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Abstract

The nonparametric estimation of the m-fold convolution power of an unknown function f is
considered. We introduce an estimator based on a plug-in approach and a wavelet hard thresholding
estimator. We explore its theoretical asymptotic performances via the mean integrated squared error
assuming that f has a certain degree of smoothness. Applications and numerical examples are given
for the standard density estimation problem and the deconvolution density estimation problem.

Key words and phrases: density estimation; convolutions; plug-in estimator; wavelets; hard thresh-
olding; rates of convergence

1 Introduction

Let (2, A,P) be a probability space, f be an unknown function related to n i.i.d. random variables
Z1,...,Z, and m > 2 be a fixed integer. We aim to estimate the m-fold convolution power of f

g(x):*mf(x):/.../f(x—ug—...—um)f(ug)...f(um)dug...dum (1.1)

from Z,...,Z,. For the case where m = 2, note that x*f(z) = (f * f)(z) = [ f(z — ¢)f(¢)dt.

Probably the most famous example concerns the density estimation problem where f is the density
of Z; and g is the density of § = 2211 Z;. Many quantities of interest in actuarial or financial sciences
involve sums of random variables. For example, in the individual risk model, the total amount of claims on
a portfolio of insurance contracts is modelled as the sum of all claims on the individual policies. Therefore,
probability density functions of sums of random variables are of particular interest. A typical example is
the sum of insurance claims, where (Z;);=1,... , are individual insurance claims and S = 27;1 Z; is the
sum of m claims and m could be interpreted as the expected number of claims in a specified period (e.g.
one month). As an example, we refer to Frees (1994) which studied the total charges for female patients
admitted to the Wisconsin Hospital for circulatory disorders during a year. Another detailed application
in the field of health insurance can be found in Panjer and Willmot (1992). Methods and results can be
found in Frees (1994), Saavedra and Cao (2000), Ahmad and Fan (2001), Ahmad and Mugdadi (2003),
Prakasa Rao (2004), Schick and Wefelmeyer (2004, 2007), Du and Schick (2007) and Giné and Mason
(2007). In particular, Saavedra and Cao (2000) have introduced the natural plug-in estimator § = *mf,
where fdenotes a kernel estimator.

In this study, considering the general form of the problem, we propose to extend the approach of
Saavedra and Cao (2000) to the wavelet hard thresholding estimators. We are interested on such estima-
tors because they achieve a high degree of adaptivity and capability of handling the singularities of the
unknown function. We refer to e.g. Antoniadis (1997), Hérdle et al. (1998) and Vidakovic (1999) for the
details and discussions on their advantages over traditional methods. We study the asymptotic perfor-
mance of our estimator by considering the mean integrated squared error (MISE) and assuming that f
belongs to a wide class of unknown functions (the Besov balls). The obtained rate of convergence is of
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the form (Inn/n)¥, where w € (0,1) depends on the regularity of f and the considered statistical model.
Let us mention that it corresponds to the standard one attained by the hard thresholding estimator for
f from various statistical models. Further details can be found in Kerkyacharian and Picard (2000).

If we focus our attention on the density estimation model, the obtained rate of convergence is a
bit slower to the one reached by the kernel estimator of Saavedra and Cao (2000) (i.e. the parametric
rate 1/n). However, our result has the advantage to be applied for a wide class of densities. We do
not need to have f four times differentiable with fourth derivative continuous, sup,cp | ) (z)| < oo for
j€10,1,2,3,4}, f” and f® are integrable as in (Saavedra and Cao, 2000, Theorem 3); the assumption
that f belongs to Besov balls provides more flexibility.

Finally we illustrate our theoretical result by considering two different density estimation problems:
the standard density one (described above) and the deconvolution density one. To the best of our
knowledge, the consideration of the deconvolution density model in this setting is new but in many
applications, errors-in-variables could arise, for example, measurement error is a problem inherent in
health insurance claims data. Thus, the deconvolution density estimation problem can be viewed as a
natural extension. A comprehensive simulation study supports our theoretical findings. In particular, we
show that the practical performance of our wavelet estimator compares favorably to the standard ones
(i.e. those of Frees (1994) and Saavedra and Cao (2000)) for a wide variety of functions.

