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Abstract

The aim of this paper is to study the concept of a “dominance rule” in the context of combi-
natorial optimization. A dominance rule is established in order to reduce the solution space
of a problem by adding new constraints to it, either in a procedure that aims to reduce the do-
mains of variables, or directly in building interesting solutions. Dominance rules have been
extensively used over the last fifty years. Surprisingly, to our knowledge, no detailed descrip-
tion of them can be found in the literature other than a few short formal descriptions in the
context of enumerative methods. We are therefore proposing an investigation into what dom-
inance rules are. We first provide a definition of a dominance rule with its different nuances.
Next, we analyze how dominance rules are generally formulated and what are the conse-
quences of such formulations. Finally, we enumerate the common characteristics of domi-
nance rules encountered in the literature and in the usual process of solving combinatorial
optimization problems.
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1. Introduction

In combinatorial optimization, the term “dominance rule” seems to have been introduced
in the late fifties. We can find it in early papers by Manne [1], Levitan [2], Ignall and Schrage
[3], Fox [4], Proshan and Bray [5], Weingartner and Ness [6] and Elmagharaby [7], although
the term seems have taken several years to be established. Later, it was intensively used by
Baker [8], Kohler and Steiglitz [9] and Ibaraki [10]. Dominance rules had, however, been used
much earlier, but under different names. Johnson [11] talked about a “decision rule” for the
two-machine flowshop scheduling problem, since such a rule allowed him to construct an
optimal solution directly. In the same way, Smith [12] spoke of a “sufficient condition of op-
timality” for the one-machine total weighted completion time scheduling problem. In the
context of integer linear programming, Gomory [13] used the term “additional constraints”
that are needed to be satisfied by integer solutions. Swift [14] talked about a “rejection” rule
for eliminating solutions isomorphic to other solutions. Giffler and Thompson [15] spoke of
a characterized subset of solutions containing a subset of optimal solutions.

These different terms are often contextual but express the same general idea: eliminating
uninteresting solutions, or selecting interesting solutions. The common theme is that one
subset of solutions is rejected while the complementary subset is retained.
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The interest of dominance rules is obvious, since their raison d’être is to reduce, either stat-
ically or dynamically, the search space of combinatorial problems which are in the process of
being solved. Among these, scheduling problems have been the subject of much investiga-
tion because of their applications in industry. "Scheduling is the allocation of resources over
time to perform a collection of tasks" [8]. Since the early works of Johnson [11] and Smith [12]
in the mid fifties, scheduling has remained at the interface between theory and practice [16].
It has given rise to a number of techniques for problem solving including dominance rules
which have played an important role. Therefore, throughout this paper, we shall be looking
at a single-machine scheduling problem which is sufficiently general to illustrate all the con-
cepts.

In this paper we try to provide a kind of bird’s eye view of dominance rules in combina-
torial optimization problems. In Section 2 we define combinatorial optimization problems
and provide definitions which will be useful later on. In Section 3 we define the concept of a
dominance rule. In Section 4 we analyze how dominance rules are generally formulated and
what the consequences of such formulations are. Next, in Section 5 we provide a list of the
main characteristics of dominance rules encountered in the literature. In Section 6 we show
how the concept of dominance is extended to dominance rules themselves, or to problems or
instances of problems. Finally, the main uses of dominance rules for solving combinatorial
optimization problems are discussed in Section 7.

2. Combinatorial optimization problems

In this section, we begin by defining what we mean by combinatorial optimization prob-
lems and we provide definitions which will be useful later on. In particular, the notions of a
problem, of an instance and a solution of a problem, and of the procedures of modeling and
solving a problem are discussed.

2.1. Notion of problem: formalizing a question to solve

A problem can be defined as “a question to solve”. A large number of (“real” or “invented”)
problems are from the domain of the computation and can be handled by using computers.
For Garey and Johnson [17], a problem is a general question to be answered. It usually pos-
sesses several parameters. A problem is described by giving: (1) a general description of all
its parameters, and (2) a statement of what properties a solution of the problem is required
to satisfy. A problem can be viewed simply as a “basic model”, i.e. a simple formalization, the
mere comprehension of which suggests a set of solutions.

For example, scheduling problems are described by giving the characteristics of the avail-
able resources and of the set of tasks. In particular, a single-machine problem is a problem
in which only one machine which can process only one task at a time (the machine is said to
be disjunctive and the tasks to be subject to disjunctive constraints) is available from time 0.
Each task i has a processing time pi and a release date ri before which the job cannot be pro-
cessed by the machine. The preemption of tasks is not allowed, meaning that a task i has to
be processed by the machine without interruption over pi units of time from its starting time
to its completion time. A question to be answered is, for example, whether a starting time can
be assigned to each task such that the sum of the task completion times

∑
i Ci is minimal. Fol-

lowing the 3-field notation widely used in the literature (see for example [18]), this problem
will be denoted as 1|ri |

∑
Ci throughout this paper. Moreover, the special case of this problem
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in which all release dates are equal to 0 is denoted as 1||
∑

Ci . Suppose we associate a due
date di with each task i , i.e. a date before which we would like i to be completed. Suppose
also that if a task i is completed after di it is considered to be late and that its tardiness Ti is
defined as being equal to the difference between its completion time Ci and its due date di ,
i.e. Ti = max(0,Ci −di ). Another question is whether a starting time can be assigned to each
task such that the sum of the task tardiness is minimal. This problem is denoted as 1|ri |

∑
Ti ,

or 1||
∑

Ti when all release dates are equal to 0. Finally, suppose that we associate a deadline
d̄i with each task i , i.e. a date before which task i has to be strictly completed. Another ques-
tion might then be whether a starting time can be assigned to each task such that each task
starts after its release date and is completed before its deadline. This problem is denoted as
1|ri , d̄i |_.

2.2. Instances of a problem

An instance of a problem is obtained by specifying particular values for all the problem pa-
rameters [17]. This description of a problem instance can be viewed as a finite string of sym-
bols chosen from a finite input alphabet according to one particular fixed encoding scheme.
The input length for an instance of the problem is then defined as the number of symbols in
the description of the instance and it is used as the formal measure of instance size. In the
case of a single-machine problem, an instance is specified by its number of tasks and by the
values given to the processing times, the release dates, the due dates and the deadlines of the
tasks if they are required by the studied version of the problem. The instance size is generally
expressed as a multiple of the number of tasks, since the maximum number of symbols used
for each value is generally considered to be fixed.

Note that since an instance has to be decoded, we can complete Garey and Johnson’s [17]
definition of a problem by adding a polynomial time decoding program of fixed size which
is used to read an instance (a string of symbols) of variable size and to store its parameters in
the memory of the computer.

2.3. Modeling a problem

As we have said above, once a problem has been put into words, it can be viewed as a basic
model formalizing the question to solve. Now it has to be modeled. Modeling means elabo-
rating a more sophisticated model than the basic model. This new model will allow us to solve
the problem. Modeling consists of identifying the objective function, the variables, and the
constraints for the given problem. This step is not neutral as regards to the eventual solution.
Formulating a “good” model is of crucial importance in solving the problem" [19]. Indeed, it
is at this stage that the decision variables of the problem are defined. Most of the time several
possibilities occur and the variables are often chosen simply from the definition of a solution.
For example, the variables of the single-machine scheduling problem described above could
be the completion times of the tasks. However, an obvious choice may not be a good one
when it comes to solving the problem. Thus, the choice between the different ways of mod-
eling has a dramatic impact on the effectiveness of its solution. In particular, the structural

properties of the solutions to be obtained have to be expressed via the model. For example,
another model of the single-machine scheduling problem could be obtained by considering
only one variable corresponding to the sequence in which tasks have to be processed. While
this model necessitates a procedure to compute the starting times of the tasks associated with
a sequence, the disjunctive constraints of the machine are easier to express in this model and
lead to more effective solving methods in a lot of cases.
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Once modeled, a combinatorial optimization problem can then be formally defined by:

• a n-tuple of variables (x1, x2, . . . , xn ), the value of each variable xi belonging to a set
D(xi ) that we call the domain of xi ;

• a set C of constraints on variables;

• an objective function Φ : D(x1)×D(x2)× . . .×D(xn ) → R which associates a value with
each assignment.

