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Abstract The nonparametric estimation of convolutions is considered. Using
the mean integrated squared error, we explore the performance of a plug-in
estimator under mild assumptions on the model. We illustrate these general
results via wavelet hard thresholding estimators for two different density esti-
mation problems. In particular, we prove that they attain fast rates of conver-
gence for a wide class of unknown functions. Simulation results illustrate the
theory.
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1 Problem statement
Let (£2, A,P) be a probability space, f be an unknown function related to n

random variables 71, ..., Z, and m > 2 be a fixed integer. We aim to estimate
the “m-convolutions”

g9(x) = Fmf(r) = (fx... % f)(x)
—_——

:/.../f(x—u;n—...—um)f(uQ)...f(um)duQ...dum (1)
Z,

from Zy,...,Z,.
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The most standard case concerns the density estimation problem where
Z1y. .., Zy are i.i.d. with common unknown density f and g is the density of
S = Zyil Z;. A detailed application in the field of health insurance can be
found in Panjer and Willmot (1992). Methods and results can be found in
Frees (1994), Saavedra and Cao (2000), Ahmad and Fan (2001), Ahmad and
Mugdadi (2003), Prakasa Rao (2004), Schick and Wefelmeyer (2004, 2007), D
and Schick (2007) and Giné and Mason (2007). In particular, Saavedra and
Cao (2000) have introduced the natural plug-in estimator § = v, f , where f
denotes a kernel estimator.

In this study, considering the general form of the problem, we provide a
contribution to the approach of Saavedra and Cao (2000). We investigate the
global estimation of g via

where f denotes an estimator for f (not necessarily the kernel one). First of
all, under various assumptions on f and f , we determine sharp upper bounds
for the Mean Integrated Squared Error (MISE) of g. These bounds depend on
the L-risk of f and show how the performances of § and f are associated.

Then we adapt our theory to the wavelet hard thresholding estimators. We
are interested on such estimators because they achieve a high degree of adap-
tivity and capability of handling the singularities of the unknown function.
We refer to e.g. Antoniadis (1997), Hérdle et al. (1998) and Vidakovic (1999)
for the details and discussions on their advantages over traditional methods.
Adopting the minimax approach under the MISE and over a wide class of
unknown functions (the Besov balls), we determine their rates of convergence.
These results are applied to two different density estimation problems: the
standard density one (described above) and the deconvolution density one.
For each of these problems, the obtained rates of convergence are the stan-
dard "near optimal” ones corresponding to m = 1. A comprehensive simulation
study supports our theoretical findings. In particular, for n large enough, we
show that the practical performance of our wavelet estimator compares favor-
ably to the standard ones (i.e. those of Frees (1994) and Saavedra and Cao
(2000)) for a wide variety of functions.

The paper is organized as follows. Two general results are presented in
Section 2. Section 3 describes our wavelet hard thresholding methodology and
the obtained rates of convergence. Applications of our theory and simulation
results are presented in (1) Sections 4 for the standard density estimation, (2)
Section 5 for the deconvolution density estimation. Technical proofs are given
in Section 6.

2 Two general results

Under different assumptions on f and f , Theorems 1 and 2 investigate the
influence Of f 01'1 the performance of §g. The benchmark is the MISE for g i.e.
E([|g(z (z)|?dz) (it is assumed that g, g and the associated MISE exist).
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Theorem 1 Consider the estimation problem and notations of Section 1. Sup-
pose that there exist two constants C; > 0 and Cy > 0 such that

/V@wmgch /M@Wxé@. 3)

Then

(/g 2| da:) < CsE (/f )|2dm>,

where C3 = (Cy + Cy)*™m=2,

The proof of Theorem 1 is driven by the definition of the MISE and uses
the Parseval theorem combines with some properties of the continuous Fourier
transform. Note that it completely differs to (Saavedra and Cao 2000, Proof
of Theorem 4) which consists in developing the Mean Squared Error (MSE)
of the considered estimator, then derive MISE results.

Theorem 1 shows that, under (3), f and ¢ attain the same rates of conver-
gence under the MISE. For a wide variety of models, the assumption (3) on
f is often satisfied by kernel-type estimators (see e.g. (Tsybakov 2004, Chap-
ter 1, Section 1.4)). However, it excludes a wide family of series expansion
estimators (as, for instance, the wavelet estimators).

For these reasons, under other assumptions, Theorem 2 below provides an
alternative.

Theorem 2 Consider the estimation problem and notations of Section 1. Sup-

pose that supp f C [—T,T], where T > 0 is a fized constant, and there exist
two constants C; > 0 and Cy > 0 such that

[ 1@l < e (/f W”d)s@. (1)

Then

(/ 9(2) - g(a)| dw) <03\/ (/lf |4dx>

where Cy = | /24m=4T ((2T)im=5C, + 24m=4C{m=1),

The proof of Theorem 2 is based on the one of Theorem 1 and some technical
inequalities related to the L,-norms.