The paper is organized as follows. Our wavelet hard thresholding methodology and the Besov balls
are presented in Section 2. Section 3 explores the MISE properties of our estimator. Applications of our
theory and simulation results are presented in Section 4 for the standard density estimation and Section
5 for the deconvolution density estimation. Technical proofs are given in Section 6.

2 Wavelet estimators

First of all, we introduce some basics on wavelets. Then we develop our wavelet hard thresholding
estimator and define the Besov balls.

2.1 Basics on wavelets

Let N > 1 be an integer, and ¢ and 1 be the initial wavelet functions of the Daubechies wavelets db2N.
These functions have the particularity to be compactly supported and C” where v is an integer depending
on N.
From these wavelet two functions, we define ¢; 5 and 1) by
Gjae(x) =220(2x — k), yu(e) =222 x — k).

Then there exists an integer 7 and a set of consecutive integers A; with a length proportional to 27 such
that, for any integer ¢ > 7, the collection

BZ{(W,;C, k€ Ay; ’L/JjJC; jGN—{O,...,f—l}, k’GAj},

is an orthonormal basis of L*([-T,T]) = {h: [-T,T] — R; ffT h*(z)dx < oo}.
Suppose that h € L2([-T,T]). Then, for any integer ¢ > 7, we can write a formal expansion

h(z) = Z ag kber(T) + Z Z Bi ki k() (2.1)
ke, j=t kEA;

where a1, and 3; 1 are the wavelet coefficients of h defined by the integrals:

Q= /h(x)qﬁj,k(ac)dac, Bjk = /h(x)wj,k(x)dac. (2.2)

For details about wavelet basis, we refer to Cohen et al. (1993) and Mallat (2009).

2.2 Estimators

Let us consider the general estimation problem described in Section 1 and suppose that f € L2([-T,T]).

We expand the unknown function f on B as (2.1). Let @;; and (1 be estimators of the wavelet

coefficients o, = [ f(z)¢;k(z)dz and B, = [ f(2)¢;k(x)dx respectively.
Following the general approach of Kerkyacharian and Picard (2000), we suppose that there exist three

constants C' > 0, k > 0 and ¢ > 0 such that @;; and 3; satisfy, for any j € {7,..., 71},
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v/2
~ v vei [(Inn
E(|a), — ;") < 020 (T) : (2.3)
(i)
v/2
-~ - (Inn
E(|Bjx — Bjkl") < C2VY (T) (2.4)

4
(lmmb 2”\/11;”> <o(®h) (25)

where v = 4m — 4 > 4 and j; is the integer satisfying

(iii)

() < <o
Inn

)1/(25+1)

Inn

For a wide variety of models, one may construct &;j and ﬁjyk satisfying (2.3), (2.4) and (2.5). The
parameter ¢ plays a major role for some inverse problems; in the standard statistical model (density,. .. ),
it is often equal to 0. Examples are given in Sections 4 and 5.

Then we define the hard thresholding estimator f by

Z ar, k¢Tk +Z Z Bj’k {\B k|>n257 lnn/n}wj’ (26)

keA J=T keA;

where, for any random event A, 1 4 is the indicator function on A.

The idea of the hard thresholding rule in (2.6) is to make a term-by-term selection: only the "large"
unknown wavelet coefficients of f which contain its main characteristics are estimated. Details can be
found in e.g. Antoniadis (1997), Hérdle et al. (1998) and Vidakovic (1999).

Using (2.6), we consider the following plug-in estimator for g = ™ f:

o~

§(@) = " fla). (2.7)

To study its asymptotic performance, we need some smoothness assumptions on f. In this study, as usual
in wavelet estimation, we suppose that f belongs to Besov balls defined below.