Hence, a combinatorial optimization problem can be viewed as a second, more sophisticated
model. In contrast to the “basic model”, which only formalized the question to solve, the aim
of this new model is to solve the problem. Given a set of parameters of the basic model ob-
tained by decoding an instance of the problem, a second polynomial program (in addition to
the first program that was used to read and decode an instance), must exist to obtain a new
set of parameters for the combinatorial optimization problem. Note that a large range of flex-
ibility is permitted in both the constraint set and the objective function. Note also that while
several problems are multi-criteria, this paper only considers problems with one objective
function at a time.

The constraints of a combinatorial problem express which combinations of variable val-
ues are allowed. A constraint can be formally defined as follows:

Definition 1. A constraint c belonging to C is a function c : Ω= D(x1)×D(x2)× . . .×D(xn ) →
P (Ω), which associates withΩ a subset c(Ω)⊆Ω containing the assignments satisfying the con-

straint. For the constraint c, an element belonging to subset c(Ω) is said to be feasible, and an

element belonging to its complementary with respect to Ω, i.e. Ω−c(Ω), is said to be unfeasible.

The conjunction of all subsets defined by the constraints belonging to C defines the set of
feasible solutions of the problem.

From now on, the modeling of the “real” problem to be solved is assumed to be fully speci-
fied, and the term “problem” refers to a combinatorial search problem as defined above. Thus,
the single-machine problem with n tasks can be formally defined by the n-tuple (C1, . . . ,Cn ) of
completion times with D(Ci ) = {ri +pi ,ri +pi +1, . . . , d̄i }. Note that in a problem with no dead-
line, the d̄i values can be assumed to be a large number. A disjunctive constraint between two
tasks i and j , i , j , is expressed as follows: (Ci ≥ C j + pi )∨ (C j ≥ Ci + p j ). The entire set of
disjunctive constraints between the different pairs of tasks has to be satisfied. Note that con-
straints such as Ci ≥ ri +pi and Ci ≤ d̄i are also taken into account in the model through the
domain variables. The objective function to consider in the example is the total completion
time

∑
i Ci or the total tardiness

∑
i Ti .

2.4. Solving a problem

Once modeled, solving a combinatorial optimization problem consists of assigning a
value to each variable. An assignment has to be chosen from the Cartesian product Ω =

D(x1)×D(x2)× . . .×D(xn ) in such a way that:

1. the set C of constraints is satisfied;

2. the objective function Φ is minimized.
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Note that maximizing an objective function is equivalent to minimizing the negative of the
same function. Thus, the above formulation also covers maximization problems.

In this paper we consider that a combinatorial optimization problem is any problem as
defined above which is decidable, i.e. for which there exists an algorithm solving the problem
in a finite number of steps. Of course, if Ω is finite, the problem is decidable.

2.5. Optimization problems and search problems

We wish to obtain an assignment satisfying all the constraints and which minimizes the
objective function Φ. Thus, an objective function is required to associate with each assign-
ment a value from among a given set of values referred as D(Φ). We extend the objective
function to subsets of solutions: for any subset S of solutions, we define Φ(S) = minz∈S Φ(z).
The existence of an assignment satisfying the constraints of the problem is usually not part
of the question. Often, the number of such possible assignments is irrelevant and all that
matters is to find an optimal assignment. That is why we generally speak of “optimization

problems”.
The objective function can be bi-valued by 0 and ∞, corresponding to feasible (the con-

straints are eventually satisfied) and unfeasible (at least one constraint is not satisfied), and
it may not be known in advance whether or not feasible solutions exist. Therefore, the prob-
lem consists in finding a feasible solution or concluding that no such solution exists. Here the
problem is referred as a “search problem” rather than an “optimization problem”. For exam-
ple, searching for a feasible solution to a single-machine scheduling problem when deadlines
are considered (i.e. 1|ri , d̄i |_) is such a problem. Nevertheless, the formulation of a combi-
natorial optimization problem, as described above, is often used to cover this case as well as
the multi-valued or continuous valued objective function [20, 21]. For the sake of simplic-
ity we will adopt this convenient generalization in this paper, while noting that optimization
problems are also often solved using successive solutions of search problems.

Nevertheless, in the following pages we shall sometimes need to distinguish between what
derives from “feasibility” considerations (in relation to a set of constraints C ), and what de-
rives from “optimality” considerations (in relation to the optimization of an objective function
Φ).

2.6. Constraints

The constraints of a combinatorial search problem can be implicit or explicit (see for ex-
ample [21]). Implicit constraints are those which are implicitly satisfied by the way the prob-
lem has been modeled. Thus they do not require an explicit procedure to ensure that they
are satisfied, because they are satisfied according to the variables and the domain of the vari-
ables which have been chosen to model the problem. Explicit constraints, on the other hand,
will require procedures for recognition as part of the method employed to solve the problem.
For example, in the model described above for the single-machine scheduling problem, con-
straints Ci ≥ ri + pi and Ci ≤ d̄i are implicit because they are always satisfied through the
domain D(Ci ) = {ri +pi ,ri +pi +1, . . . , d̄i } of variable Ci . However, disjunctive constraints are
explicit and require a procedure to determine whether they are satisfied or not.

A constraint can be intentional, i.e. expressed using a relation between variables which
has to be satisfied, e.g. an arithmetic formula. It can also be extensional, i.e. expressed as a
set of tuples of values that satisfy the constraint.
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In constraint programming the global constraints are usually identified (see for example
[22]). A global constraint corresponds to a conjunction of constraints which it is more con-
venient to consider together, since this leads to greater clarity, in addition to improving the
problem solving process. For example, in the single-machine scheduling problem, it is com-
mon to consider the set of disjunctive constraints as only one global constraint. Indeed, some
efficient techniques known as Edge-Finding (see for example [23]) allow more deductions to
be obtained when considering disjunctive constraints all together.

In light of our remarks made in the previous section, we might also wish to identify the set
of “feasibility constraints” of the problem, which correspond to the constraints cited above,
as well as the “optimality constraint”, which stipulates the requirement for solutions having
the best value with respect to the objective function.

2.7. The notion of a solution

We wish to determine a vector from the Cartesian product space Ω= D(x1)×D(x2)× . . .×
D(xn ) which minimizes the objective function Φ and satisfies all the constraints.

A partial assignment where a value is specified for some variables of the problem while
the values of others remain unknown is called a partial solution.

Every complete assignment belonging to Ω is called a solution, since it satisfies the im-
plicit constraints [21]. It does not matter whether or not the assignment is feasible with re-
spect to the explicit constraints. It is usual to designate Ω as being the solution space. In the
following we shall refer to the power set of Ω, i.e. the set of all subsets of Ω, as P (Ω).

