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An adaptive interconnected observer for induction motor (IM) drive without mechanical sensors (speed sensor
and load torque sensor) is presented. The observer estimates the fluxes, the angular velocity, the load torque and
the stator resistance even under or near unobservable conditions. Practical stability based on Lyapunov theory is
proved to guarantee the strongly uniformly practical stability of the estimation error dynamics. A contribution
of this article is the experimental validation of the observer on reference trajectories of a sensorless IM observer
benchmark. The trajectories of this benchmark are chosen to test the motor near and under conditions of
unobservability. Robustness with respect to parameters variations is proved and experimentally verified.

Keywords: induction motor; non-linear systems; adaptive observers; practical stability; low frequencies
benchmark; sensorless

1. Introduction

Induction motors (IM) play an important part in many
types of domestic and industrial processing machinery.
The popularity of the IM is due to its ruggedness and
operational reliability.

However, the IM presents a challenging control
problem. This is mainly due to the following four
factors:

. The IM is a complex highly coupled non-
linear system.

. The rotor fluxes and speed are not usually
measurable.

. Because of heating, the rotor and stator
resistances considerably vary with a significant
impact on the system dynamics.

. The load torque is generally unknown.

There are various methods to control motor torque
and speed, varying in complexity, performance and
cost. The vector techniques are used to adjust the
instantaneous values of voltage and current, thus
permitting high dynamic performance. Vector control
can be implemented in many different ways. The well-
known techniques are the field oriented control
(FOC; Blaschke 1972) and the direct torque control
(DTC; Takahashi and Noguchi 1986).

The FOC is based on resolving the instantaneous
line input motor currents into two components, flux

and torque, producing current components. FOC
motor controllers are essentially current controller
systems. In this way, it is expected that the motor will

produce controllable torque similar to the separately
excited DC drive. In separately excited DC drives, the
torque produced is a function of the magnetic field flux
linkage and armature current component and how the

armature windings are connected.
For direct FOC and variable structure control

(VSC) of IM drive, for example, the speed
knowledge is crucial, and generally sensors are used
to measure it. However, in the high-power range many
sensors are used and their maintenance is difficult.

Vibrations produced by the high-power motor
damage the encoder coupling and the speed measure
quality. Consequently, during the last decade, there
has been a considerable interest to develop IM drive
without mechanical sensors (sensorless). A major

difficulty is the estimation of the state variables at
low frequencies. Another difficulty is to ensure the
robustness against parameter variations. For example,
the most critical parameter affecting performance

at low speed is the stator resistance (Holtz 2002;
Montanari and Tilli 2006). In these papers, it is
shown that relevant uncertainties in stator resistance
value introduce speed and flux estimation error,
leading to uncorrect speed, and flux tracking in

control loop.
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In the literature, several approaches have been
proposed to estimate the rotor velocity, rotor fluxes
and load torque from the stator current and voltage
measurements such as:

. Flux estimation using rather simple models
with explicit compensation of non-linearities
and disturbances (Holtz and Quan 2002).

. State estimation based on high-frequency
signal injection and/or saliency-induced effects
on the stator voltage (Jansen and Lorenz 1995;
Holtz 2000).

. Estimation using adaptive and/or robust
observers based on fundamental excitation
and advanced models (Kubota, Matsuse, and
Nakano 1993; Montanari, Peresada, and Tilli
2003). In Kubota et al. (1993), the estimation
is obtained by means of the cross product of
current error vector and the observed flux
vector.

. Sliding mode techniques to design observer
(Tursini, Petrella, and Parasiliti 2000;
Barambones and Garrido 2004).

. Cascade observer, schemes based on cascade
structure of the electrical and mechanical
parts of the IM (Schreier, Leon, Glumineau,
and Boisliveau 2001; Ghanes, Leon, and
Glumineau 2005).

. Interconnected high-gain observers in
Besançon and Hammouri (1998), Ghanes,
Huerta, Leon, and Glumineau (2004) and
Ghanes, Leon, and Glumineau (2006).

In Ghanes et al. (2004), a high-gain observer connected
to an estimator has been proposed to reconstruct flux
and speed. Furthermore, in order to improve this
observer design, in Ghanes et al. 2006) two inter-
connected observers have been used to estimate the
unmeasurable variables.