The next section applies this theorem to wavelet hard thresholding estima-
tors and determine rates of convergence for the considered g.
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3 Wavelet estimators

Let N > 1 be an integer, and ¢ and v be the initial wavelet functions of
the Daubechies wavelets dbN. These functions have the particularity to be
compactly supported and C¥ where v is an integer depending on N.

Set

Sin() = 2292w — k), pin(e) =222z — k).

Then there exists an integer 7 and a set of consecutive integers A; with a
length proportional to 27 such that, for any integer ¢ > 7, the collection

B={¢oxr(.), k€ Ap; ¥j1(); 5 €N-{0,...,0 -1}, k€ A;},

is an orthonormal basis of L2([-T,T]) = {h : [-T,T] — R; fTT h?(z)dz <
oo}. We refer to Cohen et al. (1993) and Mallat (2009).

Suppose that f € L?([~T,T]). Then, for any integer £ > 7, f can be
expanded on B as

F@) =" ankden(@) +> Y Bixthr(),
ke, =t kea,

where o, and 3;x are the (unknown) wavelet coefficients of f defined by

Qjk :/f(x)(bj,k(x)dl’, Bik = /f(I)ka(l‘)dx (5)

Considering the general estimation problem described in Section 1, let &;
and ng be estimators of o, and §; respectively.

We suppose that there exist three constants C' > 0, k > 0 and § > 0 such
that &, and j3; 4 satisfy, for any j € {r,...,j1},

v/2
A v vei [(Inn
By~ apul’) £ 2 (22 ®
N v voj Inn v/2
E(1Bjr = Bjnl”) < C277 { —= (7)
and
P (35— Bin| > 2o Inny _ Inp\® (8)
) n |~ n ’

where v = 4m — 4 > 4 and j; is the integer satisfying (n/Inn)/*%+D <
271+1 < 2(n/Inn)t/ (20+1),
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Then we define the hard thresholding estimator f by

F@) =" arndrnl@) +> ) Bml{mj,k‘z,ﬂsj\/m}%,k(fﬂ)v 9)

keA, j=7 keA;

where, for any random event A, 14 is the indicator function on A,

The idea of the hard thresholding rule in (9) is to only estimate the ”large”
unknown wavelet coefficients of f which contain its main characteristics. De-
tails can be found in e.g. Antoniadis (1997), Hardle et al. (1998) and Vidakovic
(1999).

To explore the asymptotic performance of f (and, a fortiori, g), we need
some smoothness assumptions on f. In this study, we suppose that f belongs
to a Besov balls By (M) with M > 0, s >0, p> 1 and r > 1. In terms of
wavelet coefficients, it means that there exists a constant M* > 0 (depending
on M) such that (5) satisfy

1/p\ "\ VT
Z 97(s+1/2-1/p) Z |B;.x]P < M*.
j=r keA;

In this expression, s is a smoothness parameter and p and r are norm param-
eters. Besov balls contain the Holder and Sobolev balls. See e.g. Meyer (1992)
and (Hardle et al. 1998, Chapter 9).

Theorem 3 below determines sharp rates of convergence for (2) defined
with (9) under the MISE over Besov balls.

Theorem 3 Consider the estimation problem and notations of Section 1. Sup-
pose that supp f C [-T,T|, where T > 0 is a fized constant, and there erists
a constant C > 0 such that [ |f(z)|*™ *dx < C. Let § be (2) with f defined
by (9).

Then, for any r > 1, any {p > 4 and s > 0} or any {p € [1,4) and
s>max((20+1)/p, (1/p)(4—p)(6+1/2)}, there exists a constant C > 0 such

that
2s/(25+26+1)
swp 8 ( [lito) - glo)Pas) < ¢ (M) .

reB; (M)

The proof of Theorem 3 uses Theorem 2 and a result on the rates of conver-
gence of f under the L,-risk over Besov balls proved by Kerkyacharian and
Picard (2000).

Mention that, in the same framework, (Inn/n)?s/(25+20+1) is the rate of
convergence attained by f In this sense, the asymptotic properties of the
MISE of g and f are similar. Theorem 3 provides a theoretical contribution
to this intuitive idea.

The next section is devoted to some applications of this result.
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4 Application I: the density model
4.1 Upper bound

We observe n i.i.d. random variables Z1, ..., Z, with common unknown den-
sity f. For a fixed integer m > 2, let S =" Z; and g be the density of S.
The goal is to estimate g from Z1,..., Z,.

As mentioned in Section 1, such a problem has already been considered with
kernel-type estimators and various settings by e.g. Frees (1994), Saavedra and
Cao (2000), Ahmad and Fan (2001), Ahmad and Mugdadi (2003), Schick and
Wefelmeyer (2004, 2007) and Du and Schick (2007).

Proposition 1 below investigates the rates of convergence of § (2) con-

structed from a specific wavelet hard thresholding estimator f under the MISE
over Besov balls.

