
HAL Id: hal-00625797
https://hal.science/hal-00625797v1

Submitted on 22 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EvalSVC - An evaluation platform for scalable video
coding transmission

Tien Anh Le, Hang Nguyen, Hongguang Zhang

To cite this version:
Tien Anh Le, Hang Nguyen, Hongguang Zhang. EvalSVC - An evaluation platform for scalable video
coding transmission. ISCE 2010: 14th International Symposium on Consumer Electronics, Jun 2010,
Braunschweig, Germany. pp.1-6, �10.1109/ISCE.2010.5523712�. �hal-00625797�

https://hal.science/hal-00625797v1
https://hal.archives-ouvertes.fr


1

EvalSVC - An evaluation platform for Scalable
Video Coding transmission

Tien Anh Le, Hang Nguyen, Hongguang Zhang

Abstract—Scalable Video Coding is the latest extension of
the famous Advance Video Coding standard. The main ad-
vantage of SVC is that it can provide scalability for visual
services which are serving customers with heterogeneous
network conditions and terminals’ capabilities. Neverthe-
less, the multimedia service research community and indus-
try have not been able to fully utilize the entire potential of
this video coding standard extension. One important reason
is because of the lack of an evaluation tool-set and platform
widely available for usage in the designing, evaluating as
well as deploying processes of SVC-based visual services.
EvalSVC aims to fill this gap and fosters SVC-based appli-
cations and research in multimedia services. It is capable
of evaluating the enhanced features (such as spatial, tem-
poral, SNR, and combined scalability) of SVC bit-streams
transmitting over real or simulated networks. This tool-set
is publicly available.

Index Terms—Scalable video coding; video evaluation
platform; QoS Metrics and Measurement; simulation plat-
form;

I. Introduction

H.264/MPEG-4 Advance Video Coding (AVC)[1] is a
very famous video compression standard. Its com-

pression ratio has enabled many video communication ser-
vices (such as video conferencing, video surveilance or
video-phony...). However, a fatal limitation of this stan-
dard is that it is not scalable enough for many services.
Once a source video stream has been encoded with AVC,
that encoded bit-stream will remain the same throughout
the communication process. Encoding parameters of the
encoded bit-stream (such as bit-rate, frame-rate, screen
size, SNR...) will be determined at the beginning of the
communication session by senders and receivers (mostly
by receivers). However, those senders and receivers may
have different screen sizes, different computational capa-
bilities, network conditions (such as bandwidth, delay, jit-
ter...) may change during the communication session. In
those cases, in order for the AVC encoded bit-stream to
be consumed adaptively at each and every receiver, there
must exist middle-boxes in the communication network to
convert the incoming AVC encoded bit-streams into vari-
ous output bit-streams which are suitable for each receiver.
This causes a huge delay in the communication session and
single points of failure in the communication network. Oth-
erwise the bit-stream will be stuck at bottle-necks and the
entire video communication session will be broken. All of
these problems make AVC not scalable enough for many
video communication services.
People are now working and entertaining in a ”3-screen”

Authors are with the Department of Wireless Networks and
Multimedia Services, Telecom Sud Paris, France, 91000. Phone:
+33 (0)1 60 76 66 63, Fax: +33 (0)1 60 76 45 78, E-mail:
tien anh.Le@it-sudparis.eu. This work was supported in part by
CAM4Home, an European project.