In Schreier et al. (2001) and Ghanes et al. (2006), the
main purpose of these observers is to estimate the state
variables and the load torque by taking into account the
IM observability problem at low frequency.

Canudas, Youssef, Barbot, Martin, and Malrait
(2000) and Ibarra, Moreno, and Espinosa (2004)
demonstrate that the main conditions to lose the
observability of IM are: the excitation voltages
frequency is zero and the rotor speed is constant.
In Ghanes et al. (2006), to avoid the bad behaviour
of observer at low frequencies (when the motor is near
or under conditions of unobservability, the authors
proposed the switching method based on the evalua-
tion of the determinant of observability matrix, such
that when the system is in under conditions of
unobservability, the gain of the observer is turned
off. Then the observer may be seen as an estimator

with a limited robustness with respect to IM para-

meters variations. Theory of stability in the sense of
Lyapunov is widely used to investigate properties of

non-linear systems in real applications. It is obvious
that for asymptotic stability an important feature is to
know the size of the region where we can judge whether

or not a given system is stable.
As for the IM, the observability properties are lost

at very low speed, it is well known that it is impossible
to reconstruct the state that asymptotically converges

to indistinguishable trajectories (Ibarra et al. 2004).
However, under these trajectories, it is possible to
design an observer whose performances are acceptable

even if the asymptotic stability cannot be guaranteed.
Thus for these practical considerations, it is clear
that we need a notion of stability that is more suitable

than asymptotic stability. Such a notion is the
practical stability (Laskhmikanthan, Leela, and
Martynyuk 1990).

1.1 Motivation

In order to obtain a better performance by using
a controller, it is necessary to know all parameters and
measure all variables of a system. However, it is not

possible to have the information of all variables of
the system because this requires to implement a lot of
sensors, which are so expensive or are not physical to

implement in the system, or they do not exist. On the
other hand, usually not all parameters are known
exactly or they change on the time. For these reasons,

it is necessary to estimate the non-measurable variables
and identify the unknown parameters, in order to
implement a control law.

The main purpose of this article is to improve

the observer design proposed in Traoré, DeLeon,
Glumineau, and Loron (2006) by adding an estimation
of stator resistance which avoids the above-mentioned

phenomenon caused by effect of stator resistance value
error. The new observer is called ‘adaptive intercon-
nected observer’, which preserves the basic properties

of the proposed interconnected observer.
Analysing the effects of a wrong stator resistance

value on the algorithm of Traoré et al. (2006), it can be
noted that a steady-state estimation error arises for

load torque, motor speed and flux when the IM works
at very low speed (near and under unobservable
conditions). Consequently, the main idea is to design

an observer that can estimate the angular speed, the
flux, the load torque and additionally the stator
resistance (critical parameter at very low speed).

A suitable and simple interconnected form of IM has
been proposed including a new stator resistance
estimation mechanism in the observer design when

1628 D. Traore et al.
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comparing to the previous works of Ghanes et al.
(2006) and Traoré et al. (2006).

1.2 Contribution

In this article, we propose an interconnected adaptive
observer to simultaneously estimate the flux and speed
and identify the load torque and stator resistance for
a sensorless IM.

The goal of the proposed interconnected adaptive
observer is to combine the knowledge of the inputs
(stator voltages) and the measured outputs (currents)
of the sensorless IM to solve the on-line estimation of
the non-measurable states (the flux and the speed),
a physical parameter (stator resistance) and the load
torque. Furthermore, this observer improves the
observer proposed in Traoré et al. (2006) and the
robustness with respect to stator resistance variation.
Sufficient conditions are given to prove the practical
stability of this observer. These conditions are in terms
of the boundedness of parameters variations. Finally,
experimental results are given, on a significant bench-
mark described in Ghanes et al. (2006) to illustrate the
performance of the observer.

The main advantages of our adaptive observer are
(i) its stability can be proved under reasonable condi-
tions, (ii) it does not need any dynamical model of the
parameters variations and (iii) the stability of the
observer under or near the unobservable conditions is
guaranteed, i.e. sufficient conditions are given in order
to guarantee the practical stability of the sensorless IM.