2.3 Besov balls

We say that h € By (M) with M >0, s >0, p > 1 and r > 1 if and only if there exists a constant
M* > 0 (depending on M) such that (2.2) satisfy

. 1/p\ " 1/r
Z 9i(s+1/2-1/p) Z 1Bk IP < M*.
j=T kEA;

In this expression, s is a smoothness parameter and p and r are norm parameters. We consider such
Besov balls essentially because of their executional expressive power. In particular, they contain the
Holder and Sobolev balls. See e.g. Meyer (1992) and (Hérdle et al., 1998, Chapter 9).

3 Upper bound

Theorem 3.1 below investigates the rates of convergence for g (2.7) under the MISE over Besov balls.

Theorem 3.1. Consider the estimation problem and motations of Section 1. Suppose that supp f C
[—T,T), where T > 0 is a fized constant, and there ezists a constant C > 0 such that [ |f(x)|*™ *dx < C.
Let g be (2.7) (under (2.3), (2.4) and (2.5)). Suppose that f € By, (M) withr > 1, {p > 4 and s > 0}
or {p € [1,4) and s > max((20 +1)/p,(4/p—1)(0 +1/2)}. Then there exists a constant C > 0 such that

1 2s/(2s+26+1)
(/|g |2dx) <C(I;Ln) )
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The proof of Theorem 3.1 uses a suitable decomposition of the MISE and a result on the rates of con-
vergence of f under the L,-risk with p € {2,4} over Besov balls derived from Kerkyacharian and Picard
(2000). Let us mention that the control of both of the Lg-risk (MISE) and L4-risk motivates the con-
sideration of the wavelet hard thresholding estimator in the definition of § (2.7) instead of other wavelet
estimators (as the block thresholding ones introduced by Cai (1999)).

Theorem 3.1 shows that under mild assumptions on

e the model: only (2.3), (2.4) and (2.5) are required,

e f: only supp f C [-T,T], [|f(z)[*" *de < C, f € By (M) with r > 1, {p > 4 and s > 0} or

{p €[1,4) and s > max((20 + 1)/p, (4/p — 1)(6 +1/2)} (including the inhomogeneous zone of the
Besov balls corresponding to p € [1,2)) are required,

the estimator ¢ attains a "fast" rate of convergence. "Fast" in the sense that it is close to the parametric
rate 1/n. However, we do not claim it to be optimal in the minimax sense. This point will be discussed
for two particular density models in the next section.

It is important to mention that the rate of convergence (Inn/n)%s/(25+20+1) is the near optimal one
in the minimax sense for f (not g) under the MISE over Besov balls for various standard nonparamet-

ric setting (density model, nonparametric regression model, deconvolution density model,...). See e.g.
Hérdle et al. (1998), Fan and Koo (2002) and Tsybakov (2004).

4 Application I: the density model

4.1 Upper bound

We observe n i.i.d. random variables Z1, ..., Z, with common unknown density f. For a fixed integer
m > 2,let S = 2211 Z; and g be the density of S. The goal is to estimate g from Z1, ..., Z,,. As mentioned
in Section 1, such a problem has already been considered with kernel-type estimators and various settings
by e.g. Frees (1994), Saavedra and Cao (2000), Ahmad and Fan (2001), Ahmad and Mugdadi (2003),
Schick and Wefelmeyer (2004, 2007) and Du and Schick (2007).

Proposition 4.1 below investigates the rates of convergence of g (2.7) constructed from a specific
wavelet hard thresholding estimator funder the MISE over Besov balls.

Proposition 4.1. Consider the standard density model and the associated notations. Suppose that
supp f C [-T,T], where T > 0 is a fized constant, and there exists a constant C > 0 such that
Sup, cs f(2) < C.