For a lot of problems we may consider that each selection space D(xi ) contains only a
finite number of distinguishable (numeric or symbolic) values. In this case we refer to the
cardinal of domain D(xi ) as |D(xi )|. The solution space is then also finite and its cardinal is
equal to |Ω| =

∏n
i=1 |D(xi )|.

A solution respecting all the constraints belonging to C is called a feasible solution. From
now on we shall refer to the subset of feasible solutions belonging to Ω as F (Ω). Any solution
which does not belong to F (Ω) is said to be unfeasible or unacceptable. The subset of unfea-
sible solutions is referred as U (Ω). Note that F (Ω) and U (Ω) are disjoint and complementary
according to Ω, i.e. F (Ω)∩U (Ω) =; and F (Ω)∪U (Ω) =Ω. We also define F (S) as the subset
of feasible solutions of any subset S of Ω, i.e. if S ⊆Ω then F (S) = F (Ω)∩S. U (S) is defined
as the set of unfeasible solutions of the set S.

Any feasible solution z∗ ∈ F (Ω) such that ∀z ∈ F (Ω),Φ(z∗) ≤ Φ(z) is called an optimal

solution. The value Φ(z∗) = Φ(F (Ω)) is called the optimal value of the problem. In the fol-
lowing, the subset of optimal solutions of Ω is referred to as O(Ω). We have O(Ω) ⊆ F (Ω).
In the case of a “decision” problem, subsets O(Ω) and F (Ω) coincide, i.e. O(Ω) = F (Ω). Any
feasible solution which is not in O(Ω), i.e. any solution belonging to F (Ω)−O(S) is said to be
suboptimal. We also define O(S) as the subset of the optimal solutions of any subset S of Ω.
Thus, z ∈O(S) if and only if Φ(z)=Φ(S). Note that Φ(S) can be greater than Φ(Ω), i.e. none of
the optimal solutions of Ω belongs to S.

2.8. Solving combinatorial search problems

For Garey and Johnson [17], algorithms are general step-by-step procedures for solving
problems. An algorithm is said to solve a problem Π if that algorithm can be applied to any
instance I of Π and is always guaranteed to produce an optimal solution for this instance I .

There are many algorithms available for solving problems. While some algorithms are
dedicated to specific problems, others are more generic methods suitable for solving more
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than one problem. Many methods are appropriate only for certain types of problems. That
is why we have to recognize the characteristics of a problem in order to identify an appro-
priate technique for solving it. Optimization problems are then classified according to their
characteristics (the nature of the objective function, variables and constraints). Thus, algo-
rithms are often classified according to the type of problems they are designed to solve, or
according to whether they are designed to produce optimal solutions or only approximate
(but possibly optimal) solutions. Among these general techniques, Linear Programming, In-
teger Linear Programming, Dynamic Programming, Backtrack Programming and Constraint
Programming are the most frequently used and the most effective techniques for dealing with
search problems. Where there is no possibility (owing to the size or the intractability of the
problem) of obtaining an optimal solution, or no requirement for the solution to be optimal,
then suboptimal solutions only may be sought, using approximate algorithms called heuris-
tics.

It is interesting to note that the effectiveness of the solving methods (other than in a few
specific cases of approximate methods) is highly dependent on the possibility of finding struc-
tural properties of feasible and optimal solutions which can then be used to identify the so-
lutions of interest. Most of these properties can be stated as “dominance rules” whose raison

d’être is discerning interesting subsets of solutions in which it is sufficient to search for opti-
mal solutions.

3. Dominance rules

In this section, we provide a formal definition of the dominance rule concept with its dif-
ferent nuances.

Few definitions of dominance rules are to be found in the literature. Baker and Trietsch
[16] define them in the following way: "Dominance properties provide conditions under which

certain potential solutions can be ignored".
One formal definition that we encounter is by Carlier and Chrétienne [24]. We also find

formal definitions by Kohler and Steiglitz [9, 25], and also by Ibaraki [10], whose definitions
pertain to dominance relations (see Section 5.1). All these definitions are provided in the
specific context of enumerative methods. We now put forward the following definitions in the
general context:

Ω S F (S) O(S) δ(S)

Figure 1: δ(S) is dominant and S −δ(S) is dominated.
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Definition 2. A dominance ruleδ : P (Ω) →P (Ω) associates with a given subset S ⊆Ω a subset

δ(S) ⊆ S such that F (S),;⇒O(S)∩δ(S),;. The subset δ(S) is said to be a dominant subset

of S and its complementary with respect to S, i.e. S −δ(S), is said to be dominated.

Informally, a dominance rule identifies a subset of S containing at least one optimal so-
lution of S (see Figure 1). However, when the dominant part includes all optimal solutions,
we can refer to a strict dominance rule, since all solutions belonging to O(S)∩δ(S) are then
strictly better than solutions belonging to S −δ(S) (see Figure 2):

Ω S F (S) O(S) δ(S)

Figure 2: δ(S) is strictly dominant and S −δ(S) is strictly dominated.

Definition 3. A strict dominance rule δ : P (Ω) → P (Ω) associates with a given subset S ⊆

Ω a subset δ(S) ⊆ S such that F (S) , ; ⇒ O(S) ⊆ δ(S). The subset δ(S) is said to be a strict

dominant subset of S and its complementary with respect to S, i.e. S−δ(S), is said to be strictly

dominated.

Moreover, when the dominant part includes all feasible solutions, we can refer to a redun-
dant dominance rule since it does not eliminate feasible solutions (see Figure 3):

Ω S F (S) O(S) δ(S)

Figure 3: δ(S) is redundantly dominant and S −δ(S) is redundantly dominated.
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Definition 4. A redundant dominance rule δ : P (Ω) → P (Ω) associates with a given subset

S ⊆Ω a subset δ(S) ⊆ S such that F (S) ⊆ δ(S). The subset δ(S) is said to be a redundant domi-

nant subset of S and its complementary with respect to S, i.e. S−δ(S), is said to be redundantly

dominated.

Most of the time δ is expressed using a property A which is satisfied by optimal or feasible
solutions (see Section 4). Moreover, if O(Ω)∩S , ; then at least one optimal solution of the
problem belongs to δ(S). In this case δ(S) is also a dominant subset of Ω.

In scheduling, a semi-active schedule is defined as a schedule in which no job can be
scheduled earlier without changing the sequence of execution of jobs on the machine or vi-
olating the constraints [18]. In other words, a semi-active schedule is a schedule in which no
local left-shift is possible (i.e. a schedule containing no superfluous idle time). The applica-
tion which associates the set of semi-active schedules with the set of all feasible schedules is a
dominance rule, since there is at least one optimal schedule which is semi-active [8]. Note that
this dominance rule is strict when considering the total completion time criterion (1|ri |

∑
Ci )

since all optimal schedules are semi-active (a schedule with a superfluous idle time cannot be
optimal because a simple local left shift of the task scheduled just after the idle time allows the
value of the objective function to decrease strictly). However, it is not the case when consid-
ering the total tardiness criterion. For example, consider an optimal schedule of an instance
of 1|ri |

∑
Ti in which the last task of the schedule is strictly completed before its due date.

This task can then be delayed until its due date without changing the optimality of the sched-
ule while it is no longer semi-active. Note also that dominance rules on which Edge-Finding
techniques are based are redundant because they filter the set of solutions by eliminating only
solutions which are not feasible according to the disjunctive constraints.