1.3 Paper structure

This article is organised as follows. Section 2 is devoted
to the model of IM. The adaptive interconnected
observer design is introduced in Section 3. In Section 4,
an analysis of the observer convergence using the
practical stability theory is given. Experimental results
are given and discussed in Section 5. Finally, some
conclusions are drawn.

2. Introduction motor model

The IM model, described in this article, is based on the
motor equations in a rotating d and q-axes.1 The IM
dynamics behaviour is described by

_isd
_isq
_�rd
_�rq
_�

2
6666664

3
7777775
¼

ba�rd þ bp��rq � �isd þ !sisq

ba�rq � bp��rd � �isq � !sisd

�a�rd þ ð!s � p�Þ�rq þ aMsrisd

�a�rq � ð!s � p�Þ�rd þ aMsrisq

mð�rdisq � �rqisdÞ � c� � 1

J
Tl

2
66666664

3
77777775

þ

m1 0

0 m1

0 0

0 0

0 0

2
6666664

3
7777775

usd

usq

� �
ð1Þ

where isd, isq, �rd, �rq, usd, usq, �, Tl and !s are the
stator currents, the rotor fluxes, the stator voltage
inputs, the angular speed, the load torque and the
stator frequency, respectively. The subscripts s and r
refer to the stator and rotor. The parameters a, b, c, �,
�, m and m1 are defined as a¼Rr/Lr, b¼Msr/�LsLr,

c¼ fv/J, � ¼ L2
r RsþM2

srRr

�LsL2
r

, � ¼ 1� ðM2
sr=LsLrÞ, m¼ pMsr/

JLr, m1¼ 1/�Ls. Rs and Rr are the resistances. Ls and
Lr are the self-inductances, Msr is the mutual induc-
tance between the stator and rotor windings. p is the
number of pole-pair. J is the inertia of the system
(motor and load) and fv is the viscous damping
coefficient. Let �1¼ ��m1Rs which is needed in the
sequel of the study.

�( _� ¼ !s) and !s are respectively the angular
position and speed of the dq-frame with respect to a
fixed stator reference frame ��, where the physical
variables are defined. Transformed variables in (1) are
given by

x�

x�

� �
¼ Pð�Þ xd

xq

� �
,

xd

xq

� �
¼ Pð��Þ x�

x�

� �

where Pð�Þ ¼ ½ cos �
� sin �

sin �
cos � �:

Remark 2.1: � is the relative angle between stator
and rotor, that is needed to do a transformation
from natural phase currents to dq-reference frame. � is
derived from !s ( _� ¼ !s). The stator frequency (!s) can
be provided by considering the two cases:

. the observer is used with a control law
(e.g. scalar control) which can give the stator
frequency,

. the observer is used with a control law that
cannot give the stator frequency, or the
observer is used without controller (fault
detection, diagnosis, etc.). In this case, the
stator frequency must be estimated. œ

3. Adaptive interconnected observers design

It is clear that in the literature there are several
contributions in adaptive observer design. For
instance, in Montanari et al. (2003) an adaptive
observer is proposed to estimate the non-measurable
variables and to identify the rotor resistance. Sufficient
conditions are given to prove the convergence of this
observer.

International Journal of Control 1629
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Combining sliding mode techniques and adaptation

methods, an adaptive sliding mode observer scheme

has been proposed in Furuhashi (1990).
Furthermore, in Marino (1990) sufficient and

necessary conditions are given for a non-linear

system to be transformable by state-space change of

coordinates into a special adaptive observer form.

Other contributions propose an adaptive observer

to estimate the speed and flux and assuming either

the load torque or the stator resistance is known.
This section displays the design of an adaptive

interconnected observer (Besançon and Hammouri

1998; Besançon, Leon, and Huerta 2006) for the

sensorless IM. It is assumed that load torque and

stator resistance are slowly varying with respect to

electric and mechanic variables. Then the dynamic

behaviour of these two variables can be read as

_Tl ¼ 0 _Rs ¼ 0: ð2Þ

Remark 3.1: Equation (2) means that the load torque

and stator resistance values are assumed to be

approximate by piecewise constant function. Only the

bound of the load torque is assumed to be known.