Proposition 1 Consider the standard density model and the associated no-
tations. Suppose that supp f C [—T,T], where T > 0 is a fized constant, and
there exists a constant C' > 0 such that sup,cp f(z) < C.

Let g be (2) and f be as in (9) with 6 =0,
A 1 n . 1 n
Qjp = Zl¢j,k(zi)v Bjk = - lej,k(zi)- (10)

Then, for any r > 1, any {p > 4 and s > 0} or any {p € [1,4) and
s >max(1/p, (1/(2p))(4 — p)}, there exists a constant C > 0 such that

aw B( [l - ato)far) < (T)QSMSH) |

fEB; (M)

Remark that (Inn/n)?/(25+1) is the "near optimal” rates of convergence in
the minimax sense for the standard density estimation problem. See (Donoho
et al. 1996, Theorems 2 and 3).

4.2 Simulation study

The original observations were generated from an i.i.d. sample of random
variables Z1, ..., Z, with a density supported in [-T,T] (see Fig. 1).

In the following simulation study, we have first analyze the performances
of our adaptive wavelet estimation procedure on a family of normal mixture
densities.
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0015
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100 50 0 50 100 100 -50 0 50 100 00 50 0 50 100
(b)
Fig. 1 Original (a) observations and (b) densities from n = 1000 samples Zi,..., Zy;

MixtGauss (left), Claw (middle) and Discrete Comb (right).

SeparatedBimodal : %J\/’ (-1/3,(1/2)%) + %N (1/2,(3/2)%);

. L 9 2) .
Outlier : 10./\/(0, 1) + 10./\/ (0,(1/10)%);

2
. 1 21—t _
AsymmetricClaw : 5./\/'(0, 1)+ E WN (1+1/2,(271/10)?).

1=—2

These densities exhibit various behaviours going from smooth to non ho-
mogeneous. They were first introduced by Marron and Wand (1992). Note that
AsymmetricClaw represents a strongly multimodal density and will be hard
to estimate in full with a small sample size. The SeparatedBimodal density
was used to illustrate the performances of our estimator for smooth density.

Since our estimation method is adaptive, we have chosen a predetermined
threshold # (universal thresholding, see e.g. Donoho et al. (1996)) for all the
tests and the Symmlet wavelet with 6 vanishing moments was used throughout
all experiments. The index of the highest resolution space was chosen to be
J = 8 so that a total of M = 256 empirical coefficients were computed for
l=—-M/2,...,M/2 — 1. For each density, n = 10* independent samples of
size M = 256 (i.e. T = M/2) were generated and the MISE was approximated
as an average of the Integrated Squared Error (ISE) over 10 replications. The
results are depicted in Fig. 2 for m = 1, m = 2 and m = 3 respectively. One can
see that our adaptive hard thresholding estimator is very effective to estimate
each of the nine densities. It has good adaptiveness properties and can recover
smooth density such as the SeparatedBimodal as well as non homogeneous
density such as the AsymmetricClaw density.
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MISE=9.15e-09 MISE=2.10e-09 MISE=1.61e-09
0.02| —Estimated 0.02} —Estimated 0.02} —Estimated
---Theoretica ---Theoretical ---Theoretical
0.015 0.015] 0.015
0.01 0.01 0.01
0.005 0.005 0.005/\N\/\
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100
MISE=5.54e-08 MISE=1.88e-08 MISE=1.80e-08
— Estimated — Estimated —Estimated
---Theoretical ---Theoretical ---Theoretical
0.15] 0.15] 0.15]
0.1 0.1 0.1
0.05] 0.05 0.05]
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100
MISE=6.27e-08 MISE=2.38e-10 MISE=4.53e-11
—Estimated —Estimated — Estimated
0.02| =~ Theoretical 0.02}~~~Theoretical 0.02} -~ Theoretical
0.015 0.015] 0.015
0.01 0.01 0.01
0.005 0.005] 0.005
e
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100
(a): m =1. (b): m = 2. (¢): m=3.

Fig. 2 Original (dashed black) and estimated density (solid blue) from 10 replications using
our wavelet hard thresholding estimator § from n = 10* samples Z1,. .., Zy. From top to
bottom SeparatedBimodal, Outlier, AsymmetricClaw for (a): m =1, (b): m = 2, (c): m = 3.

