is done n times.

From there, we analyze the unwinding phase. Let’s start when steps 1.19 and 1.20
are executed for the first time: the return of the function will carry a graph with

Algorithm 1: Function H ←find cliques(G)

Input: a graph G = (V,E)
Output: a graph H = (V,E,A)
begin1.1

find a vertex v such that d(v) is maximum ;1.2

set M = N(v);1.3

G′ ← G \ v ;1.4

axv ← ∅ for all x ∈M , or av ← ∅ if M ∈ ∅ ;1.5

set H ′ ← {∅, ∅, ∅} ;1.6

if G′ /∈ ∅ then1.7

set H ′ ← find cliques(G′) ;1.8

for each x ∈M do1.9

for each set aix or ax ∈ ∅ do1.10

set L←
(

N(v) ∩ aix
)

∪ v ∪ x ;1.11

if (|L| ≥ |axv |) then1.12

avx ← L ;1.13

axv ← L ;1.14

end1.15

end1.16

end1.17

end1.18

set H ← H ′ ∪ (v, v ×M,av) ;1.19

return H ;1.20

end1.21

IS IT POSSIBLE TO FIND THE MAXIMUM CLIQUE IN GENERAL GRAPHS? 3

just the vertex v, no edges and av = ∅ (step 1.5), that is H = ({v}, ∅, av). Then,
the following instance(s) can add vertices of degree zero until one instance begins to
add the first edges (edge), getting a star with leaves (one leaf), because the degree
is an increasing function (the winding phase was carried out taking the maximum
degree at step 1.2, so the unwinding one reconnects vertices with the same degree
or greater one). At this instance, steps 1.9 and 1.10 are executed and step 1.11
yields L = {v, x} because ax is empty (the vertex x has no registered neighbors
until now). The following conditional sentence is true (step 1.5 assures axv ∈ ∅)
setting each neighbor as a clique, on both sides, the neighbor vertex avx = {v, x}
and the local one axv = {v, x} (see 1.12, 1.13 and 1.14, we consider objects aw as
mutable).

From this point of the algorithm execution any one of the next vertices could
build a Ks/s ∈ N (e.g., s = 3) because a new vertex joining former vertices consti-
tuting a Ks−1 could appear. It is worth remarking that it is not possible to build
a Ks+1 at this stage (e.g., s + 1 = 4). The reason why it is not possible is that
there are only Ks−1 and a new vertex just adds edges between this new vertex and
the present vertices, although this new vertex will never add an edge between the
present vertices. In this way, the size of new cliques is an increasing function (either
the maximum clique remains at same size or it is increased by one vertex).

Now, we will show the property (i) for axv in Definition 1. We have also shown
that the first elements in axv constitute a clique of two vertices: v and its neighbor
x. Considering, at any instance in the unwinding phase of the Algorithm 1, a vertex
v has a clique stored for each one of its neighbors x in axv . Let’s consider, without
loss of generality, a new neighbor of v, called w, having as neighbors B ⊆ axv = Kt,
that is N(w) ⊇ B ∪ v. When step 1.12 is executed, either avw ∈ ∅ or a

v
w = {w, v}

(because it is possible that axv ∩ N(w) is empty in 1.11), and then avw ← B ∪ w,
which is also a clique because B ⊆ axv is a clique and w is a neighbor of all vertices
in B by hypothesis.

The property (iii) in Definition 1 is verified by Algorithm 1 because, according
to what was shown in the last example, we have that axv remains without any
modification, meanwhile if B = axv then awv = axv ∪ w. Notice that the maximum
clique of a vertex x is the ayx such that either x or y is the last vertex reconnected
to the graph.