Furthermore, it is clear that the stator resistance slowly

changes with the temperature. However, using step

constant functions this variation can be approximated

and the proposed approach works. Other approaches

can be used, for instance singular perturbation

methodology; however, the dynamics of the IM is

fast with respect to the variations of the stator

resistance that it could be considered constant. œ

Thus, the extended IM model (1) and (2) may be

seen as the interconnection between two subsystems

�1

_X1 ¼ A1ðX2, yÞX1 þ g1ðu, y,X2,X1Þ þ�Tl

y1 ¼ C1X1

(
ð3Þ

and

�2

_X2 ¼ A2ðX1ÞX2 þ g2ðu, y,X1,X2Þ
y2 ¼ C2X2

(
ð4Þ

with

A1ð�Þ ¼
0 bp�rq �m1isd

�m�rq �c 0

0 0 0

2
64

3
75,

A2ð�Þ ¼
��1 �bp� ab

0 �a �p�

0 p� �a

2
64

3
75,

g1ð�Þ ¼
��1isd þ ab�rd þm1usd þ !sisq

m�rdisq

0

2
64

3
75,

g2ð�Þ ¼
�m1Rsisq � !sisd þm1usq

!s�rq þ aMsrisd

�!s�rd þ aMsrisq

2
64

3
75,

� ¼
0

� 1

J
0

2
64

3
75,

C1 ¼ C2 ¼ 1 0 0½ �:
X1¼ [isd � Rs]

T and X2¼ [isq �rd �rq]
T are respectively

the state vectors of (3) and (4), u¼ [usd usq]
T is the

input, and y¼ [isd isq]
T is the output of the IM model.

Furthermore, the IM physical operation domain D
is defined by the set of values

D ¼ �
X 2 R7 j j�rdj � �max

d , j�rqj � �max
q ,

isdj � Imax
d , jisqj � Imax

q , j�j � �max,

jTlj � Tmax
l , jRsj � Rmax

s

�
with X¼ [�rd �rq isd isq � Tl Rs]

T and

�max
d , �max

q , Imax
d , Imax

q , �max, Tmax
l , Rmax

s the actual

maximum values for fluxes, currents, speed, torque

load and stator resistance, respectively.

Remark 3.2: The choice of the variables of each

subsystem has been considered in order to separate

the mechanical variables (�,Tl,Rs) from the magnetic

variables (�rd,�rq). It is clear that other choice could be

considered in order to represent these subsystems,

provided an observer could be designed. œ

The adaptive interconnected observer, developed

in the sequel for the sensorless IM, is based on the

interconnection between several observers satisfying

some required properties, in particular the property

of input persistence (Besançon and Hammouri 1996).

As defined in this latter reference, the input

persistence is related to the observability properties

of system (3) and (4).
In order to design an observer for system (3)

and (4), a separate synthesis of the observer for each

subsystem is required.

Remark 3.3:

(1) X2 and X1 are respectively considered as inputs

for subsystems (�1) and (�2). From Besançon

and Hammouri (1996), solutions of _S1 and _S2

(used below for the observer design) are

symmetric positive definite matrices.
(2) When the IM remains in the observable area,

X2 and X1 satisfy the regularly persistence

1630 D. Traore et al.
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condition: then, asymptotic stability of the

observer is guaranteed.
(3) When the IM remains in the unobservable

area, X2 and X1 do not satisfy the regularly

persistence condition. Then, asymptotic stabi-

lity of the observer is not guaranteed. This

problem is solved, by using the practical

stability introduced in Section 4. œ

Remark 3.4: From (3) and (4), it is clear that

A1(X2, y) is globally Lipschitz w.r.t. X2, A2(X1) is

globally Lipschitz w.r.t. X1. g1(u, y,X2,X1) is globally

Lipschitz w.r.t. X2, X1 and uniformly w.r.t. (u, y) and

that g2(u, y,X2,X1) is globally Lipschitz w.r.t. X2, X1

and uniformly w.r.t. (u, y). œ

Then, adaptive interconnected observers for

subsystems (3) and (4) are given by

O1 :