Then we have compared the performance of our adaptive wavelet estimator
to those of two different kernel-based estimators. The first one, presented in
Saavedra and Cao (2000), is based on convolving kernel density estimators:
g =Y%m f , where f denotes a kernel estimator. The other one, introduced by
Frees (1994), is the Frees type local U-statistic estimator defined as follow

. . 1 .’E*h(Zil,...,Zim)
o) = Gy 30 1 (Tl ), (1)

ms= (n,m)

where b is the bandwidth or smoothing parameter, K is a kernel function
and 37, ) denotes summation over all () subsets. We have focused here
on the interesting case where h(Z1,...,Z,) = > vy Z; (see Frees (1994) for
applications). These two estimators are based on convolving kernel density
estimators and for m = 1 they correspond to the classical kernel estimator f

flz) = % iK (”C_bz) : (12)

In the sequel, we name the estimator of Saavedra and Cao (2000) by 'Kernel’,
the one of Frees (1994) by "Frees’ and our estimator by "Wavelet’.
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—Estimated —Estimated —Estimated .
0.02 ---Theoretical 0.02) ---Theoretical ; 0.02) ---Theoretical !\ }
0.015] 0.015 0.015
0.01 0.01 0.01
0.005 0.005 0.005
100 50 0 50 100 100 50 0 50 100 00 50 0 50 100
(a) (b) (c)
Fig. 3 Original (dashed black) and estimated density (solid blue) using different Gaussian
kernel density estimators from n = 103 samples Z1, ..., Z, with bandwidths (a): b = 0.5.

(b): b=1.32. (c): b=15.

ibMISE =250

(a) (c)

Fig. 4 MISE values as a function of b (from 1 replication) for (a): SeparatedBimodal. (b):
Outlier. (c): AsymmetricClaw from n = 103 samples. The vertical dashed line represents
the minimizer of the MISE.

(a) (b)

Fig. 5 MISE values as a function of the threshold parameter x (from 1 replication) for (a):
SeparatedBimodal. (b): Outlier. (¢): AsymmetricClaw from n = 1000 samples. The vertical
dashed line represents our predetermined threshold.

In the case of i.i.d. random variables, the choice of the kernel is not crucial
for density estimation. However, it is well known that the choice of the band-
width is very important. To illustrate this basic problem of the kernel estimate,
we showed three different kernel density estimators with bandwidths b = 0.5,
b =132 and b = 5 in Fig. 3. When the bandwidth is too large (b = 5), the
modes of the AsymmetricClaw density are not well recovered. On the other
hand, the smaller bandwidth estimate (b = 0.5) correctly identified all the
modes, but the result is under smoothed since it contains too much spurious
artifacts. In comparison to our adaptive hard thresholded wavelet estimator
of Fig. 2 (bottom left), the kernel estimates are disadvantageous. Indeed, the
wavelet density estimate captures all of the modes of the AsymmetricClaw.
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1.0e-06 x SeparatedBimodal, m = 2 1.0e-06 x Separated Bimodal, m = 3

H n [ 10 [ 20 [ 50 [ 100 ‘H n [ 10 [ 20 [ 50 [ 100 ‘
‘Wayvelet 21.55 | 8.307 | 3.492 | 2.424 ‘Wavelet 14.67 | 5.707 | 2.733 | 2.471
Kernel 6.815 | 4.730 | 1.612 | 1.221 Kernel 4.572 | 3.331 | 1.088 | 0.839
Frees 7.334 | 4.491 | 1.416 | 0.983 Frees 5.953 | 3.336 | 0.971 | 0.676
bMiISE bMmisE
Kernel 10.15 7.27 6.21 5.30 Kernel 10.15 7.27 6.21 5.30
Frees 11.97 | 8.48 6.66 4.09 Frees 14.55 | 10.30 7.57 3.93
1.0e-05x% Outlier, m = 2 1.0e-05 % Outlier, m = 3

[ n [ 10 [ 20 [ 50 [ 100 |[ n [ 10 [ 20 [ 50 [ 100 |
Wayvelet 5.360 | 4.783 | 1.525 1.157 Wavelet 6.274 | 3.940 1.685 1.232
Kernel 3.367 | 3.181 1.334 | 1.218 Kernel 3.131 | 2.882 1.437 | 1.243
Frees 3.219 | 2.954 1.256 1.168 Frees 3.204 | 2.753 1.382 1.203
bMiISE bvise
Kernel 1.51 1.51 1.05 0.60 Kernel 1.51 1.51 1.05 0.60
Frees 2.12 1.81 1.21 0.75 Frees 3.03 1.96 1.51 0.90
1.0e-06 x AsymmetricClaw, m = 2 1.0e-06 x AsymmetricClaw, m = 3

H n ‘ 10 ‘ 20 ‘ 50 ‘ 100 ‘H n ‘ 10 ‘ 20 ‘ 50 ‘ 100 ‘
Wavelet 4.106 | 5.539 | 1.108 1.206 Wavelet 3.838 | 6.288 1.189 | 1.242
Kernel 1.354 | 3.927 | 0.917 | 1.109 Kernel 1.416 | 4.584 | 0.937 | 1.126
Frees 1.245 | 3.442 | 0.866 | 0.918 Frees 1.703 | 4.387 | 0.875 | 0.955
brisE bvise
Kernel 16.54 | 12.26 8.61 6.71 Kernel 16.54 | 12.26 8.61 6.71
Frees 20.03 | 19.24 | 12.74 | 14.17 Frees 23.37 | 22.73 | 15.12 | 18.13

Table 1 MISE from 10 replications for each method ("Kernel’, ’Frees’ and "Wavelet’ denote
the estimators of Saavedra and Cao (2000), Frees (1994) and our respectively). From top to
bottom SeparatedBimodal, Outlier, AsymmetricClaw for m = 2 (left) and m = 3 (right).