world. These screens are different in their computational
capacities, screen resolutions, and communication band-
widths. A much better solution than AVC is to use Scal-
able Video Coding (SVC). SVC has been standardized as
an extension of the AVC standard since 2007[2]. The main
idea of this extension is to apply multi-layer coding into
the AVC codec. This is not a totally new idea since people
had attempted to implement this idea from prior inter-
national video coding standards such as H.262/MPEG.2
Video, H.263 and MPEG.4 Visual[2]. However, the most
challenging problem is that, the scalability used to come
with a huge increase in computational complexity. SVC
has succeeded in providing scalability with an affordable
computational cost. SVC encodes an input video stream
into a multi-layer output bit-stream comprising of a base
layer and several enhancement layers. Within those layers,
the base-layer is encoded with a basic quality to guarantee
that it can be consumed by the weakest receiver of the en-
tire communication group. This base-layer is usually pro-
tected while being transmitted over the network by QoS
assured transmission methods or Forward Error Correc-
tion (FEC) algorithms. For the purpose of backward com-
patibility, the base-layer must be recognized by all conven-
tional H.264 decoders. Enhancement layers, when received
at the receivers together with the base-layer, can enhance
the overall-quality of the bit-stream. Especially, when all
enhancement layers are received in-order at the receiver to-
gether with the base layer, the bit-stream will achieve its
original encoded quality. However, when real conditions
(such as bandwidths, delays, or displaying screen sizes) do
not allow, upper layers can be discarded along the trans-
mission link or at any middle box (relaying entities) for
the bit-stream to be fit-in with those conditions without
corrupting the video communication session.
Video services using SVC have been launched since the
standardization of the SVC codec. In order to evaluate
those services, designers and researchers are really in-need
of a video transmission evaluation tool which is specially
tailored for the evaluation of SVC encoded video trans-
missions over a real or simulated network. So far, the re-
search community depends on Evalvid[3] for measuring the
objective QoS-related parameters of the under-layer net-
works (such as loss-rate, delays, jitter...), as well as eval-
uating both the subjective (using Mean Opinion Score -
MOS) and objective (Peak Signal to Noise Ratio - PSNR)
video quality metrics. Evalvid has supported only up to
the H.264 video codec. In[4], the connecting interface of
Evalvid was extended to replace its simple error simulation
model by a more general network simulator like NS-2 so
that researchers and designers can plug their own network



2

Fig. 1. Schematic illustration of the evaluation framework provided
by EvalVid [3].

architectures in to evaluate. However, none of the above
has taken SVC and its metrics into the evaluation.
In section 2, we will take a look at the existing video eval-
uation systems such as Evalvid and its extension (My-
Evalvid). Section 3 will introduce scalable video coding
emphasizing on the different characteristics of SVC toward
AVC and some challenging problems to be overcome in or-
der to integrate SVC into the existing video evaluating
platforms. In section 4, we will evaluate performances of a
SVC video transmission systems using realistic simulation
network conditions with the help of our EvalSVC evalu-
ation platform. Section 5 will conclude and open some
possible future works based on this framework.

II. Evalvid and its extension

Prior to Evalvid, other publicity available video evalu-
ation tools[5][6] were struggling with synchronized frames
between the sender and the receiver sides meaning that
they could not evaluate the video quality in case of frame
drops or frame decoding errors. Evalvid, with a modular
structure design, overcame this major problem.
The main components of the Evalvid video evaluation
framework (Fig. 1) are as follows:

Source: This can be a raw source video file or raw video
stream captured from a working camera. Normally,
an YUV file format is used as it is the common video
format supported by almost all video capturing de-
vices.

Video encoder and video decoder: Evalvid only sup-
ports a single layer video coding (mostly AVC).

Video sender (VS): After being compressed by a video
coder, the video bit-stream will be fed to the video
sender block of Evalvid. The main job of VS is to seg-
ment large video frames (or more precisely in AVC,
Network Abstraction Layer - NAL frames) into a num-
ber of smaller UDP packets before feeding them to a
real or simulated network. VS also logs video frame
number, frame type, frame size, number of segmented
UDP packet, and timestamps down to a video trace
file. With the help of a TCP dumping tool, the video
bit-stream sent by VS also generates a sender trace
file. The video trace file and the sender trace file will

then be used in the video evaluation step. In order for
VS to send a video bit-stream to the network, it needs
hinting information of that bit-stream. The hinting
information can be obtained by using the MP4Box
tool of the GPAC framework[7]. That hint track also
creates RTP (Real Time Protocol) packetization and
payload format information based on the IETF’s rec-
ommendations (RFCs) and/or standards of the video
encoder (for the H.264 encoder, MP4Box uses RFC
3984[8]). MP4Box will also integrate that hint track
and the video track into one common ISO compatible
video file.