Let g be (2.7) with 6 =0,

N 1< ~ 1<
Qjk = Z¢j,k(zi)a Bk = - ij,k(zi)- (4.1)
i=1 1=1

Suppose that f € By (M) withr > 1, {p >4 and s > 0} or {p € [1,4) and s > max(1/p,(2/p—1/2) }.
Then there exists a constant C > 0 such that

¢ (/ l9(z) — g(z)|2dx) <C (thn>25/(2s+1) |

As noted in Section 1, the rate of convergence (In / n)QS/ (25+1) i5 a bit slower than the one reached by
the kernel estimator of Saavedra and Cao (2000) (i.e. the parametric rate 1/n). The more s is large, the
more they are close. The main contribution of Proposition 4.1 concerns the assumptions on f: we do
not need to have f four times differentiable with fourth derivative continuous, sup, g | ) (x)| < oo for
§ €10,1,2,3,4}, f” and f®* are integrable as in (Saavedra and Cao, 2000, Theorem 3); the assumption
that f belongs to Besov balls includes a wide class of functions which does not satisfy such assumptions.

Remark that (Inn/n)?/(2st1) is the "near optimal” rates of convergence in the minimax sense for the
standard density estimation problem for ]?under the MISE over Besov balls. See (Donoho et al., 1996,
Theorems 2 and 3).
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Figure 1: Theoretical densities from n = 1000 samples Z1, ..., Z,.

4.2 Simulation results

In the following simulation study, we have analyzed the performances of our adaptive wavelet estimation
procedure on a family of normal mixture densities (“SeparatedBimodal”, “Outlier” and “DiscreteComb’,
initially introduced in Marron and Wand (1992)) representing different degrees of smoothness (see Fig. 1).
We have adapted the formulae given by Marron and Wand (1992) to simulate such densities by choosing
the parameters so that

min(qu — 3qor) = =3¢, max(qu + 3¢o1) = 3q

where [ = 1,...,p with p the number of densities in the mixture and ¢ a scaling parameter. Thereby, it
is very unlikely to have values outside the interval [—4q,4q] (C [—T,T]) and we lose little by assuming
compact support (see Fig. 1).

Since our estimation method is adaptive, we have chosen a predetermined threshold x (universal
thresholding, see e.g. Donoho et al. (1996)) for all the tests and the Symmlet wavelet with 6 vanishing
moments was used throughout all experiments. The finest resolution level j; used in all our simulations
was chosen to be the maximum resolution level allowed by the discretization. For each density, n = 1000
independent samples were generated and the MISE was approximated as an average of the Integrated
Squared Error (ISE) over 100 replications. The m-fold convolution product of f with itself defined by
(2.7) can be efficiently computed numerically using the fast Fourier transform, thanks to the convolution
theorem. Typical reconstructions from a single simulation are depicted in Fig. 2 for m = 1, m = 2
and m = 3 respectively. One can see that our adaptive hard thresholding estimator is very effective to
estimate each of the nine densities.

Then, we have compared the performance of our adaptive wavelet estimator to those of two different
kernel-based estimators. The first one, presented in Saavedra and Cao (2000), is based on convolving
kernel density estimators: g = *mf, where f denotes a kernel estimator. The other one, introduced by
Frees (1994), is the Frees type local U-statistic estimator defined as follow

o) = gy 3 & (el (12)

()b
where b is the bandwidth or smoothing parameter, K is a kernel function and (n,m) denotes summation
over all (77:1) subsets. Recall that we have focused here on the interesting case where h(Z1,...,Z,,) =

S Z; (see Frees (1994) for applications).

In the sequel, we name the estimator of Saavedra and Cao (2000) by "Kernel’, the one of Frees (1994)
by "Frees’ and our estimator by "Wavelet’.

In the case of i.i.d. random variables, the choice of the kernel is not crucial for density estimation.
However, it is well known that the choice of the bandwidth is very important. Many procedures of
bandwidth selection for density estimation have been developed in the literature (details can be found in
Mugdadi and Ahmad (2004) where several methods are compared). Here, for both kernel-based estima-
tors, we have been focused on a global bandwidth selector: the rule of thumb (ROT) bandwidth selector
(see e.g. Silverman (1986)). Ahmad and Fan (2001) derived the asymptotic mean integrated square error
and the optimal bandwidth for the Frees estimator (4.2). Thanks to (Ahmad and Fan, 2001, Theorem
2.2) with » = 2 and the Gaussian kernel, the optimal bandwidth is given by

~1/5
bror = 1.06 min(5, Q/1.34) (:1) (4.3)
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Figure 2: Original densities (dashed) and our wavelet hard thresholding estimator g (solid) from only
one repetition of n = 1000 samples Z1, ..., Z,. From left to right SkewedUnimodal, SeparatedBimodal,
Outlier and DiscreteComb. (a): m =1, (b): m =2, (¢): m = 3.

where & is the sample standard deviation and @ is the interquartile range. This choice was motivated
by the major drawback of the Frees estimator which is the computation time required to evaluate it (see
Table 2).