Many procedures of bandwidth selection for density estimation have been
developed in the literature, but here, we have been focused on a global band-
width selection based on minimizing the MISE of § for both kernel-based esti-
mators (details can be found in e.g. Mugdadi and Ahmad (2004) where several
bandwidth selection procedures were used). Fig. 4 shows how the MISE de-
pend on the bandwidth for the three densities for n = 103. To illustrate the
adaptiveness properties of our estimator we display the empirical MISE as a
function of the threshold k in Fig. 5, where the vertical dashed line represents
the threshold parameter that we used throughout these simulations. One can
see that the minimum of the MISE occurs around this threshold for the three
densities and this also applies to other samples sizes (see Fig. 6).

We evaluated the three procedures on small to medium sample. Each
method was applied to n = 10, 20, 50, 100 data points of each of the densities
and we have investigated the binning into M = 256 binpoints. The Gaussian
kernel with an optimal bandwidth (i.e. which minimizes the MISE) was used
through this experiment for both kernel-based methods. The MISE from 10
replications are tabulated in Table 1. Frees method outperforms in almost all
cases our and Saavedra and Cao (2000) methods in this example, especially
for the smooth density (SeparatedBimodal). Note that we intentionally chose
n small sample to make the comparison between these three methods. Indeed,
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m =2 m=3
H n [ 10 [ 20 [ 50 [ 100 ‘ H n [ 10 [ 20 [ 50 [ 100 [ 200 ‘
Wavelet | 0.01 | 0.01 | 0.01 | 0.02 Wavelet | 0.01 | 0.01 | 0.01 | 0.02 0.02
Kernel 0.04 | 0.04 | 0.04 | 0.05 Kernel 0.04 | 0.04 | 0.04 | 0.05 | 0.05
Frees 0.17 | 0.22 | 0.53 | 1.38 Frees 0.37 | 1.30 | 9.62 143 2037

Table 2 Execution times in seconds for m = 2 and m = 3 (from only one replication). The
algorithms were run under Matlab with an Intel Core 2 duo 3.06GHz CPU, 4Gb RAM.

even if the Frees estimator provided accurate estimation, competitive to our
estimator, the computational cost is very expensive and it would be techni-
cally impossible to compute it on a large sample. Table 2 reports the average
execution times in seconds for m = 2 and m = 3 (i.e. h(Z1, Z3) = Z1 + Z2 and
hZ1,Z9,7Z3) = Z1+ Zo+ Z3). For the Frees estimator, the computational cost
increases dramatically as far as the sampling parameter n increases and during
the computation to estimate the density of the sum of more than two 4.i.d.
random variables (see Table 2: m = 3). From a practical point of view, unlike
Frees estimator, our method can easily be computed for m > 3. This is an
obvious consequence of the (::L) evaluations of a kernel associated to the usual
kernel density estimation procedure. Further economies would be possible if
resampling methodology were available. Note that the additional computa-
tional burden of the convolution product is marginal for both methods based
on such approach (due to O(nlnyn) computational complexity of the FFT
algorithm). Our procedure has a much lower computational cost than Frees
and is comparable to Kernel as can be seen from Table 2.

We conclude this section by a comparison to the natural kernel plug-in
estimator of Saavedra and Cao (2000) on larger samples (n = 1000, 2000, 5000
and M = 256 binpoints). The practical effectiveness of several classical ker-
nels are also investigated. The values of the MISE were calculated from 10
replications and tabulated in Table 3. Our wavelet method is slightly better
than the Kernel one in almost all cases but none of them clearly outperforms
the others for all tests densities and all sample. For the AsymmetricClaw, the
estimator of Saavedra and Cao (2000) marginally outperforms our adaptive
wavelet estimator (see Fig. 6:(c)) . Furthermore, it is obvious that in all the
cases the MISE is decreasing as the sample size is increasing. For each kernel
type the results are very close with a slight advantage to the Epanechnikov
kernel estimate for large sample. Without any prior smoothness knowledge on
the unknown density, our adaptive estimator provides very competitive results
in comparison of all three kernels used to these sample.
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n = 1000
: 107
1075.2
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2 21074 [l
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(a) (c)

Fig. 6 MISE values as a function of the threshold parameter x from 10 replications
for (a): SeparatedBimodal. (b): Outlier. (c): AsymmetricClaw from top to bottom n =
1000, 2000, 5000 samples. The vertical dashed line represents our predetermined threshold.