Evaluate Trace (ET): The evaluation process takes
place at the sender’s side. By using the video trace
file, the sender trace file collected from the sender’s
side and a receiver trace file collected at the receiver’s
side, ET has the information about the timestamps,
the packet ID, and the packet payload size. Based on
this information, ET calculates the frame/packet loss
and the frame/packet jitter for each frame type (I, B,
P). Since a frame is comprised of several packets, it is
considered lost when the packet loss rate over-floats a
limit which a particular decoder can afford. Delay and
jitter are also calculated. A very important function
of ET is that it tries to reconstruct an output bit-
stream at the receiver from trace files and the original
encoded video bit-stream at the sender’s side.

Video evaluation (PSNR and MOS blocks): Mainly,
there are two approaches to measure digital video
quality. They are subjective and objective quality
metrics. For subjective measurement, Evalvid uses
Mean Opinion Score (MOS)[9], which scales the
human quality impression on the video from bad (0)
to excellent (5). For objective measurement, Evalvid
uses the Peak Signal to Noise Ratio (PSNR) frame
by frame. In YUV video, since the human’s eyes are
more sensible with the luminance component of the
video than with color components, Evalvid calculates
PSNR of the luminance component Y of source image
S and destination image D.

TABLE I

Conversion between PSNR and MOS[4].

PSNR [dB] MOS
> 37 5 (Excellent)

31 - 37 4 (Good)
25 - 31 3 (Fair)
20 - 25 2 (Poor)
< 25 1 (Bad)

Fix Video: The MPEG standard defines three types of
frames: I, B and P. P frames can only be completely
decoded if the previous I or P frame is available. B
frames also can only be decoded if the previous and
successive I or P frame is available. Thats why MPEG
reorders the frames before transmission, so that any
frame received can be decoded immediately. Because
of this reordering issue, a coded frame does not corre-



TIEN et. al.ÁR: EVALSVC - AN EVALUATION PLATFORM FOR SCALABLE VIDEO CODING TRANSMISSION 3

Fig. 2. Interfaces between EvalVid and NS-2[4].

spond to the decoded (YUV) frame with the same
number. FV fixes this issue, by matching display
(YUV) frames to transmission (coded) frames.

In[4], NS-2 has been integrated into Evalvid. By doing
that, it has brought a huge libraries of network protocols
and simulations into the video evaluation platform.
Fig. 2 shows interfaces between Evalvid and NS-2 which
has been developed in [4]. Here, the sender trace file gen-
erated by VS will be used as the input for the NS-2 based
simulation script. The MyTrafficTrace agent extracts the
frame type and the frame size of the video trace file, frag-
ments the video frames into smaller segments, and sends
these segments to the lower UDP layer at the appropriate
time according to the user settings specified in the simula-
tion script file.
The original FV was only capable of fixing the difference
between the sending and decoding orders. If there is a cor-
rupted frame, FV can partly fix it by simply truncating
it or replacing it with a null frame so that the decoder
can still recognize the frame as a decodable one. However,
when a decodable frame depends on a previous frame to be
decoded (as in the case of B frames depending on I and P
frames, P frames depending on I and previous P frames to
be decoded) and that previous frame was corrupted, then
FV cannot do anything. FV was also further developed to
solve this problem.

III. SVC and its RTP payload

Scalable Video Coding was standardized as an extension
of H.264/AVC. Deriving from H.264/AVC, it maintains the
concepts of using a Video Coding Layer (VCL) and a Net-
work Abstraction Layer (NAL) [2].

A. Video Coding Layer

In H.264/AVC, each video frame to be encoded will
be partitioned into smaller coding units called macro-
blocks[2]. A macro-block will cover a rectangular picture
area of luminance samples. Not all macro-blocks are fully
encoded, most of them can be spatially or temporally pre-

dicted before being fed into the VCL encoder. Outputs of
the VCL are slices: a bit string that contains the macro-
block data of an integer number of macro-blocks (making
a full frame) which are normally organized into slices ac-
cording to the frame scanning order; and the slice header
(containing the spatial address of the first macro-block in
the slice, the initial quantization parameter, and similar
information)[10]. In both H.264/AVC and SVC, there are
three main types of slices:

I slice: intra-picture coding using intra-spatial predic-
tion from neighboring regions. This type of slice is
self-contained and can be decoded without the refer-
ence to any other slice.