_Z1 ¼ A1ðZ2,yÞZ1 þ g1ðu,y,Z2,Z1Þ þ�T̂l

þð$�S�1
3 �TCT

1 þ�S�1
1 CT

1 Þðy1 � ŷ1Þ
þKCT

2 ðy2 � ŷ2Þ
_̂
Tl ¼$S�1

3 �TCT
1 ðy1 � ŷ1Þ

þB1ðZ2Þðy2 � ŷ2Þ þB2ðZ2Þðy1 � ŷ1Þ
_S1 ¼��1S1 �AT

1 ðZ2,yÞS1 �S1A1ðZ2,yÞ þCT
1C1

_S3 ¼��3S3 þ�TCT
1C1�

_�¼ ðA1ðZ2,yÞ ��S�1
1 CT

1C1Þ�þ�

ŷ1 ¼ C1Z1

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð5Þ

O2 :

_Z2 ¼A2ðZ1ÞZ2þg2ðu,y,Z1,Z2ÞþS�1
2 CT

2 ðy2� ŷ2Þ
_S2 ¼��2S2�AT

2 ðZ1ÞS2�S2A2ðZ1ÞþCT
2C2

ŷ2 ¼C2Z2

8><
>:

ð6Þ
with Z1 ¼ ½îsd �̂ R̂s�T and Z2 ¼ ½îsq �̂rd �̂rq�T are the

estimated state variables respectively of X1 and X2. �1,
�2, �3 are positive constants, S1 and S2 are symmetric

positive definite matrices (Besançon and Hammouri

1996), S3(0)4 0, B1ðZ2Þ ¼ km�̂rd, B2ðZ2Þ ¼ �km�̂rq,

K ¼
�kc1 0 0

�kc2 0 0

0 0 0

2
64

3
75, � ¼

1 0 0

0 1 0

0 0 �

2
64

3
75

with k, kc1, kc2, � and $ are positive constants.
We can see that the first observer (5) is constituted

of two parts: one part to estimate the state (isd � Rs)

and the second part to estimate the load torque (Tl), by

using the stator currents isd and isq. This second part

depends on a differential equation representing a

dynamical system described in terms of � (the state

of this system) and � (the input matrix).

Furthermore, ð$�S�1
3 �TCT

1 þ �S�1
1 CT

1 Þ and KCT
2

are the gains of observer (5) and S�1
2 CT

2 is the gain of

observer (6).
The gain of the observer (5) is split into two terms.

The first one, ð�S�1
1 CT

1 Þ, is associated to the state

estimation and depends on the solution of a Ricatti

equation. The second one ð$�S�1
3 �TCT

1 Þ is related

to the identification parameter and depends on the

solution of a differential equation. The solutions of

these equations are dependent of the regularly persis-

tence (richness of the signal) with respect to state and

the parameter, respectively.

Remark 3.5: In Equation (5) the term

(B1(Z2)( y2� ŷ2)þB2(Z2)( y1� ŷ1)) can be expressed

as follows:

B1ðZ2Þð y2 � ŷ2Þ þ B2ðZ2Þð y1 � ŷ1Þ
� k½mð�̂rdisq � �̂rqisdÞ �mð�̂rdîsq � �̂rqîsdÞ�
� kðTe � ~TeÞ

where Te and ~Te are the ‘measured’ and ‘estimated’

electromagnetic torques, respectively. œ

Lemma 3.6 (Besançon and Hammouri

1996): Assume that v is a regularly persistent input

for state affine system (3) and (4), and consider the

following Lyapunov differential equation:

_SðtÞ ¼ ��SðtÞ � ATðvðtÞÞSðtÞ � SðtÞAðvðtÞÞ þ CTC

with S(0)4 0, then

9�0 4 0, 8� � �0, 9 ��4 0, ��4 0, t0 4 0 :

8t � t0, ��I � SðtÞ � ��I,

where I is the identity matrix (see the proof in

Besançon and Hammouri (1996)). œ

It is clear that v¼ (u,X2) and S(t)¼S1 for

subsystem (3), and for subsystem (4) one has

v¼ (u,X1) and S(t)¼S2.
It is worth mentioning that the conditions of

observability loss have been stated in Ibarra et al.