On the mean integrated squared error of a plug-in estimator for convolutions

13

1.0e-08 % SeparatedBimodal, m = 2 1.0e-08 x Separated Bimodal, m = 3
H n [ 1000 [ 2000 [ 5000 ‘H n [ 1000 [ 2000 [ 5000 ‘
‘Wavelet ‘Wavelet
Hard [ 11513 [ 4.563 [ 2.491 ||| Hard [ 8538 [ 3.029 [ 1.749
Kernel Kernel
Normal 13.519 6.434 4.188 Normal 9.916 4.442 2.830
Epanechnikov | 13.414 6.467 4.085 Epanechnikov 9.842 4.458 2.765
Biweight 13.301 6.452 4.125 Biweight 9.781 4.449 2.790
bMISE briseE
Normal 3.18 2.59 2.26 Normal 3.18 2.59 2.26
Epanechnikov 7.03 5.81 4.98 Epanechnikov 7.03 5.81 4.98
Biweight 8.27 6.86 5.93 Biweight 8.27 6.86 5.93
1.0e-07 % Qutlier, m = 2 1.0e-07x Outlier, m = 3
H n [ 1000 [ 2000 [ 5000 ‘H n [ 1000 [ 2000 [ 5000
‘Wavelet ‘Wavelet
Hard [ 8702 ] 2.669 [ 1.333 ||| Hard [ 8251 [ 2.523 ] 1.501
Kernel Kernel
Normal 10.180 | 3.460 2.856 Normal 8.667 2.892 2.505
Epanechnikov 9.401 3.068 1.521 Epanechnikov | 8.148 2.650 1.595
Biweight 9.642 3.097 1.662 Biweight 8.311 2.648 1.730
bymise byvise
Normal 0.58 0.52 0.50 Normal 0.58 0.52 0.50
Epanechnikov 1.28 1.08 0.77 Epanechnikov 1.28 1.08 0.77
Biweight 1.51 1.31 0.93 Biweight 1.51 1.31 0.93
1.0e-08 x AsymmetricClaw, m = 2 1.0e-08 x AsymmetricClaw, m = 3
H n [ 1000 [ 2000 [ 5000 |H n [ 1000 [ 2000 [ 5000 |
‘Wavelet ‘Wavelet
Hard [ 6.819 | 3.493 | 2.172 Hard [ 5292 | 3.128 | 1.732
Kernel Kernel
Normal 6.200 3.342 2.153 Normal 5.224 3.103 1.726
Epanechnikov 6.239 3.363 2.077 Epanechnikov 5.292 3.128 1.732
Biweight 6.227 3.352 2.163 Biweight 5.222 3.108 1.737
byvise bvise
Normal 1.41 0.95 0.66 Normal 1.41 0.95 0.66
Epanechnikov 2.90 1.93 1.28 Epanechnikov 2.90 1.93 1.28
Biweight 3.51 2.34 1.55 Biweight 3.51 2.34 1.55

Table 3 MISE from 10 replications. From top to bottom SeparatedBimodal, Outlier and

AsymmetricClaw for m = 2 (left) and m = 3 (right). MISE optimal bandwidth byrrsg.

5 Application II: the deconvolution density model

5.1 Upper bound

We observe n i.i.d. random variables Z, ..

X,..

Zi =X; + €,

., X, are i.1.d. random variables and eq, ..
ables. Classically, X1, ..
terest contaminated by noise represented by €1, ..

.y Zy, where, for any ¢ € {1,...,n},

(13)

., €y are i.i.d. random vari-
., X, are measurements of some characteristic of in-
.,€n. Forany i € {1,...,n},

X; and ¢; are independent. The density of X; is unknown and denoted f,
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whereas the one of €; is known and denoted h. For a fixed integer m > 2,
let S = 3", X; and g be the density of S. The goal is to estimate g from
Z1y...,Zy. This problem can be viewed as a generalization of the standard
deconvolution density one which corresponds to m = 1. See e.g. Caroll and
Hall (1988), Fan (1991), Fan and Liu (1997), Pensky and Vidakovic (1999),
Fan and Koo (2002), Butucea and Matias (2005), Comte et al. (2006), Delaigle
and Gijbels (2006) and Lacour (2006). However, to the best of our knowledge,
the general problem i.e. with m > 2 is a new challenge.

Proposition 2 below investigates the rates of convergence of § (2) con-
structed from a specific wavelet hard thresholding estimator f under the MISE
over Besov balls.

Proposition 2 Consider (13) and he associated notations. We define the
Fourier transform of an integrable function u by F(u)(x) = ffooo u(y)e”¥dy,
x € R. The notation —~ will be used for the complex conjugate.

Suppose that supp f C [-T,T], where T > 0 is a fized constant, and there
exist three constants C' > 0, ¢ > 0 and § > 1 such that

c
i‘égh(x) <C, | F(h) ()] = (e zeR. (14)
Let § be (2) with f as in (9) with
L &K F (i) (@) g,
and
o L [ F@in)(@) g
e %n;/_w Fww ¢ (16)

Then, for any r > 1, any {p > 4 and s > 0} or any {p € [1,4) and
s>max((20+1)/p, (1/p)(4—p)(6+1/2)}, there exists a constant C > 0 such

that

1 2s/(25s+26+1)

sup E ( [ 1ot g<x>|2dx> <c <“”) .
fe€B; (M) n

The rate of convergence (Inn/n)?s/(25120+1) corresponds to the “near opti-
mal” one in the minimax sense when m = 1. See (Fan and Koo 2002, Theorem
2).