P slice: intra-picture predictive coding and inter-picture
predictive coding with one prediction signal for each
predicted region. This type of slice can only be de-
coded with reference information from previous I or P
frame.

B slice: inter-picture bi-predictive coding with two pre-
diction signals that are combined with a weighted av-
erage to form the region prediction. This type of slice
can only be decoded with reference information from
the previous and successive I or P frame.

B. Network Abstraction Layer

If the VCL is the interface between the encoder and the
actual video frames, the Network Abstraction Layer (NAL)
is the interface between that encoder and the actual net-
work protocol, which will be used to transmit the encoded
bit-stream. The NAL encoder encapsulates the slice out-
put of the VCL encoder into Network Abstraction Layer
Units (NALU), which are suitable for transmission over
packet networks or used in packet oriented multiplex envi-
ronments[11]. In order to generate proper NAL units, we
must pre-define the network protocol that we want to use
to transmit the video bit-stream. H.264/AVC and SVC
support encapsulating VCL slices into a number of net-
work protocol (H.320, MPEG-2, and RTP...)[12] in which
RTP is mostly used because of its popularity.
SVC extended the H.264/AVC standard by providing scal-
ability. There are three main kinds of scalability that SVC
can support:

Temporal scalability: A bit-stream provides temporal
scalability when the set of access units (a set of NAL
units that always contains exactly one primary coded
picture) can be partitioned into a temporal base layer
and one or more temporal enhancement layer(s). A
strictly requirement for a bit-stream to be called tem-
poral scalable is that, when we remove all access units
of all temporal enhancement layers with a temporal
layer identifier higher than k (1 < k < maxlayer),
then the remaining layers still form a valid bit-stream
for a SVC decoder (when k=1, then we have a base-
layer bit-stream which must be compatible with con-
ventional H.264/AVC decoders). Due to its non-
reference property, B slices are often used to form
temporal enhancement layers.

Spatial scalability: A bit-stream contains of multiple



4

layers, in which each layer corresponds to a supported
spatial resolution and can be referred to by a spa-
tial layer with a dependency identifier. In each spa-
tial layer, motion-compensated prediction and intra-
prediction are employed as in single-layer video cod-
ing. However, among layers, an inter-layer prediction
mechanisms are applied to improve the coding effi-
ciency and rate-distortion efficiency by using as much
lower layer’s information as possible. Lower layer pic-
tures do not need to be present in all access units
making it possible to combine spatial and temporal
scalability.

Quality (SNR) scalability: This scalability can be con-
sidered as a special case of spatial scalability with
identical picture sizes of base and enhancement layers.
Quality scalability comprises of coarse-grain quality
scalable (CGS) coding, medium-grain quality scalable
(MGS) coding and fine-grain quality scalable (FGS)
coding. In CGS, inter-layer prediction is also used.
A higher quantization step size will be provided by
the enhancement layers to provide a better quality
for the lower layers. However, this multi-layer con-
cept for quality scalable coding only supports a few
selected bit rates in a scalable bit stream. In gen-
eral, the number of supported rate points is identical
to the number of layers. Switching between different
CGS layers can only be done at defined points in the
bit stream. Furthermore, the multi-layer concept for
quality scalable coding becomes less efficient, when
the relative rate difference between successive CGS
layers gets smaller. MGS provides a better coding
efficiency for bit-streams that have to provide a vari-
ety of bit-rates. With MGS, any enhancement layer
NAL unit can be discarded from a quality scalable bit
stream and thus packet-based quality scalable coding
is provided. Fine-grain quality scalable (FGS) pro-
vides a coding prediction structure mechanism that
completely omits drift (the motion-compensated pre-
diction loops at encoders and decoders are not syn-
chronized because quality refinement packets are dis-
carded from a bit-stream).

Combined scalability: In some cases, quality, spatial,
and temporal scalability can be combined.