In the above definitions, it is not required that the dominance rules provide an operational
method for building such a subset δ(S). A dominance rule is established in order to reduce
the solution space either by adding new constraints to the problem, or by writing a procedure
that attempts to reduce the domains of variables, or by building interesting solutions directly.
Note that algorithms are not themselves dominance rules: they simply make use of them. The
process of filtering the domain of a variable using a dominance rule is called an adjustment.
In constraint programming it is also called domain reduction. An algorithm performing one
or several adjustments is called a filtering algorithm.

In fact, most of the time, procedures or added constraints using dominance rules to reduce
the search space are not able to eliminate the dominated part totally. The result obtained
is therefore a subset of S containing δ(S). Nevertheless, note that the following proposition
obviously holds:

Proposition 1. Let S be a subset of Ω such that F (S),;. Given δ(S), a dominant subset of S,

any subset S ′ of S such that δ(S)⊆ S ′ is a dominant subset of S.

Proof. Since, by definition, δ(S)∩O(S),;, and δ(S) ⊆ S ′, then δ(S)∩O(S)⊆ S ′∩O(S),;.

The choice of the dominance rule δ usually involves a compromise between a powerful
expression and an easy identification of solutions belonging to δ(S).

When using a dominance rule, the considered subset of solutions S depends on the al-
gorithm in which the dominance rule is used. However, most of the time such a subset is
represented via a partial solution: the subset S contains all solutions which can be derived
from this partial solution according to the domains of the unfixed variables.
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If we carry the above definition to its limits we can think of dominance rules as constraints
of the problem (feasibility constraints as well as optimality constraints). Indeed, constraints
intentionally define a subset of solutions containing optimal solutions. Of course, by defi-
nition O(Ω) is a dominant set of Ω. If O(Ω) can be built directly, the problem is solved. In
fact, it is more interesting to think of constraints as dominance rules only if they can be used
in an operational way, i.e. if they lead to procedures or new constraints that can reduce the
search space as the computation progresses, and not only to test the validity of a given solu-
tion (which may or may not be a partial solution). Note that dominance rules can often be
put into practice by the addition of new constraints to the initial set of constraints.

4. Formulations of dominance rules

In this section, we analyze how dominance rules are generally formulated and what the
consequences entailed by such formulations are. Most of the time a dominance rule is ex-
pressed using a property A which allows a dominant subset and a dominated subset of S to
be identified. Formulation can be done in different ways. The possible adjustments which
can be performed according to the dominance rule being considered are highly dependent
on the characteristics of property A and on the formulation which uses this property.

Note that a large range of flexibility is permitted in the expression of A. Thus, using a dom-
inance rule involves placing oneself at the mercy of the property A, since identifying solutions
satisfying A may or may not be straightforward.

We now analyze different formulations of a dominance rule according to a given property
A and we show what kind of adjustments can be performed according to a formulation. Con-
sider a subset S of Ω. When we refer below to ”an optimal solution of S with respect to S” we
mean a solution z such that z ∈O(S), i.e. such that Φ(z)=Φ(S).

4.1. Universal property-based dominance rule

This dominance rule is expressed as "all optimal solutions of S with respect to S have the

property A". Therefore A is a necessary condition of optimality with respect to S. The subset
of solutions belonging to S and satisfying A is dominant. Note that some solutions satisfying
A may not be optimal. From a practical point of view:

• Any solution which does not satisfy A can be removed from S since it is not optimal.

• We can retain any identified subset of S containing the whole subset of solutions satis-
fying A, since this superset of A is dominant (see Proposition 1).

We refer to such a formulation as a universal property-based dominance rule. For example,
“given an instance of 1|ri |

∑
Ci , all optimal schedules are semi-active” is such a rule [8]. Thus,

only semi-active schedules need to be considered. This dominance rule allows the use of a
model that considers sequences instead of completion times. In fact, from a given sequence,
completion times are computed by scheduling tasks as soon as possible by following the se-
quence. The obtained schedule is then semi-active. Note that this property provides the basis
for a lot of solving algorithms.
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4.2. Existential property-based dominance rule

This dominance rule is expressed as "there exists at least one optimal solution of S hav-

ing the property A". The subset of solutions belonging to S satisfying A is also dominant.
Note that an optimal solution may not satisfy A. From a practical point of view:

• Any solution which does not satisfy A can be removed from S, since there is at least one
optimal solution of S satisfying A.

• Therefore, we can retain any identified subset of S containing the whole subset of solu-
tions satisfying A, since this superset of A is dominant (see Proposition 1).

We refer to such a formulation as an existential property-based dominance rule. For exam-
ple, “given an instance of 1|ri |

∑
Ti , there is at least one optimal schedule which is semi-active”

is such a rule [8]. Thus, only semi-active schedules can also be considered and it is also pos-
sible to use models in which only sequences are considered.

4.3. Sufficient property-based dominance rule

This dominance rule is expressed as "any solution of S satisfying property A is optimal":
therefore A is a sufficient condition of optimality according to S. Note that an optimal solu-
tion may not satisfy A. From a practical point of view:

• Any solution which can be established satisfying A is an optimal solution of S.

• We can retain any subset of solutions for which this subset can be established it contains
at least one solution satisfying A since such a subset is dominant (see Proposition 1). If
such a subset does not exist or cannot be established, no adjustment can be performed.

We refer to such a formulation as a sufficient property-based dominance rule. For example,
“given an instance of 1||

∑
Ti , any semi-active schedule in which tasks are sequenced in non

decreasing order of processing times (i.e. the schedule is said to follow the shortest processing
time order) and in which all tasks are tardy is optimal” is such a rule [26]. Of course, when
building the semi-active schedule according to the shortest processing time order, there is at
least one task which is on time, all semi-active schedules have potentially to be considered.

4.4. Necessary and sufficient property-based dominance rule

This dominance rule is expressed as "all optimal solutions of S with respect to S have the

property A, and any solution of S satisfying A is optimal". Therefore A is a necessary and

sufficient condition of optimality with respect to S. The subset of solutions belonging to S

satisfying A is said to be strictly dominant. From a practical point of view:

• Any solution which does not satisfy A can be removed from S.

• Any solution which can be established satisfying A is an optimal solution of S.

• We can retain any identified subset of S containing the whole subset of solutions satis-
fying A, since such a subset is strictly dominant (see Proposition 1).

• We can retain any subset of solutions which can be shown to contain at least one solu-
tion satisfying A, since such a subset is dominant (see Proposition 1).

We refer to such a formulation as a necessary and sufficient property-based dominance rule.
For example, “given an instance of 1||

∑
Ci , any semi-active schedule following the shortest

processing time order is optimal” is such a rule [12]. This famous dominance rule, known as
the Smith’s rule, allows this problem to be solved in O(n logn) time.
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4.5. Combining dominance rules

Emmons [26] pointed out that some dominance rules provide only existential properties,
while others provide universal properties. From a practical point of view, this distinction is
important. Indeed, universal property-based dominance rules can obviously be “accumu-
lated”, while existential property-based dominance rules cannot. By “accumulation” Emmons
means that if two valid universal property-based dominance rules take the form "all optimal
solutions have the property A" and "all optimal solutions have the property B", then clearly
the dominance rule "all optimal solutions satisfy the properties A and B" will hold.