To conclude the proof is enough to determine if the property (iii) in Definition 1
is obtained by Algorithm 1. The initial case was already shown in the second
paragraph of this proof. Then, considering a case where the maximum clique of
vertices w and y is Ks, and there exists another clique Kt such that w, y ∈ Kt

and t ≤ s. As seen in a previous paragraph, vertices can only build cliques that
increase the previous one by just one vertex. Let’s consider that the next vertex z
is connected with all vertices in Kt and z is at most connected with t− 1 vertices
in Ks. The minimum difference that is needed to distinguish between two cliques
is one vertex. Taking into account, without loss of generality, that the maximum
clique for z is Ks ∪ z, steps 1.11 and 1.12 will select the clique Ks ∪ z because at
least one neighbor of z, let’s call it u, has aiu = Ks/i ∈ N(u). At this point, the
values awz , a

y
z , a

z
w, and azy will be updated because their size is greater or equal to

the size of a clique found before (see 1.12, 1.13 and 1.14). Thus, if t+1 < s then Ks

remains the maximum clique for w and y; or else t+ 1 ≥ s and the set of t vertices
in Kt plus z is the maximum clique for w and y. It is worth remarking that it is

4 J.I. ALVAREZ-HAMELIN

possible that a vertex v has several cliques with a neighbor x, and the condition
in 1.12 assures that the maximum clique is taken. Notice that ayw and awy have the
other clique Ks stored, but still Kt+1 = axw max(|axw|, ∀x ∈ N(v)) is the maximum
clique for w because t+ 1 ≥ s and the previous maximum clique was Ks; the same
occurs to y. �

Time complexity. Step 1.11 of Algorithm 1 is an intersection of two sets of size
dmax (maximum degree), if both are ordered1 that takes O(dmax). Next, we con-
sider the loop 1.10, that takes an extra dmax, which yields O(d2max). The loop on
neighbors 1.9 takes an extra dmax, giving O(d3max). Step 1.2 has a complexity of
O(n) if vertices are not ordered, but it is an additive cost that is expected smaller
than O(d3max). Finally, the recursion is done in every vertex of the graph, producing
a total time complexity of O(n ·d3max). For the case when neighbors are not ordered,
we get O(n · d4max). Considering connected graph, we can express the n recursions
and the visit to all neighbors in the loop 1.9 as visiting all the edges, yielding a
time complexity of O(m · d2max).

For general graphs, where dmax could be bound by n, getting a time complexity
of O(n4). However, for graphs having a heavy tailed distribution which can be
bound by a power law2: P (d) ∝ d−β , it is possible to find a lower bound. Indeed,

these graph has n
1

β as a bound of dmax, therefore the complexity yields O(n1+ 3

β)
for β ≤ 3, and for β > 3 either the search in 1.2 or the elimination in 1.4 dominates,
reaching the bound O(n2) or O(n · dmax · log dmax) respectively.
Storage complexity. It can be computed as the space to storage the graph G,
which is O(n · dmax), and the space occupied by all the axv sets. This last quantity
can be computed as the length of each set axv , which is bound by dmax and the
number of them by vertex, which is also bound by dmax, yielding O(d2max) per
vertex. Thus, the total storage complexity is O(n · d2max).

3. Applications

In this section we illustrate Algorithm 1 through an implementation made in
python programming language [Alvarez-Hamelin, 2011], and its application to some
graphs showing their maximum clique.

First, we apply our algorithm for finding cliques to some random graphs defined
by [Erdös and Rényi, 1959]. It is shown in [Bollobás, 2001, Bollobás and Erdös, 1976]
that an ER random graph has a high probability to contain a clique of size,

(3) r =
2 · logn

log 1/p
,

where n is the number of vertices and p is the probability that exist an edges
between any pair of vertices.

Table 1 show the results, where the columns are: the size of the graph, the
probability p, the average degree d̄, the computed r according to Equation 3, the
size found by Equation 2, the number of different cliques (i.e., at least one vertex
is different), and if an induced clique of size r+ 1 where found. The last column is
obtained adding new edges to build a greater clique than the maximum, it shows
’yes’ when this clique is found and ’not’ if this is not found. Moreover, the ’yes’
answer also means that we found just one clique of that size (see the number of

1This can be done at the beginning for all vertices in the graph G, taking O(n·dmax ·log(dmax)).
2Most of the real problems in Complex Systems field has 2 ≤ β ≤ 3.

IS IT POSSIBLE TO FIND THE MAXIMUM CLIQUE IN GENERAL GRAPHS? 5

n p d̄ r |Kmax| |K| : K = {K ∈ Kmax} induced r + 1

100 0.01 1 2 2 60 yes

1000 0.01 10 3 3 159 yes

10000 0.01 100 4 4 372 yes

10000 0.04642 464.2 6 6 5 yes

Table 1. Maximum cliques in Erdös Renyi graphs.

clique r found in the original graph). We test the algorithm for several graph of
each one obtaining the same results (excluding |K| which changed some times), but
we display just one result of each case.