IV. EvalSVC

Our work manages to develop a video transmission
evaluation framework supporting SVC’s NALU extension
types. The most difficult problem is that those extend-
ing types haven’t been fully defined and standardized by
IETF. However, it should be noticed that, the basic NALU
extension types (e.g., types 14, 15, 20) have been spared for
SVC extensions from AVC NALU types. So we are going
to support only those NALU extensions in our EvalSVC
framework since they have already reflected the main con-
cepts of SVC. Other NALU types, such as Payload Con-
tent Scalability Information (PACSI), Empty NAL unit
and the Non-Interleaved Multi-time Aggregation Packet
(NI-MTAP), which are being drafted in[11], are out of our

Fig. 3. EvalSVC’s diagram.

Fig. 4. SVC NALU’s header.

scope.
A NAL unit comprises of a header and a payload. In AVC,
the NALU’s header is 1 byte length[13]. Meanwhile, a
SVC’s NAL header can be 1, 2, or 3 octet length[10]. The
first octet of SVC’s NAL header is identical with AVC (Fig.
4). It contains 3 fields of which 2 first fields (F, NRI) are
spared for signaling wire-line/wireless gateway, and the im-
portance of that NALU. The last field in the first octet of
the SVC’s NAL header is NALU Type specifying the NAL
unit payload type. NAL unit type 14 is used for prefix
NAL unit, NAL unit type 15 is used for subset sequence
parameter set, and NAL unit type 20 is used for coded
slice in scalable extension. NAL unit types 14 and 20 indi-
cate the presence of three additional octets in the NAL unit
header. NALU types 15 contents header information which
is not necessary to be repeatedly transmitted for each se-
quence of of picture[14]. This sub-sequence parameter set
can be transmitted on an ”out-of-band” transmission for
error resilience. We will need this information about the
NALU types when we reconstruct the possibly corrupted
SVC bit-stream at the receiver side. PRID (priority ID)
specifies a priority identifier for the NALU. A lower PRID
indicates a higher priority. DID (dependence ID) indicates
the inter-layer coding level of a layer representation. QID
(quality ID) indicates the quality level of an MGS layer
representation. TID (temporal ID) indicates the temporal
level of a layer representation.
Fig. 3 illustrates basic components of our EvalSVC plat-
form. Some external tools are also integrated into EvalSVC
to support the data-flow of the entire framework.

Raw video in : This is the input video. Normally the
YUV or CIF formats are used as they are acceptable
by SVC encoders as well as common video capturing
devices.

SVC encoder/decoder : We use JSVM[15] as our main
SVC codec.

Hinter : This component is derived from the mp4box
tool of the GPAC library[7]. The main role of this
component is to packetize SVC’s NALU into RTP
packets and add a hint track to the SVC bit-stream.
We can consider the hint track as an in-band signal-



TIEN et. al.ÁR: EVALSVC - AN EVALUATION PLATFORM FOR SCALABLE VIDEO CODING TRANSMISSION 5

ing for the SVC bit-stream. Another option is to dis-
tribute the hint track in the format of a SDP file via
a separate channel as out-band signaling.

Mp4trace : This component acts as a video sender. Its
main part is to send the hinted SVC bit-stream out to
the network using the packetization information it has
from the Hinter. It also logs the sequence numbers,
types, and sizes of the video frames, and the number
of UDP packets used to transmit each frame (since
the frame size may exceed the UDP/RTP maximum
payload sizes), and its sending timescale. Mp4trace
can work in streaming mode or camera mode.

Networks : 2 kinds of networks can be used in EvalSVC,
real and simulated networks. Real network’s condi-
tions can be obtained by using real IP connections
over the Internet. Tcpdump can be used to trace
the real network traffic at both ends and to form the
sender’s and receiver’s dumping files. We can also use
NS-2 simulated network to form the sender’s and re-
ceiver’s dumping files. Using a NS-2 based simulation
network, one can test a new SVC video transmission
algorithm, or evaluate the performance of SVC video
transmission over a conventional network model (sup-
ported by NS-2). A simulated network can comprise
of many relaying nodes. Since the SVC bit-stream
comprises of multiple layers, enhancement layers can
be discarded at the relaying nodes according to the
simulation scripts.