(2004), where the IM is unobservable under some

inputs (the rotor speed constant and stator frequency

set to zero simultaneously). In the IM observability

area, the inputs v¼ (u,X2) and v¼ (u,X1), for sub-

system (3) and (4), respectively, are regularly persistent

and the convergence of the observer can be assured.

However, in the unobservable region IM (under the

conditions of speed constant and stator frequency set

to zero), such inputs are ‘bad input’ and the observer

convergence is not guaranteed. The use of practical

stability properties can solve this problem.
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4. Stability analysis of observer under uncertain

parameters

Under indistinguishable trajectories (unobservable

area) (Ibarra et al. 2004), the asymptotic convergence

of any observer cannot always be guaranteed because

the observability properties are lost on these trajec-

tories. Then, in such cases, it is necessary to analyse

the stability of the observer and the closed loop system.

The practical stability notion (Laskhmikanthan et al.

1990) allows to establish that dynamics of the

estimation error converge in a ball Br of radius r

(x2Br)kxk� r). If r! 0 at t!1, then the classical

asymptotic stability is obtained.

4.1 Preliminary results

This part is essentially devoted to introduce some

concepts and results of practical stability properties

using Lyapunov-like functions and the theory of

differential inequalities (Laskhmikanthan et al. 1990).

Define the following class of function: W¼ {d12
C[IRþ, IRþ]: d1(l) is strictly increasing in l and

d1(l)!1 as l!1}. Let Br¼ {e2 IRn : kek� r} where

e¼ (	i, i¼ 1, . . . , n)T.
Consider the dynamical system

_e ¼ f ðt, eÞ, eðt0Þ ¼ e0, t0 � 0: ð7Þ

Then system (7) is said to be:

(PS1) Uniformly practical stable if, given (�h1, �h2) with
05 �h15 �h2, we have

e0k k � �h1 ) eðtÞ�� �� � �h2, 8t � t0, 8t0 2 IRþ:

(PS2) Uniformly practical quasi-stable if, given �h14 0,

=4 0, T4 0 and 8t02 IRþ, we have

e0k k � �h1 ) eðtÞ�� �� � =, t � t0 þ T:

(PS3) Strongly uniformly practical stable, if (PS1) and

(PS2) hold together.

Theorem 4.1 (Laskhmikanthan et al. 1990): Assume

that:

(i) �h1, �h2 are given such that 05 �h15 �h2;
(ii) V2C[IRþ� IRn, IRþ] and V(t, e) is locally

Lipschitzian in e;
(iii) for (t, e)2 IRþ�B�h2, d1(kek)�V(t, e)� d2(kek)

and

_Vðt, eÞ � }ðt,Vðt, eÞÞ ð8Þ

where d1, d22W and } 2 C½IR2
þ, IR�;

(iv) d2(�h1)5 d1(�h2) holds.

Then, the practical stability properties of:

_l ¼ }ðt, lÞ, lðt0Þ ¼ l0 � 0, ð9Þ
imply the corresponding practical stability properties

of system (7). œ

Corollary 4.2 (Laskhmikanthan et al. 1990): In

Theorem 4.1, }(t, l)¼��1lþ �2, with �1 and �24 0,

implies strong uniform practical stability of

system (7). œ

For the proofs of Theorem 4.1 and Corollary 4.2,

we refer to Laskhmikanthan et al. (1990).

4.2 Stability analysis

Consider that the IM parameters are uncertain

bounded with well-known nominal values. Then,

Equations (3) and (4) can be rewritten as

_X1 ¼ A1ðX2, yÞX1 þ g1ðu, y,X2,X1Þ þ�Tl

þ�A1ðX2, yÞ þ�g1ðu, y,X2,X1Þ
y1 ¼ C1X1 ð10Þ

_X2 ¼ A2ðX1ÞX2 þ g2ðu, y,X1,X2Þ
þ�A2ðX1Þ þ�g2ðu, y,X1,X2Þ

y2 ¼ C2X2 ð11Þ
with �A1(X2, y), �A2(X1), �g1(u, y,X2,X1) and

�g2(u, y,X1,X2) are the uncertain terms of A1(X2, y),

A2(X1), g1(u, y,X2,X1), g2(u, y,X1,X2), respectively.