It seems natural that existential property-based dominance rules cannot generally be di-
rectly “accumulated” in the above sense. Given two dominance rules δ1 and δ2, set δ1(S)∩
δ2(S)∩O(S) may be empty. Nevertheless, this does not mean that we cannot use different
property-based dominance rules together if one of them is existential. In fact, dominance rule
δ2 should not be applied to S but to δ1(S), taking into account the new constraints (implicit
or explicit) which have been added by the application of the first dominance rule. Of course,
the dominance checking involved by such an application may be really complex. Fortunately,
the dominance rules described by Emmons for 1||

∑
Ti can be accumulated, even though they

are not universal. For example, one of these rules is expressed as “for any tasks i and k with
(k ∉Bi )∧(pi < pk∨(pi = pk∧di ≤ dk ))∧(di ≤ max(

∑
j∈Bk

p j +pk ,dk ) then i precedes k”, where
Bx is the set of tasks which it has been decided will precede x using the same rule with other
tasks. In this context, “i precedes k” means “there exists an optimal schedule in which all
precedences previously established are satisfied and in which i is completed before k”. Thus,
while this dominance rule is an existential property-based dominance rule, it can be accumu-
lated with itself (and two other rules of the same kind) if no inconsistencies are introduced in
relation to the other pairs of tasks. To this end, sets Bx are used to be sure that the solution
space will not be reduced to a set in which, for example, both i ∈ Bk and k ∈ Bi . This kind of
accumulation is common, particularly in enumerative methods where these kinds of added
constraints are often implicit, i.e. taken into account in the variable domains.

5. Types of dominance rules

In this section we review the common characteristics of dominance rules encountered in
the literature and we propose formal definitions of these characteristics.

5.1. Relation-based dominance rules

Dominance rules are often expressed as dominance relations. A formal definition of a
dominance relation can be found in Kohler and Steiglitz [9, 25] and in Ibaraki [10] in the con-
text of enumerative methods. Informally speaking, a dominance relation is a binary relation
º between two disjoint subsets of solutions S1 and S2 whereby the best solution belonging to
S2 is not better than the best solution of S1.

Definition 5. A dominance relation is a partial, reflexive and transitive binary relation º de-

fined on P (Ω) such that, given two disjoint subsets S1 and S2 of Ω, S1 º S2 if it can be estab-

lished that Φ(S1) ≤Φ(S2). We say that S1 dominates S2 or that S1 is dominant over S2, and that

S2 is dominated by S1.
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For example, “given an instance of 1|ri |
∑

Ci , if there exist two tasks i and k such that
(pi ≥ pk )∧(ri +pi ≤ rk +pk ) then the set of schedules Si sequencing task i first dominates the
set of schedules Sk sequencing task k first [27]” is such a relation. Indeed, it can be proved that
the schedule minimizing the total completion time in Si has a total completion time lower
than or equal to the total completion time of a schedule minimizing the total completion
time in Sk . Note that it does not mean that Si contains an optimal solution of the problem.
It means that Si contains a schedule minimizing the total tardiness in Si ∪Sk . Therefore, in
the previous definition, a dominance relation can be seen as a special case of a dominance
rule applied to the set S1∪S2 (or to any superset of S1∪S2) where the property identifying the
dominant subset is the dominance relation.

Thus, when it is possible to find a relation whereby the best solution belonging to S1 is
strictly better than the best solution belonging to S2 we shall refer to a strict dominance rela-
tion:

Definition 6. A strict dominance relation is a binary relation Â over P (Ω) satisfying S1 Â S2

implies Φ(S1) <Φ(S2). We say that S1 dominates strictly S2 or that S1 is strictly dominant over

S2 and that S2 is strictly dominated by S1.

Note that special requirements must usually be met in order for dominance relations to
be used correctly, according to the method used. In particular, a dominance relation is of-
ten required to be antisymmetric so as to be able to handle disjoint subsets S1 and S2 where
Φ(S1) =Φ(S2) (see for example [10]): at least one of the two subsets has to be retained.

5.2. Dominance rules for optimality and feasibility

Some dominance rules are established to identify subsets of solutions with at least one
optimal solution, while others are established to eliminate unfeasible solutions. Whereas the
former use the objective function to identify the dominated parts, the latter make use of the
constraints of the problems. We can therefore establish the two following classes of domi-
nance rules:

Definition 7. An optimality-led dominance rule is a dominance rule δ where the charac-

teristics of the dominated part are expressed according to the objective function of the prob-

lem. Applied to a subset S ⊆Ω, the conditions of the dominance rule establish that Φ(δ(S)) ≤
Φ(S −δ(S)).

Definition 8. A feasibility-led dominance rule is a dominance rule where the characteristics of

the dominated part are expressed in terms of feasibility according to the constraints of the prob-

lem. Such a rule is commonly called an elimination rule. In a search problem, the dominated

part should only contain unfeasible solutions.

For example, a feasibility-led dominance rule for 1|ri , d̄i |
∑

Ci (i.e. when deadlines are
considered and the total completion time has to be minimized) could be “if there exist two
tasks i and k such that (rk + pk > d̄i − pi ) then the domain of D(Ci ) can be adjusted to {ri +

pi , . . . ,min(d̄i , d̄k −pk )} and the domain of D(Ck ) to {max(rk +pk ,ri +pi +pk , . . . , d̄k }” because
there is no feasible schedule in which task k is completed before task i . Note that in the case of
a decision problem, some dominance rules include some feasible solutions in the dominated
part. However, such a dominance rule belongs to the class of optimality-led dominance rules
in which the objective function is two-valued (acceptable or unacceptable, see Section 2.5).
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For example, it is the case when the previous dominance rule is applied to 1|ri , d̄i |_ in which
the objective function is two-valued. Note also that a feasibility-led dominance rule is a re-
dundant dominance rule (see Definition 4).

5.3. Morphism-based dominance rules

Some dominance rules depend on a transformation function over solutions. Informally,
given two sets S and S ′ of solutions such that S ′ ⊂ S ⊆Ω, a morphism-based dominance rule
establishes that if any solution belonging to S ′ can be transformed into a dominant solution
belonging to S −S ′, then S ′ is dominated (see Figure 4):

S ′

δ(S)

Figure 4: Morphism-based dominance rules.

Definition 9. Let S be a subset of Ω. Given a subset S ′ of S, a morphism-based dominance rule

is a dominance rule depending on a morphism µ : P (S ′) →P (S−S ′) preserving validity so that

to any solution z ∈ S ′ there corresponds a solution µ(z) ∈ S −S ′ such that z ∈F (S) ⇒Φ(µ(z))≤
Φ(z). The subset S ′ is then a dominated subset of S.

For example the dominance of semi-active schedules for the single-machine problem de-
scribed in Section 3 depends on the application which associates with any non-semi-active
schedule the only semi-active schedule following the same sequence of jobs obtained by re-
moving all superfluous idle times. Commonly-encountered special cases of such dominance
rules rely on isomorphisms that preserve the validity (feasibility or unfeasability). Informally,
an isomorphism-based dominance rule establishes that a subset of solutions S2 is dominated
as being isomorphic to another dominant subset of solutions S1 (see Figure 5).

S F (S) O(S)

S1

S2

δ(S)

Figure 5: Isomorphism-based dominance rule.
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Definition 10. Let S be a subset of Ω. Given two disjoint subsets S1 and S2 of set S, an isomor-

phism-based dominance rule is a dominance rule relying on a bijective mapping function

µ : S2 → S1 preserving validity such that to any solution z ∈ S2, there corresponds a solution

µ(z) ∈ S1, and where it may be established that Φ(S1) ≤ Φ(S2). Subset S2 is then a dominated

subset of S. Subsets S1 and S2 are said to be isomorphic.