We evaluated the three procedures on small to medium sample. Each method was applied to n =
10,20, 50,100 data points of each of the densities. All experiments were conducted using a Gaussian
kernel for both kernel-based methods. The MISE from 100 repetitions are tabulated in Table 1. It shows
that none of the methods clearly outperforms the others in all cases. However, our estimator is slightly
better than the others in many cases. Table 2 reports the average execution times in seconds for m = 2
and m = 3. For the Frees estimator, the computational cost increases dramatically as far as the sampling
parameter n increases and during the computation to estimate the density of the sum of more than two
i.9.d. random variables. From a practical point of view, unlike Frees’s estimator, methods based on a
plug-in approach can easily be computed for m > 3 and larger samples.

We conclude this section by a comparison to the natural kernel plug-in estimator of Saavedra and Cao
(2000) on larger samples (n = 1000,2000, 5000). Table 3 summarizes the results. Our wavelet method
clearly outperforms the kernel one for all tests densities and all sample.

5 Application II: the deconvolution density model

5.1 Upper bound
We observe n i.i.d. random variables Z1,. .., Z, where, for any i € {1,...,n},
Z; = X; + €, (51)

., €, are i.1.d. random variables. Classically, X1,..., X,
€. For

Xi,..., X, are i.i.d. random variables and €y, ..
are measurements of some characteristic of interest contaminated by noise represented by €1, ...,
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Table 1: 1le4xMISE values from 100 replications for each method. From top to bottom SkewedUnimodal,
SeparatedBimodal, Outlier, AsymmetricClaw for m = 2 (left) and m = 3 (right).

1.0e-04 x SkewedUnimodal, m = 2 SkewedUnimodal, m = 3

n 10 20 50 100 n 10 20 50 100
Wavelet  89.52 32.10 11.47 6.90 Wavelet 73.02 28.63 10.44 6.44
Kernel 55.76 25.78 10.64 6.97 Kernel 52.16 23.88 9.79  6.49

Frees 80.56 32.09 11.52 7.08  Frees 85.79 31.78 10.66 6.60
SeparatedBimodal, m = 2 SeparatedBimodal, m = 3
n 10 20 50 100 n 10 20 50 100

Wavelet 79.17 38.08 12.30 6.32  Wavelet 52.36 27.10 8.60 4.39
Kernel 57.97 45.59 36.57 35.20 Kernel 36.65 25.25 15.87 14.31
Frees 60.45 33.23 13.01 7.03 Frees 54.06 26.52 8.80  4.41
Outlier, m = 2 Outlier, m = 3
n 10 20 50 100 n 10 20 50 100
Wavelet 542.4 2574 82.61 49.81 Wavelet 525.6 251.9 81.27 48.37
Kernel 597.1 248.1 88.78 57.39 Kernel 750.8 264.4 84.16 53.29
Frees 602.8 265.6 86.42 49.87  Frees 691.8 271.2 84.81 49.41
DiscreteComb, m = 2 DiscreteComb, m = 3
n 10 20 50 100 n 10 20 50 100
Wavelet 87.35 42.13 14.20 7.40  Wavelet 46.14 21.72 7.36  3.86
Kernel 44.62 31.72 26.51 24.55 Kernel 27.03 1497 9.65 7.55
Frees 50.74 32.05 20.92 14.23  Frees 37.25 16.87 6.28  3.40