Note that Rid
r , Rid

s , Mid
sr, Jid, Lid

s and Lid
r are the

identified parameters. Because of experimental condi-

tions (e.g. temperature variation, imprecision of

identification method), the identified parameters are

not exactly the real parameters of the IM. Then, one

has b¼ bidþ�b, a¼ aidþ�a, c¼ cidþ�c, m¼midþ
�m, m1 ¼ mid

1 þ�m1, �1 ¼ � id1 þ��1, with bid, aid, cid,

mid, mid
1 , �

id
1 , �b, �a, �c, �m, �m1 and ��1 are the

identified values and uncertain values for b, a, c, m, m1

and �1, respectively. It follows that the uncertain terms

are represented as

�A1ð�Þ ¼
0 �b � p�rq ��m1 � isd

��m � �rq ��c 0

0 0 0

2
64

3
75

�g1ð�Þ ¼
���1 � isd þ�ab � �rd þ�m1 � usd þ !sisq

�m � �rdisq
0

2
64

3
75:

�A2(X1), �g2(u, y,X2,X1) can be written following a

similar way.
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By considering the IM physical operation

domain D, then there exist positive constants �i4 0,

for i¼ 1, . . . , 4; such that

�A1ðX2, yÞ
�� �� � �1, �A2ðX1Þ

�� �� � �2,

�g1ðu, y,X2,X1Þ
�� �� � �3, �g2ðu, y,X1,X2Þ

�� �� � �4:

The parameters �i, i¼ 1, . . . , 4 are positive constants

determined from the maximal values of �A1(�), �A2(�),
�g1(�) and �g2(�) in the physical domain D.

Let the estimation errors define as

	01 ¼ X1 � Z1, 	2 ¼ X2 � Z2, 	3 ¼ Tl � T̂l: ð12Þ
From Equations (5) and (6) and (10) and (11), one gets

_	01 ¼ ½A1ðZ2, yÞ �$�S�1
3 �TCT

1C1 � �S�1
1 CT

1C1�	01
þ�	3 � KCT

2C2	2 þ ½A1ðX2, yÞ þ�A1ðX2, yÞ
� A1ðZ2, yÞ�X1 þ g1ðu, y,X2,X1Þ
þ�g1ðu, y,X2,X1Þ � g1ðu, y,Z2,Z1Þ ð13Þ

_	2 ¼ ½A2ðZ1Þ � S�1
2 CT

2C2�	2 þ ½A2ðX1, yÞ
þ�A2ðX1, yÞ � A2ðZ1, yÞ�X2 þ g2ðu, y,X1,X2Þ
þ�g2ðu, y,X1,X2Þ � g2ðu, y,Z1,Z2Þ ð14Þ

_	3 ¼ �$S�1
3 �TCT

1C1	
0
1 � B1ðZ2ÞC2	2 � B2ðZ2ÞC1	

0
1:

ð15Þ
Following the same idea as in Zhang (2002), and

applying the transformation 	1¼ 	01��	3, it yields

_	1 ¼ _	01 ��_	3 � _�	3: ð16Þ
By substituting (16) into (13)–(15), the estimation error

dynamics are given by

_	1 ¼ ½A1ðZ2, yÞ � �S�1
1 CT

1C1 þ B21�	1
þ g1ðu, y,X2,X1Þ þ�g1ðu, y,X2,X1Þ
� g1ðu, y,Z2,Z1Þ þ ðB12 � K0Þ	2 þ B22	3

þ ½A1ðX2, yÞ þ�A1ðX2, yÞ � A1ðZ2, yÞ�X1

_	2 ¼ ½A2ðZ1Þ � S�1
2 CT

2C2�	2 þ ½A2ðX1Þ
þ�A2ðX1Þ � A2ðZ1Þ�X2g2ðu, y,X1,X2Þ
� g2ðu, y,Z1,Z2Þ þ�g2ðu, y,X1,X2Þ