Note that while such a dominance rule will often satisfy z ∈ F (S) ⇒ Φ(µ(z)) ≤ Φ(z), the
definition does not require this to be the case. Indeed, only the best solution belonging to S1

(in the definition) needs to be at least as good as the best solution belonging to S2.
Such dominance rules were identified very early on as being an important factor in the

efficiency of solution methods. Thus, in 1960, Swift wrote [14]: "In many problems involving

exhaustive searches the limiting factor with respect to speed or completion may not be the ef-

ficiency with which the search as such is conducted but rather the number of times the same

basic problem is investigated. That is, the search routine may be effective in rejecting impossi-

ble cases in large blocks and still fails to accomplish its purpose in that the cases which must

be investigated are looked at too frequently." In decision problems we often talk about sym-
metry breaking (see for example [28]). As far back as 1874 an article proposed making use of
symmetries in the eight queens problem [29]. This subject has been addressed by a number
of researchers in the past decades, particularly in the constraint programming community
(see for example [28, 30, 31, 32, 33, 34, 35, 36, 37]). Note that there are several definitions of
symmetry which differ in the attributes they apply to (only the values, only the variables, or
variable-value pairs) and in what they preserve (the constraints or the set of solutions) [36].

5.4. Evaluation-based dominance rules

Some optimality-led dominance rules (see Section 5.2) rely on the use of a lower bounding
function to identify dominated parts. This kind of dominance rule is notably the key element
in the “bounding” operation for branch and bound methods. Whereas this operation is often
described separately from the set of dominance rules, it can obviously be considered as a
special case of dominance rules [10]. Consider a subset S of Ω. A function lb : P (Ω) → R is a
lower bounding function if it satisfies the following conditions [10]:

• lb(S) ≤Φ(S);

• lb(S) =Φ(S) if S is a singleton {s};

• lb(S) ≤ lb(S ′) if S ′ ⊆ S.

A lower bound-based dominance rule is then established via the following proposition:

Proposition 2. Given a lowering function lb : P (Ω) → R, consider a solution z and a subset

S ⊆Ω with z ∉ S. If lb(S) ≥Φ(z) then {z} º S and S is dominated. If lb(S) >Φ(z) then {z} Â S

and S is strictly dominated.

In the same way, upper bound-based dominance rules can be established for maximiza-
tion problems.
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5.5. Dependent/independent-instance dominance rules

While some dominance rules can be expressed at a global level of the problem and are
valid for any instance, others can be applied only if certain conditions are satisfied regard-
ing the data. The first sort can be referred to as independent-instance dominance rules, in
contrast to the second sort, which we may term dependent-instance dominance rules.

For example, the dominance of semi-active schedules for 1||
∑

Ti described in Section 3 is
independent of the instance to be solved, since it is valid for any instance, while the Emmons
rule described in Section 4.5 depends on conditions which have to be fulfilled by a pair of
tasks.

5.6. Shaving

In the context of job-shop scheduling, Carlier and Pinson [38], and Peridy [39] introduced
the concept of “global operations”, in parallel with Martin and Shmoys who used the term
“shaving”. This kind of rule is based on a refutation principle. Informally, global operations
use a feasibility test to determine whether or not there exists a solution that satisfies a given
property A. They are based on the following proposition:

Proposition 3. Let S be a subset of Ω with F (S),;. Given a property A, if it can be established

(by another rule) that none of the solutions satisfying A belongs to F (S), then the set of solutions

not satisfying A is dominant.

For example the feasibility-led dominance rule described in Section 5.2 for 1|ri , d̄i |
∑

Ci

relies on the fact that if (rk +pk > d̄i −pi ) and if k is completed before i then the schedule is
not feasible according to the disjunctive constraint between i and k. Because these rules use
other feasibility-led dominance rules, they are called “global”. Peridy [40] proposed a uniform
framework to classify the dominance rules according to their level of use. Thus, feasibility-led
dominance rules are said to be of level 1 while global operations using dominance rules of
level 1 for their feasibility test are said to be of level 2.

The concept of shaving can obviously be extended to the optimality constraint:

Definition 11. Let S be a subset of Ω with F (S),;. Given a property A, if it can be established

(by another rule) that none of the solutions satisfying A belongs to O(S) then the set of solutions

not satisfying A is dominant.

6. Other dominances

While dominance rules apply to sets of solutions, the notion of dominance can be ex-
tended between dominance rules themselves, between instances of a problem and between
problems.

6.1. Dominances between dominance rules or between dominance relations

In some cases, two dominance rules can be compared according to their potential for
discarding solutions. Informally, we say that a dominance rule δ is stronger than a dominance
rule δ′ (δ dominates δ′) if it eliminates the same solutions as δ′, with the expectation of other
eliminations in addition.

Definition 12. Consider two dominance rules δ and δ′. δ dominates δ′ if ∀S ⊆Ω,δ(S) ⊆ δ′(S).
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For example, a feasible schedule is said to be active if no job can be completed earlier
without either delaying another job or violating a constraint [18]. It is well known that the
subset of active schedules is dominant for 1|ri |

∑
Ci and 1|ri |

∑
Ti [15, 8]. Moreover, any active

schedule is also semi-active. Since the set of active schedules for a given instance of a prob-
lem is included in the set of semi-active schedules, the dominance rule on active schedules
dominates the dominance rule on semi-active schedules.

In the same way, this idea of potential can be expressed through dominance relations [10]:

Definition 13. Given two dominance relations (strict or not) . and .̄, . dominates .̄ if ∀S,S ′ ⊆

Ω with S ∩S ′ =; then S.̄S ′ ⇒ S .S ′.

For example, the following slightly modified version of the dominance relation described
in Section 5.1: “given an instance of 1|ri |

∑
Ci , if there exist two tasks i and k such that (pi >

pk )∧ (ri +pi < rk +pk ), then the set of schedules Si sequencing task i first dominates the set
of schedules Sk sequencing task k first” is dominated by the dominance relation as stated in
Section 5.1 because (pi > pk )∧ (ri +pi < rk +pk ) ⇒ (pi ≥ pk )∧ (ri +pi ≤ rk +pk ).

Dominance between dominance rules determines whether it is sufficient to use only one
rule instead of both dominance rules in a solution procedure. Dominance checking can be re-
ally time consuming, and it may be advantageous to know when using both dominance rules
will not be useful. However, although it might appear obvious that a stronger dominance
rule would contribute more than a weaker one to the effectiveness of a problem-solving al-
gorithm, this is not always the case, as shown by Kohler and Steiglitz [9, 25] or Ibaraki [10]
in branch and bound methods for which several counterexamples can be easily built. Never-
theless, Ibaraki provides several classes of branch and bound methods for which a stronger
dominance relation always results in a more effective algorithm in terms of generated states.
This monotonicity property for such classes of algorithms has encouraged practitioners to
seek the strongest possible dominance rules for the problem to be solved, unless the com-
putational time required for establishing dominance becomes predominant [10]. Indeed, a
stronger dominance relation may take too much time to be applied.

6.2. Dominances between instances of problems

In some cases it is useful to express a dominance relation between two instances of the
same problem. Informally, an instance I ′ dominates an instance I if an optimal solution of I

is not better than an optimal solution of I ′. A dominance relation between two instances can
be defined as follows:

Definition 14. Consider two instances I and I ′ of the same problem whose solution spaces are

respectively Ω and Ω
′. If it can be established that Φ(Ω′) ≤Φ(Ω) then I ′ dominates I . Moreover,

if it it can be established that Φ(Ω′) <Φ(Ω) then I ′ strictly dominates I .