SVC Re-builder : Being the heart of EvalSVC, the Re-
builder will collect all data from sender’s, receiver’s
dumpings and video trace files, take both the SVC en-
coded bit-stream and the hinted file at the sender into
account and reconstruct a possibly-corrupted output
SVC bit-stream at the receiver. The SVC re-builder
must understand SVC NALU headers in order to prop-
erly rebuild the corrupted SVC bit-stream. When en-
countering a missing packet, or a missing frame, the
SVC re-builder has two options. It can truncate the
SVC video frame or fill that frame with zero (or a de-
fault value). Other QoS measurements of the network
such as end-to-end delay, jitter, loss rate, sender’s and
receiver’s bit-rate will also be generated.

Error Generator : Normally, an optimal transmission
condition can be obtained by using a direct connec-
tion between a sender and a receiver. We can use the
Error Generator to modify the dump and trace files
according to a pre-defined error distribution function.

SVC Evaluator : This component will compare the bit-
stream from the output of the SVC Re-builder with
the original bit-stream from the sender. Objective
and subjective quality evaluation (PSNR, MOS) of
the SVC video transmission will be carried out at this
component.

Sender/Receiver nodes : Real or simulated nodes on the
transmission network. They are the departure and
destination of the video transmission.

A sample evaluation session using EvalSVC starts with
the raw video taken from a file or real-time captured by

Fig. 5. PSNR of the reconstructed SNR SVC bit-stream after being
extracted.

Fig. 6. NS-2 based simulation diagram of video transmission over a
bottleneck network.

a camera. This raw video will then be encoded by the
SVC encoder to form a SVC bit-stream. The SVC en-
coded bit-stream is fed into the Hinter to be packetized
into RTP packets. A hint track will also be added to the
original bit-stream. Mp4trace will send the hinted file (us-
ing streaming or camera mode) from the Sender node to
the real/simulated network. A video trace file, a sender
and a receiver dumping files will be generated. Using
information from all of these files, and the original bit-
stream, the SVC Re-builder will reconstruct the received
bit-stream and feed it to the SVC Evaluator for generat-
ing the video transmission results. The reconstructed SVC
video can also be delivered to the SVC decoder to get the
output video play-out at the receiver side. Fig. 5 shows
the PSNR of the extracted, decoded SVC bit-stream. For
example, a cif-size raw file with 1065 frames is encoded
using SNR SVC. The output bit-stream is sent via a real
direct IP connection from a sender to a receiver. We man-
ually generate errors by erasing entries at the sender’s and
receiver’s dumping files. At the receiver, the received bit-
stream is re-constructed by using the re-builder compo-
nent of EvalSVC. Since the JSVM decoder cannot decode
a corrupted bit-stream, we need to extract the uncorrupted
base-layers out of the corrupted bit-stream for it to be de-
coded by the decoder. Fig. 5 shows the PSNR of all 1065
frames of the sample SNR SVC video. From this PSNR
result, we can get the MOS value of the reconstructed SNR
SVC at the receiver which is equal to 4.89 (between Good
and Excellent).



6

Fig. 7. Y-PSNR comparision among AVC, SNR SVC and Spatial
SVC streams.

We can also use EvalSVC to evaluate the transmission
of different kinds of SVC streams on a simulated network
using NS-2. In the first simulation scenario (Fig. 6), we
try to find out the best SVC method which can afford the
most with the bottleneck condition of the network. To
simulate the bottleneck condition, 3 nodes are built using
NS-2: node 0 (the sender), node 1 (the relay), and node
2 (the receiver). The first link (link 1), connecting node
0 and node 1, has a bandwidth of 400 kbps, 1 ms delay.
The second link (link 2), connecting node 1 and node 2
has a bandwidth of 100 Mbps, 1 ms delay. This network
configuration will create a bottleneck on link 1. Firstly,
a CIF-size AVC stream is sent from node 0 to node 2 via
node 1. In the second and third simulations, a SNR SVC
stream and a Spatial SVC stream (both CIF-size) are sent
respectively via the same route from node 0 to node 2.
We do not use the temporal SVC in our simulation since
a temporal SVC stream is identical with an AVC stream.
We use EvalSVC to evaluate the Y-PSNR performance of
these 3 streams. Fig. 7 shows that, when bottom-neck
occurs, SNR SVC has the best and AVC has the worst
Y-PSNR performance. MOV grades of AVC, spatial SVC,
and SNR SVC streams are 1.02, 4.07, and 5, respectively.
We can conclude that, AVC is very sensible to bottleneck,
a single bottleneck in the transmission route can easily
block the entire communication session. Meanwhile, all
SVC streams can afford quite well (MOS > 4) with the
bottleneck condition of the network, among those, SNR
SVC has the best performance.