Table 2: Execution times in seconds for m = 2 and m = 3 (from only one realization). The algorithms
were run under Matlab with an Intel Core 2 duo 3.06GHz CPU, 4Gb RAM.

m=2 m=3
n 10 20 50 100 n 10 20 50 100 200
Wavelet 0.01 0.01 0.01 0.02 Wavelet 0.01 0.01 0.01 0.02 0.02
Kernel 0.04 0.04 0.04 0.05 Kernel 0.04 0.04 0.04 0.05 0.05
Frees 0.17 0.22 0.53 1.38  Frees 0.37 1.30 9.62 143 2037

any i € {1,...,n}, X; and ¢; are independent. The density of X; is unknown and denoted f, whereas
the one of ¢; is known and denoted h. For a fixed integer m > 2, let S = 2211 X, and g be the density
of S. The goal is to estimate g from Zj,...,Z,. This problem can be viewed as a generalization of
the standard deconvolution density one which corresponds to m = 1. See e.g. Caroll and Hall (1988),
Fan (1991), Fan and Liu (1997), Pensky and Vidakovic (1999), Fan and Koo (2002), Butucea and Matias
(2005), Comte et al. (2006), Delaigle and Gijbels (2006) and Lacour (2006). However, to the best of our
knowledge, the general problem i.e. with m > 2 is a new challenge.

Proposition 5.1 below investigates the rates of convergence of § (2.7) constructed from a specific

wavelet hard thresholding estimator funder the MISE over Besov balls.

Proposition 5.1. Consider (5.1) and the associated notations. We define the Fourier transform of an
integrable function u by F(u)(z) = ffooo u(y)e”®Ydy, x € R. The notation —~ will be used for the
complex conjugate.

Suppose that supp f C [T, T], where T > 0 is a fixed constant, and there exist three constants C > 0,
c¢>0and § > 1 such that

iggh(m) <C, | F(h)(z)] > A 227 x €R. (5.2)

Let g be (2.7) with

L &[T F @) @) g,
aj,k—%;/_m Fww o
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Table 3: 1e6xMISE values from 100 replications. From top to bottom SkewedUnimodal, SeparatedBi-

modal, Outlier and AsymmetricClaw for m = 2 (left) and m = 3 (right).

1.0e-06 x SkewedUnimodal, m = 2 SkewedUnimodal, m = 3
n 1000 2000 5000 n 1000 2000 5000
Wavelet 25.32 5.62 2.90 Wavelet 24.35 5.24 2.30
Kernel 27.46 10.09 4.86 Kernel 26.16 8.34 3.53
SeparatedBimodal, m = 2 SeparatedBimodal, m = 3
n 1000 2000 5000 n 1000 2000 5000
Wavelet 19.94 9.12 4.02 Wavelet 14.26 7.75 2.83
Kernel 509.5 394.9 258.8 Kernel 224.5 185.3 129.3
Outlier, m = 2 Outlier, m = 3
n 1000 2000 5000 n 1000 2000 5000
Wavelet 148.1 39.62 21.46 Wavelet 139.5 37.05 24.18
Kernel 182.6 54.94 34.86 Kernel 153.6 45.32 32.97
DiscreteComb, m = 2 DiscreteComb, m = 3
n 1000 2000 5000 n 1000 2000 5000
Wavelet 16.77 10.64 3.68 Wavelet 9.48 4.90 1.74
Kernel 541.8 521.0 474.1 Kernel 125.3 118.6 111.2
Gaussian SkewedBimodal Kurtotic Claw
0.4 0.4 15 0.6
0.3 0.3
i 0.4
0.2 0.2
0.1 0.1 05 02
0 0 0 0
-5 0 5 -5 0 5 -5 0 5 -5 0 5

Figure 3: Theoretical densities.

and

s 1 [T EWi)@) iz,
Y I e o)

Suppose that f € By, (M) withr > 1, {p >4 and s >0} or {p € [1,4) and s > max((26+1)/p, (4/p—
1)(6 4+ 1/2) }. Then there exists a constant C > 0 such that

1 2s/(25+26+1)
B ( [ 50 - stofas) <o (M) .