Such dominance rules can be used for preprocessing (see Section 7.4) or for establishing
lower bounds and upper bounds of the problem. For example, in scheduling it is common to
build an instance I ′ from an original instance I by splitting tasks into unary processing time
jobs. In certain cases, the obtained instance I ′ dominates I and may possibly be solved easily
(see for example [41]). Solving this new instance could then produce a lower bound of the
value of an optimal solution of I .

Note that when an instance I can be split into subproblems, I ′ can then correspond to the
consideration of several subproblems which can be solved independently.
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6.3. Dominances between problems

The notion of dominance can also be extended between problems, as we now define:

Definition 15. Consider two problems Π1 and Π2. If it can be established that for any instance

I2 of problem Π2, an instance I1 of problem Π1 can be built such that I1 (strictly) dominates I2,

then Π1 (strictly) dominates Π2.

As for dominance rules between instances of the same problem, such dominance rules
are often used for preprocessing (see Section 7.4) or for establishing lower bounds and upper
bounds of the problem.

For example, consider the same problem as 1||
∑

Ci but in which the preemption of tasks
is allowed (the problem is denoted as 1|pmtn|

∑
Ci ): this means that the execution of a task

can be interrupted to process another task and be terminated later. In such a case, non-
preemptive schedules (i.e. schedules in which no task is interrupted) are dominant [8] be-
cause any preemptive schedule can be transformed into a non-preemptive schedule (which
is also a solution of the problem) with a total completion time lower than or equal to the ini-
tial completion time. Therefore, given an instance of 1|pmtn|

∑
Ci , if we consider exactly the

same instance (here, the transformation is the identity) for 1||
∑

Ci , then the solution space
to consider is reduced, while any solution to 1||

∑
Ci is also a solution to 1|pmtn|

∑
Ci . On

the other hand, consider the problem with release dates 1|ri |
∑

Ci . The problem obtained by
allowing preemption, i.e. 1|ri , pmtn|

∑
Ci , dominates 1|ri |

∑
Ci because solving an instance

of 1|ri , pmtn|
∑

Ci always gives a lower bound of 1|ri |
∑

Ci for the same instance. Moreover,
while 1|ri |

∑
Ci is NP-Hard in the strong sense, 1|ri , pmtn|

∑
Ci is solvable in O(n logn) time.

7. Dominance rules for solving combinatorial optimization problems

In this section we describe the main applications of dominance rules in solving combi-
natorial optimization problems. As we shall see, they can be used at different stages of the
problem solving process, and in the main general resolution methods.

7.1. Dominance rules and problem modeling

As stated in Section 2.1, modeling is an important stage where the variables and con-
straints of the problem are decided. Even at this stage it is possible to make use of dominance
rules. Indeed, if we can consider a subset of solutions containing at least one optimal solution
(or all optimal solutions), and if this subset of solutions can lead to a special model in which
only these solutions are considered, the solution space considered by the solving algorithm is
of course smaller, leading to a more effective method.

For example, consider the eight queens problem. At the modeling stage we use a domi-
nance rule stipulating that in all optimal solutions, there is exactly one queen per column (see
for example [20]). We then obtain a model with only eight variables {X1, . . . , X8}, where each
variable Xi corresponds to the line of the queen located in column i . It is easy to see that this
model leads to a solution space considerably smaller than when two variables are considered
in order to locate each queen on the chessboard.
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7.2. Dominance rules and the building of solutions

Some algorithms directly build solutions by taking into account a dominant subset of so-
lutions. While the dominance rule is not used in the structure of the model, as it was in the
previous section, it manifests itself in the way the solution is built by a solving algorithm.

For example, we have seen in Section 4 that the set of semi-active schedules is dominant
for 1|ri |

∑
Ci and 1|ri |

∑
Ti allowing solving algorithms for these problems to build sequences

of tasks instead of using starting times of tasks as decision variables. The starting times are
obtained by scheduling the jobs as early as possible in the order of the sequence (see for ex-
ample [7]).

7.3. Dominance rules as decision rules

Some algorithms are designed to deal with a specific problem, and most of them rely on
dominance properties. They exploit interesting properties of the solutions being sought, and
often belong to the class of polynomially solvable problems [17]. These properties are usually
sufficiently strong to specify the structure of the optimal solutions which can then directly
be built. Since the properties used are specific to the given problem, most of the time these
algorithms cannot be used to solve other problems.

For example, Smith’s rule described in Section 4.4 for the solving of 1||
∑

Ci , is such a de-
cision rule. An instance of this problem can be solved simply by iteratively choosing the task
with the shortest processing time and by scheduling it as soon as possible. Thus, in schedul-
ing, decision rules are often described by giving a criterion (the processing time of the task in
the example) which allows the next job to schedule to be identified. These criteria are com-
monly called priority rules.

7.4. Dominance rules and preprocessing

Preprocessing is a phase that occurs after the problem has been modeled but before it
has been solved. It consists of operations that can be performed to improve or simplify the
formulation by tightening bounds on variables, fixing values, etc. [19]. The aim is to prepare
the formulation for the chosen solution method. The use of dominance rules is natural at this
stage in the solution process. Different operations can be performed according to dominance
rules:

• They facilitate the assignment of fixed values to some variables which can then be elim-
inated from the model.

• They may allow new constraints to be added, thus reducing the search space.

• They may allow the bounds of the variables to be tightened.

• They facilitate the splitting of a problem into subproblems.

7.5. Dominance rules in evaluation methods

When there is no possibility of an optimal solution (because of the size or of the intractabi-
lity of the problem), or no requirement for one, suboptimal solutions may only be sought us-
ing approximate algorithms. Approximate methods include any way that can provide a “good”
or near-optimal feasible solution with low computational requirements. Among these, greedy
algorithms with their more or less complex variants and metaheuristics [42] appear to be very
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effective for a wide variety of problems. Thus, in minimization (respectively maximization)
methods, approximate algorithms produce upper bounds (respectively lower bounds) of the
value of the objective function. Lower bounds (respectively upper bounds) of problems are
important information in minimization (respectively maximization) problems. Indeed, they
provide indications about the quality of the solutions being built, and they can improve the
behavior of solving algorithms, particularly in enumerative methods (see Section 5.4).

Both in approximate algorithms and in the production of bounds, dominance rules are
of significant interest. A lot of heuristics use dominance rules to improve the quality of the
solutions built (see for example [43, 44, 45]). Dominances between instances of problems
or between problems are particularly useful for the development of bounds (see Sections 6.2
and 6.3).

7.6. Dominance rules and linear programming

Many problems belong to the class of problems solvable with linear programming. These
problems are characterized by a linear objective function, linear inequality constraints and
variables whose domain is the set of real numbers. The solution space defined by the linear
inequality constraints is a convex polytope. These problems can be solved using the “simplex
algorithm” [46] which proceeds from one vertex of the polytope to another one by improving
each time the value of the objective function. Dominance rules can be exploited as prepro-
cessing to add some inequalities during a preprocessing phase (see Section 7.4). One way to
solve a combinatorial search problem is also to identify a dominant set of solutions which can
be expressed across a linear programming model.

In integer linear programming methods (see for example [19]), the problem is formu-
lated with a set of linear inequalities which describe a convex polyhedron enclosing points
corresponding to the subset of feasible solutions of the combinatorial problem whose coordi-
nates are integers. A variant of the simplex algorithm can then be applied in which additional
inequality constraints, called “cutting planes”, are generated as needed as the computation
progresses. Cutting planes limit the solution space and can be considered as feasibility-led
dominance rules identifying a dominant subset of solutions.