The result is evident, we always found the predicted maximum clique, even when
an artificially one is introduced.

In a second place, we apply our algorithm to a AS Internet graph. This graph
has, as a main properties, a power law degree distribution and most of vertices
of low degree are connected to the high degree ones. We used an exploration
of [CAIDA, 1998] of September 2011. Figure 1 shows a visualization of this map

Figure 1. Visualization of AS Internet map by LaNet-vi. Vertices
in the maximum clique are labeled with numbers.

6 J.I. ALVAREZ-HAMELIN

obtained by LaNet-vi [Beiró et al., 2008]. This visualization is based on k-core
decomposition. A k-core is a the maximum induced subgraph such that all vertices
have at least degree k [Seidman, 1983, Bollobás, 1984]. LaNet-vi paints each vertex
with the rain-bow colors according to its shell index, i.e., the maximum core that
a vertex belongs to. It also makes a greedy clique decomposition of the top core,
i.e., the core with maximum k, placing each clique in circular sector according to
its size.

In this graph the Equation 2 found a K27 while LaNet-vi found a K24, this is
displayed as the largest circular sector of red vertices in Figure 1. Moreover, this
figure shows vertices of the K27 as those enumerated from 01 to 27. It is possible
to appreciate that vertex 27 is not at the top core, therefore it is impossible for
LaNet-vi to find this clique.

Comparing the execution time of this graph and a ER graph of the same size,
e.g., the same number of edges, we find that AS graph ends quicker than the ER
graph, due to that its degree distribution follows a power law with β ≃ 2.2.

4. Discussion

As we have already remarked this problem is NP-Complete. If Theorem 1 is
correct, this will lead to P = NP . Due to the importance of such problem, we
hope that the scientific community confirms its correctness, or eventually find a
counterexample.

References

[Alvarez-Hamelin, 2011] Alvarez-Hamelin, J. I. (2011). find cliques: a library for graphs in phy-
ton: http://findcliques.sourceforge.net/.

[Beiró et al., 2008] Beiró, M. G., Alvarez-Hamelin, J. I., and Busch, J. R. (2008). A low complexity
visualization tool that helps to perform complex systems analysis. New J. Phys, 10(12):125003.

[Bollobás, 1984] Bollobás, B. (1984). The evolution of sparse graphs. Graph Theory and Combi-
natorics, pages 35–57.

[Bollobás, 2001] Bollobás, B. (2001). Random Graphs. Cambridge University Press.
[Bollobás and Erdös, 1976] Bollobás, B. and Erdös, P. (1976). Cliques in random graphs. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 80:419–427.

[Bomze et al., 1999] Bomze, I., Budinich, M., Pardalos, P., and Pelillo, M. (1999). The maxi-
mum clique problem. In Du, D.-Z. and Pardalos, P. M., editors, Handbook of Combinatorial
Optimization, volume 4. Kluwer Academic Publishers.

[CAIDA, 1998] CAIDA (1998). Cooperative Association for Internet Data Analysis , Router-Level
Topology Measurements. http://www.caida.org/tools/measurement/skitter/.

[Erdös and Rényi, 1959] Erdös, P. and Rényi, A. (1959). On random graphs I. Publ. Math. (De-
brecen), 6:290–297.

[Johnson, 1973] Johnson, D. S. (1973). Approximation algorithms for combinatorial problems.
In Proceedings of the fifth annual ACM symposium on Theory of computing, STOC ’73, pages
38–49, New York, NY, USA. ACM.

[Karp, 1972] Karp, R. (1972). Reducibility among combinatorial problems. In Miller, R. and
Thatcher, J., editors, Complexity of Computer Computations, pages 85–103. Plenum Press.

[Seidman, 1983] Seidman, S. B. (1983). Network structure and minimum degree. Social Networks,
5:269–287.

INTECIN (UBA-CONICET), Facultad de Ingenieŕıa, Paseo Colón 850, C1063ACV
Buenos Aires – Argentina

E-mail address: ignacio.alvarez-hamelin@cnet.fi.uba.ar