To the best of our knowledge, there is no asymptotic result for kernel estimators in this deconvolution
setting. Proposition 5.1 provides a first theoretical result on the possible achievable rate of convergence
for an estimator of g under the MISE over Besov balls. Let us mention that the rate of convergence
(Inn/n)?s/(25+2041) corresponds to the “near optimal” one in the minimax sense for f under the MISE
over Besov balls. See (Fan and Koo, 2002, Theorem 2).

5.2 Simulation results

In this simulation, n = 1000 samples Z1, ..., Z, were generated according to model (5.1) and we con-
sidered Laplace errors (which respect the standard ordinary smooth assumption). The data sets used in
this deconvolution study are also normal mixture densities (see Marron and Wand (1992) for formulae of
these densities) different representing degrees of smoothness.

Fig. 4 shows the results of g for m = 1, m = 2 and m = 3 respectively. Clearly, for these nine densities,
even if the estimation problem becomes harder our adaptive hard thresholding estimator is very effective.
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Figure 4: Original densities (dashed) and our wavelet hard thresholding estimator g (solid) from one
realization of n = 1000 observations Z1, ..., Z, generated according to (5.1), where h(z) = (1/2)e~1®l,
zeR. (a): m=1. (b): m=2. (¢): m=3. (note that (5.2) is satisfied with § = 2).

Conclusion and perspectives

The agreement of our simulations with our theoretical findings show the relevance of our estimator in
the context of two classical density estimation problems. The practical comparisons to state-of-the art
methods such as the estimator of Frees (1994) or the one of Saavedra and Cao (2000) have demonstrated
the usefulness and the efficiency of adaptive thresholding methods in estimating densities of the sum of
random variables. It would be interesting to include both theoretical and practical comparisons with other
wavelet thresholding estimators as the block thresholding one (see e.g. Cai (1999) and Chesneau et al.
(2010)). Another theoretical challenge is to determine the optimal lower bounds under the MISE over
Besov balls. These aspects need further investigations that we leave for a future work.

6 Proofs

Proof of Theorem 3.1. Let us define the Fourier transform of a function u € IL; (R) by

F(u)(y) = / u(z)e” Y d, yeR.

— 00

~

By definition of § and g, we have F(§)(y) = F(+"/)(y) = (F(/)(»)™ and F(g)(y) = F"f)(y) =
(F(f)(y))™. Owing to the previous equalities and the Parseval theorem, we obtain

[ 8@ = s@Pds = 5= [(FD@" - FO@)" Py (61)
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Now remark that, for any (u,v) € C?, the factor theorem yields: u™ —v™ = (u —v) > - 01 vFu(m=1=k,
It follows from (mk_l) >1,ke€{0,...,m— 1}, and the binomial theorem that
o < u ol Z ™ < ol 3 (7
= |u— U|(|u| + o)) < u = vl (lu — U| + 2™ (6.2)

Using (6.1), (6.2), the linearity of F, the inequalities: |F(f — f)(y)| < [|f(z) — f(x)|dz, |F(f)(y)| <
[ |f(z)|dz < C, and the Parseval theorem, we have

/|g — g()Pda
2m—2

<5 [1FDW - FOWPE (FDW) - FOWI+2FO0I) T dy

— 5 [ 1FG= D)k (FF- 5w +2|f<f><y>|) dy

<c(/u |m+¢fm2/u (2)[2da.

Noticing that the last term is the product of two random variables, the Cauchy-Schwarz inequality yields

(/m |M)§OU; (6.3)
J ((/If |d:c+1)4m_4>, J <(/|f |2dw)2>-

Let us now bound [ and J, in turn.
Upper bound for I. Using |z + y|* < 247 (|z|* + |y|?), (z,y) € R?, a > 1, the Holder inequality and

supp f C [-T,T], we have
Igc\/ (/|f x)[Fm— 4dz)+1.