V. Conclusion and future work

In this paper, we have introduced EvalSVC, our evalu-
ation platform for Scalable Video Coding video transmis-
sion. The main purpose of this work is to fill the gap
between the design, evaluation and implementation pro-
cesses of variable visual services based on Scalable Video
Coding. Using our newly developed framework, we found
that, SVC can afford better than AVC in bottleneck condi-
tions of the network. Among SVC, through simulation re-
sults, we found that, SNR SVC can afford the most against

the bottleneck problem of the network. Our future work
is to apply this platform to evaluate our innovative mul-
timedia transmission algorithms based on Scalable Video
Coding. This tool-set is publicly available at[16].

References

[1] J. V. Team, “Advanced video coding for generic audiovisual
services,” ITU-T Rec. H, vol. 264, pp. 14496–10.

[2] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scal-
able video coding extension of the H. 264/AVC standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 9, pp. 1103–1120, 2007.

[3] J. Klaue, B. Rathke, and A. Wolisz, “Evalvid-a framework for
video transmission and quality evaluation,” Lecture notes in
computer science, pp. 255–272, 2003.

[4] C. H. Ke, C. K. Shieh, W. S. Hwang, and A. Ziviani, “An eval-
uation framework for more realistic simulations of MPEG video
transmission,” Journal of Information Science and Engineer-
ing, vol. 24, no. 2, pp. 425–440, 2008.

[5] S. Wolf and M. Pinson, “Video quality measurement tech-
niques,” 2002., 2002.

[6] D. Wu, Y. T. Hou, W. Zhu, H. J. Lee, T. Chiang, Y. Q. Zhang,
and H. J. Chao, “On end-to-end architecture for transport-
ing MPEG-4 video over the Internet,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 10, no. 6, pp.
923–941, 2000.

[7] J. L. Feuvre, C. Concolato, and J. C. Moissinac, “GPAC: open
source multimedia framework,” in MULTIMEDIA’07: Proceed-
ings of the 15th international conference on Multimedia, 2007.

[8] S. Wenger, M. M. Hannuksela, T. Stockhammer, M. Westerlund,
and D. Singer, “RTP payload format for H. 264 video,” IETF
RFC3984, February, 2005.

[9] I. Rec, “P. 800: Methods for subjective determination of
transmission quality,” International Telecommunication Union,
1996.

[10] S. Wenger, Y. Wang, and M. M. Hannuksela, “RTP payload for-
mat for H. 264/SVC scalable video coding,” Journal of Zhejiang
University-SCIENCE A, vol. 7, no. 5, pp. 657–667, 2006.

[11] S. Wenger, Y. K. Wang, T. Schierl, and A. Eleftheriadis, “RTP
payload format for SVC video,” draft, Internet Engineering
Task Force (IETF), September 2009.

[12] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H. 264/AVC video coding standard,” IEEE
Transactions on circuits and systems for video technology, vol.
13, no. 7, pp. 560–576, 2003.

[13] S. Wenger, A. G. Teles, and G. Berlin, “H. 264/avc over ip,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 13, no. 7, pp. 645–656, 2003.

[14] Y. Wang, M. M. Hannuksela, S. Pateux, A. Eleftheriadis, and
S. Wenger, “System and transport interface of SVC,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 9, pp. 149, 2007.

[15] J. Reichel, H. Schwarz, and M. Wien, “Joint scalable video
model JSVM-8,” ISO/IEC JTC1/SC29/WG11 and ITU-T
SG16 Q. 6, JVT- U, 2006.

[16] Tien A. Le, Quang H. Nguyen, and Anh M. Nguyen, EvalSVC
tool-set: http://code.google.com/p/evalsvc/, 2009.