5.2 Simulation study

In this simulation, n = 10* samples Z1,..., Z, were generated according to
model (13) and we considered Laplace errors (which respect the standard
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Fig. 7 Noisy samples Z1,...

SkewedBimodal (left), Claw (middle) and DiscreteComb (right).

, Zn according to (13) from n = 1000, where ¢; ~ £(0,1).

ordinary smooth assumption). The data sets used in this deconvolution study
are also normal mixture densities

SkewedBimodal : 2/\/ (0,1) + i./\/ (3/2,(1/3)%);
4
1
Claw: ~N(0,1) + ; oV (/2 - 1.1/27%);
2 2 0
DiscreteComb : ZZ; = (120 —15)/7,(2/7)%) + Z; ﬁ/\/' (21/7,(1/21)%).

These densities exhibit different types of smoothness going from smooth

to non homogeneous densities. They were initially introduced by Marron and
Wand (1992). Claw and DiscreteComb represent strongly multimodal densities
and will be hard to estimate them in full with classic methods. The Skewed-
Bimodal density was used to illustrate the performances of our estimator for
smooth density.

Fig. 8 shows the results of g for m = 1, m = 2 and m = 3 respectively.
Clearly, for these nine densities, our adaptive hard thresholding estimator is
very effective.
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MISE=2.55e-08 MISE=7.33e-10 MISE=3.50e-10
—Estimated —Estimated — Estimated
.02 .02 .02
00 ---Theoretical 0o ---Theoretical 00 ---Theoretical
0.015 0.015] 0.015
0.01 0.01 0.01
0.005 0.005| 0.005
-200 -100 0 100 200 -200 -100 0 100 200 -200 -100 0 100 200
X107 MISE=5.81e-08 %107 MISE=5.82e-10 X107 MISE=7.73e-11
12| —Estimated 12| —Estimated 1o} — Estimated
---Theoretical } ---Theoretical ---Theoretical
10 10 10|
8| 8| 8
6| 6| 6|
4 4 4
2| 2| 2
-200 -100 0 100 200 -200 -100 0 100 200 -200 -100 0 100 200
$10° MISE=3.96e-08 ©10° MISE=2.41e-10 X102 MISE=4.20e-11
g} —Estimated L gl —Estimated g} —Estimated
---Theorefical ---Theoretical ---Theoretical
6| 6| 6|
4 4 4
2| 2 2|
-200 -100 0 100 200 -200 0 200 -200 0 200
(a): m=1. (b): m = 2. (c): m=3.

Fig. 8 Original (dashed black) and estimated density (solid blue) from 10 replications using
our wavelet hard thresholding estimator § from n = 10* samples Zi,..., Z, generated
according to (13), where h(z) = (1/2)e~1*l, 2 € R. (a): m =1 . (b): m = 2. (c): m = 3.
(note that (14) is satisfied with § = 2).

Conclusion and perspectives

The agreement of our simulations with our theoretical findings show the rele-
vance of our estimator in the context of two classical density estimation prob-
lems. The practical comparisons to state-of-the art methods such as the estima-
tor of Frees (1994) or the one of Saavedra and Cao (2000) have demonstrated
the usefulness and the efficiency of adaptive thresholding methods in estimat-
ing densities of the sum of random variables. It would be interesting to include
both theoretical and practical comparisons with other wavelet thresholding es-
timators as the block thresholding one (see e.g. Cai (1999) and Chesneau et
al. (2010)). Another interesting perspective would be to extend our results to
a multidimensional setting. These aspects need further investigations that we
leave for a future work.
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6 Proofs

Lemma 1 For any positive integer m and (u,v) € C2, we have
™ — ™| < fu = (Ju] + [o])™

Proof of Lemma 1. The factor theorem yields

u™ — 0™ = (u—0v) vFu M=k,

It follows from the triangular inequality, ( ) > 1, k eAo,. — 1}, and
the binomial theorem that

m—1
™ — o™ < Ju— o] Y fofFful "D TH
k=0

m—1
m—1 m—1)— m—
fqu—MEZ( k )Mﬂm<lﬂk=w—vum+wn g
k=0

Lemma 1 is proved.
|

Proof of Theorem 1. Let us define the Fourier transform of an integrable
function u by

me0=/mu@k”WM, ) CR.