7.7. Dominance rules and dynamic programming

A large number of combinatorial problems (see for example [47, 48]) fit into the recursive
framework of dynamic programming: solving a problem of order N requires solving sub-
problems of order N − 1, N − 2, . . . ,1, where the solution of a subproblem of order i can be
expressed in terms of solutions of order i −1. This allows a recursive approach for solving the
original problem from the solutions of the subproblems.

This approach is based on Bellman’s principle of optimality [49] which can itself be con-
sidered as a dominance rule: "an optimal sequence of decisions (a policy) has the property that

whatever the initial state and initial decisions are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decisions". Thus, an optimal solu-
tion can be built from locally optimal solutions of subproblems. Using dynamic programming
to solve a problem essentially means deciding how to separate the problem into subproblems
in order to satisfy the principle of optimality. Such a property has to be found in the struc-
tural properties of the problem solutions, and entails the use of dominance rules. Moreover,
dominance rules can be used to eliminate non-interesting solutions of subproblems during
the execution of the algorithm.
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Kohler and Steiglitz [25] establish the relationship between enumerative and dynamic pro-
gramming algorithms by showing that a dynamic programming method is equivalent to an
enumerative algorithm (see the following section) in which dominance relations are used. In
fact, solutions generated by the dynamic programming method for the subproblem of order i

are the non-dominated solutions according to the dominance relation used in the enumera-
tive method. The states generated for both methods are then the same.

7.8. Dominance rules and enumerative methods

Among the most commonly-used methods for solving combinatorial problems are the
enumerative techniques [50] that we encounter in the literature under a variety of names,
such as “Backtrack Programming” [20]. These are used for solving problems for which there
is no known way of avoiding the huge size of their solution space. The idea is to find a way
of organizing an enumerated list of solutions, using as much information as possible, so as to
eliminate intelligently dominated parts of the solution space as the computation progresses,
without having to enumerate these dominated parts [25] explicitly.

Thus, the term “partial enumeration” is often used, meaning a procedure for systemati-
cally enumerating parts of the solutions of Ω and examining them in such a way as to ensure
that, by enumerating a reasonable small number of solutions, we have implicitly examined
all elements of the solution space [51], the ones which are not explored being dominated.
Thus, the utility of the method comes from the fact that only a small part of the solution space
actually needs to be enumerated [52]. The remaining solutions are eliminated from consid-
eration through the application of dominance rules that establish that such solutions cannot
be optimal or better than the best one already known.

Among these methods, the “branch and bound” procedure has been popularized by Land
and Doig [53] to solve Integer Linear Programming problems, by Little et al. [54] to solve the
traveling salesman problem, and by Ignall and Schrage [3] to solve scheduling flowshop prob-
lems. The branch and bound method has been examined and generalized by a lot of authors
(see for example [55, 21, 56, 57, 58]). A formal description with a theoretical behavior study
of branch and bound methods is provided by Kohler and Steiglitz [9, 25] in the context of
permutation problems. The name “branch and bound” arises from two basic operations [52]:

1. branching, which consists in dividing a subset of solutions into smaller subsets;
2. bounding, which consists in establishing bounds on the value of the objective function

over the subsets of solutions, so as to be able to use it with an evaluation-based domi-
nance rule (see Section 5.4).

The branch and bound method needs a recursive application of the branching and the bound-
ing operations. A “lower bound” on the value of the objective function for all solutions belong-
ing to one subset of solutions means that we can stop the branching of this subset since it is
established that no better solution than the one already known can be reached from this sub-
set. The popularity of this rather general method comes from its simplicity and its ability to
solve combinatorial problems even when the objective and the constraints are nonlinear, dis-
continuous or even non-mathematically defined [21]. In order to use the branch and bound
method, it is only necessary to be able to describe the problem as a tree, in which each node
represents a partial solution. In addition, it must be possible to fix, at each node, a lower
bound on the objective function for all nodes that emanate from it [3]. Moreover, if domi-
nance rules can be defined for identifying and eliminating active nodes leading to dominated
solutions (because they are proved to be either not optimal or equivalent to other solutions
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enumerated elsewhere in the search tree) this can dramatically improve the behavior of the
branch and bound procedure [57]. However, this technique may require a good deal of judg-
ment to be able to choose a lower bound, the potential use of an initial solution, the incor-
poration of complicated dominance checks, and the specification of a branching mechanism
[9, 25].

Among the most recent techniques which can be considered as belonging (at least in part)
to enumerative methods is the programming paradigm known as constraint programming

(see for example [23, 22]). The power of the constraint programming method lies mainly
in the fact that constraints of the problem are used in an active process termed “constraint
propagation”, where certain deductions are performed in order to reduce the domain of the
variables, thus reducing the computational effort. Constraint propagation removes values
from the domains, deduces new constraints, and detects inconsistencies. Since constraint
propagation cannot usually detect all inconsistencies, an enumerative method is then used
to branch on the remaining possible decisions. Constraint propagation algorithms mainly
rely on the exploitation of feasibility-led dominance rules (see Section 5.2). Isomorphism-
based dominance rules (see Section 5.3) are also frequently used. Less often, optimality-led
dominance rules are used (see for example [35, 59]). In constraint programming, there are
three main ways of introducing dominance rules [33]:

• remodeling the problem according to dominance rules;

• adding statically (implicit or explicit) constraints to the model which will only be satis-
fied by solutions of dominant parts;

• adding dynamically constraints during the search to ensure that any solution which is
dominated by a solution already considered will not be considered.

8. Conclusion

Many of the “problems of everyday life” are computable and can be handled using com-
puters. Optimizing energy and raw material consumption and reducing costs have recently
become crucial objectives, both for ecological and economic reasons. A lot of the problems
in question can be viewed as combinatorial optimization problems, defined by a set of vari-
ables subject to constraints. The aim is to find an assignment of the variables which satis-
fies all the constraints and which maximizes or minimizes an objective function representing
a performance measure of the solution. There are a wide range of applications, including
the distribution of goods, production scheduling, planning, budgeting, facility location and
transportation network design. Dealing with these problems is a challenge. Indeed, most of
them belong to the class of NP-Hard problems. Most of the time, and even for small-scale
problems, the number of possible assignments is so huge that it is not feasible to consider all
possibilities. Finding ways to reduce the search spaces is therefore a key issue.

Dominance rules, which eliminate uninteresting assignments or select interesting ones,
are important stratagems. The interest of dominance rules is obvious since they reduce the
search space of combinatorial problems which are in the process of being solved. Informally, a
dominance rule identifies, generally via the formulation of properties, a subset of assignments
containing at least one optimal solution. Despite their extensive use in solving combinatorial
optimization problems, no detailed description of them is, to our knowledge, to be found
in the literature. Thus, in this paper we have formally defined dominance rules. We have
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established how dominance rules can be formulated and characterized. Moreover, we have
shown how useful dominance rules can be in solving combinatorial problems.

It should be noted that the elaboration of the model remains the most crucial step in the
problem solving process. Dominance rules can be used at this stage to reduce the search
space at the outset, as this paper has pointed out. However, the richness of the model and
its associated expressive power are also highly significant. Using dominance rules in filter-
ing methods clearly shows that the different structural properties of interesting solutions are
revealed only in the nuances of an elaborated model. This is why we think that calling tra-
ditional models into question might be the first step towards discovering new solutions to
optimization combinatorial problems.
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