Using the definition of f (2.6) and the wavelet expansion of f we have

where

(/U YW4W)SCM+F+GL
where
4m—4
F:/E Z Z BJ,IC {lﬂ k‘>525j lnn/n} 6_], 1/137 ) d;C
J=T kEA;
4m—4
E= Z E(la‘r,k - aT,k|4m_4), G = / Z Z B],kl/]L dz
WEAr J=j1+1keEA;

Using (2.4) and [ |f(z)|*™ *dx < C, we obtain
E+G<C.
Now observe that

B3 15, aiznass iz} ~ Pil < 10k = Bisnl + 1Byl

The unconditional property of the wavelet basis (see (Kerkyacharian and Picard, 2000, Subsection 4.2))
gives
F<C(G+H)
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where
j 4m—4 4m—4
1
G = /]E Z Z (Bik = Bjr)Vjk(z) de, H= / Z Z Bj ks k(T dz.
J=T keA; J=T keA;
Thanks to [|f(z)[*™ *dxz < C, we have
H<C.

Arguing similarly to (Kerkyacharian and Picard, 2000, Theorem 5.1) and using (2.4), we obtain

2m—2
G<c (lnn) 9(1420)7(2m=2) < (1
n
Therefore
I1<C. (6.4)
Upper bound for J. Tt follows from the Holder inequality and supp f C [-T,T] that

reoyfe(f o - siopar).

Theorem 6.1 (Kerkyacharian and Picard (2000)). Let # > 1 and f be (2.6) under (2.3), (2.4) with
v =20 and (2.5) with (Inn/n)? instead of (Inn/n)*. Then, for any r > 1, any {p >0 and s > 0} or any
{p€1,0) and s > max((26 + 1)/p, (0/p — 1)(6 + 1/2) }, there exists a constant C > 0 such that

nn 0s/(2s+26+1)
sup </|f |9dz><C< ) .
feBg (M) n

Theorem 6.1 can be proved using arguments similar to (Kerkyacharian and Picard, 2000, Theorem
5.1) and (Chesneau, 2008, Theorem 4.2).
Thanks to Theorem 6.1 with § = 4, we have

We now need the following result.

Inn 2s/(2s+26+1)
J<c ( ) | (6.5)
n
Putting (6.3), (6.4) and (6.5) together, we obtain
lnn 2s/(2s+26+1)
)2
dr) <C .
e (fia) - separ) < (52)
Theorem 3.1 is proved.
O
This ends the proof of Theorem 3.1.
O

Proof of Proposition 4.1. Thanks to (Donoho et al., 1996, Subsection 5.1.1, (16) and (17)), under the
assumptions supp f € [T, T, the estimators &;  and 5, (4.1) satisfy (2.3), (2.4) and (2.5) with 6 = 0.
The proofs are based on the decomposition:

- 1 &
Bite = B = — Zl Ui, Ui = Vi x(Zi) = Bjks

where Uy, ...,U, are iid. with E(U;) = 0, |U;| < C271/2 < (n/lnn)"/? and E(U?) < C. Then (ii)
follows from the Rosenthal inequality and (iii) from the Bernstein inequality. The point (i) is similar to
(ii) but with ¢ instead of ¢. The rest of the proof follows from Theorem 3.1.

O
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Proof of Proposition 5.1. Owing to (Fan and Koo, 2002, E. Proof of Theorem 7), under the assump-
tions supp f C [-T,T] and (5.2), the estimators &, (5.3) and §; 5 (5.4) satisfy (2.3), (2.4) and (2.5)
with the same §. The proofs are based on the decomposition:

> 1 Zn 1 [ FWir)(®) _inz,
L. Ly = s = — R S LA S 1T 1d _ ik
Bik = Bi n Vi Vi 21 J_o F(h)(z) c T = Ok

where Vi, ..., V,, are i.i.d. with E(V;) = 0, |[V3] < C2710+1/2) < (n/Inn)Y/? and E(V?) < C22%. Then
(ii) follows from the Rosenthal inequality and (iii) from the Bernstein inequality. The point (i) is similar
to (ii) but with ¢ instead of ¢). We obtain the desired result via Theorem 3.1.

O
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