— 00

ThfdParseval theorem, F(§)(y) = (F(f)(y))™ and F(g)(y) = (F(H)y)™
yie

/|g |2dm—7/|_7: y)|2dy
:%/V@@—mew=g/WmMW4ﬂmmw@
Applying Lemma 1 with u = F(/)(y) and v = F(f)(y), by (3), [F(H)l <

[1f(@)|dz < C1, |F(f)(y)| < [1f(z)|dz < Cy, and using again the Parseval
theorem, we obtain

/‘9 z)|*dx
f*/V xnmﬂx»ﬂﬂmmf“@
(€t o /I}'f NPy =0s [ 1) - 1P

IN
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B ([ 1960 - gPar) < ca ([ 160) - so)paz).

Theorem 1 is proved.

Therefore

O

Proof of Theorem 2. Proceedlng as in (17), using the triangular inequality,
IF(f = Nl < [1f@) = f@)de, by (4), |F(/)y)] < [|f(2)|dz < Cy and

the Parseval theorem, we have

/\g de

= / 7 WP (IFDGI+FDWI) " dy
= 277/“T )(w)I? (If(f)(y) - F(Hw) +2\f(f)(y)|)2m_2 dy
- 5 [ U= D (\f<f—f><y>| AR D) dy
< ([ i@ |d:c+201>2m_2217T [ nwra
= A x B,
where

_ </|f |da:+201)2m_2, B= /If z)[*da.

Hence, by the Cauchy-Schwarz inequality,

([ 190 - sto)Par) < (5042)"" (5(5) .

Let us now bound E(A?) and E(B?).
Using |z +y|® < 297 1(|z|* +|y|*), (z,y) € R?, a > 1, the Hélder inequality
and supp f C [T, T], we have

dm—4
A2 24m 5 ((/ |f |d(E> + 24m—4cilm4>

<24m 5(2T 4m 5/|f )|4m 4d +24m 4C4m 4)
So, by (4),

]E(A2) < 94m—5 ((2T)4m—5E (/ ‘fA(CL') _ f(l‘)|4m_4dl'> + 24m—4cilm4>
< 24m75 ((2T)4m7502 4 24m74cilm—4) .
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It follows from the Holder inequality and supp f C [T, T] that

B<\/ﬁ\//|f x)|4d.

Therefore

E(B?) < 2TE </ |f(x )|4dx>

B ( [1ae) - sto)fae) < cgv ([1i0) - ).

C3 = \/24m74T ((2T)4m7502 + 24m74ci}m,4) .

Hence

where

Theorem 2 is proved.
|

Proof of Theorem 3. We aim to apply Theorem 2. Let us investigate the
assumption (4).

Since supp f C [-T,T] and [ |f(z)[*" *dz < C, the Cauchy-Schwarz
inequality yields the first condltlon

Observe that

|ﬂj,k1{‘ﬁj’k|zngéjm} = Bikl < 1Bk = Bikl +1Bj.kl;

It follows from (8) that

A 4m—4
£ ('ﬁkal{s_f,k>nzwm} = Bl )
< 94m—5 (E(|Bj,k _ Bj,k|4m_4) + |ﬁj,k|4m_4)

- /Inn 2m—2 B
<C <2(4m 4)67 <n> + |ﬁj,k|4m 4> )

Using this inequality, (6), (7) and arguing similarly to (Kerkyacharian and
Picard 2000, Theorem 5.1), we obtain

B ( 1) - i)
lnn am2 14-268) 51 (2m—2 Am—4
<c|(= 212001 (2m=2) [ £ ()[4~ 4dz | < C.

We now need a consequence of (Kerkyacharian and Picard 2000, Theorem
5.1) formulated below (see also (Johnstone et al. 2004, Proposition 1)).
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Theorem 4 (Kerkyacharian and Picard (2000)) Let f be (9) (under (6),
(7) and (8)). Then, for any 0 > 1, anyr > 1, any {p > 0 and s > 0} or any
{p € [1,0) and s > max((20 + 1)/p,(1/p)(6 — p)(6 + 1/2)}, there exists a
constant C' > 0 such that

Inn 0s/(2s+25+1)
sup </|f |9dx) <0< > :
fE€By (M) n
Thanks to Theorem 4 with 0 = 4, we have
1 4s/(2s426+1)
sup (/f |4dx> <C<nn) .
fEBZ (M) n

It follows from Theorem 2 that

sup </|g x)| da:) < C\/ sup </|f |4dx>
feB; (M) feB; (M)

(hl n) 28/(28"1‘26""1)

IA

C

n

This ends the proof of Theorem 3.
O

Proof of Proposition 1. Thanks to (Donoho et al. 1996, Subsection 5.1.1,
(16) and (17)), under the assumptions supp f € [—T,T], the estimators &;
and f3;x (10) satisfy (6), (7) and (8) with § = 0. The rest of the proof follows
from Theorem 3.

O

Proof of Proposition 2. In a similar fashion to (Fan and Koo 2002, E. Proof
of Theorem 7), under the assumptions supp f C [-T, 7] and (14), we prove
that the estimators é&; 5 (15) and Bj,k (16) satisty (6), (7) and (8) with the
same ¢§. We obtain the desired result via Theorem 3.

O
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