_	3 ¼ �½$S�1
3 �TCT

1C1�þ B0
2�	3

� ½$S�1
3 �TCT

1C1 þ B00
2�	1 � B0

1	2

ð17Þ

with B21¼�B2(Z2)C1, B12¼�B1(Z2)C2, B22¼�B2�
(Z2)C1�, B2

0 ¼B2(Z2)C1�, B2
00 ¼B2(Z2)C1, B1

0 ¼B1�
(Z2)C2, K0 ¼ KCT

2C2. Since (u,X2) and (u,X1) are

regular persistent inputs for subsystems (10) and (11),

respectively, and from Lemma 3.6, then there exist

t0� 0 and real numbers 
max
Si

4 0, 
min
Si

4 0 which are

independent of �i such that Vðt, 	iÞ ¼ 	Ti Si	i (1� i� 3)
(Besançon and Hammouri 1996)

8t � t0 
min
Si

	ik k2� Vðt, 	iÞ � 
max
Si

	ik k2: ð18Þ
Theorem 4.3: Consider the extended IM dynamic
model represented by (3) and (4). Systems (5) and (6)
is an adaptive observer for systems (3) and (4).
Furthermore, the strongly uniformly practical stability
of estimation error dynamics (17) is established. œ

Proof of Theorem 4.3: A Lyapunov function candi-
date is considered as V0¼V1þV2þV3, where V1 ¼
	T1S1	1, V2 ¼ 	T2S2	2 and V3 ¼ 	T3S3	3. Taking the time
derivative of V0 and using (5), (6) and (17), we have

_V0 ¼ 	T1 ��1S1�ð2S1�S
�1
1 �1ÞCT

1C1

�
þ2S1B21g	1þ2	T1S1 A1ðX2,yÞ

�
�A1ðZ2,yÞþ�A1ðX2,yÞ

�
X1

þ2	T1S1 g1ðu,y,X2,X1Þ�g1ðu,y,Z2,Z1Þ
�

þ�g1ðu,y,X2,X1Þ
�þ 	T3 ½��3S3�ð2$�1Þ�TCT

1C1�

�2S3B
0
2�	3þ 	T2 ��2S2�CT

2C2

� �
	2

þ2	T2S2 A2ðX1Þ�A2ðZ1Þþ�A2ðX1Þ
� �

X2

þ2	T2S2 g2ðu,y,X1,X2Þ�g2ðu,y,Z1,Z2Þ
�

þ�g2ðu,y,X1,X2Þ
�

þ2	T1S1ðB12�K0Þ	2þ2	T1S1B22	3

�2	T3 ðB00
2þ$�TCT

1C1Þ	1�2	T3S3B
0
1	2: ð19Þ

According to Lemma 3.6 and tacking the initial
conditions of the IM drive and the observer in the
physical operation domain D, the following inequal-
ities hold:

S1k k � k1, S2k k � k5, X1k k � k3, X2k k � k7

g1ðu,y,X2,X1Þ� g1ðu,y,Z2,Z1Þ
� ��� ��� k4 	2k kþk16 	1k k
A1ðX2,yÞ�A1ðZ2,yÞ
� ��� ��� k2 	2k k
A2ðX1Þ�A2ðZ1Þ
� ��� ��� k6 	1k kþk20 	3k k
g2ðu,y,X1,X2Þ� g2ðu,y,Z1,Z2Þ
� ��� ��� k8 	1k kþk17 	2k k
B0
1

�� ��� k9, B0
2

�� ��� k10, B00
2

�� ��� k18, B12k k � k11,

B21k k � k12, B22k k � k13, K0�� ��� k14

�TCT
1C1

�� ��� k19, S3k k � k15: ð20Þ
Substituting Equation (20) into (19), from

Assumption 3 and by regrouping with respect to
k	1k, k	2k and k	3k, the time derivative of V0 (19) can
be rewritten as follows:

_V0 � � ð�1 � 2k12 � 2k1k16Þ	T1S1	1

� ð�2 � 2k5k17Þ	T2S2	2 � ð�3 þ 2k10Þ	T3S3	3

þ 2ð�1 þ �2 þ �3 þ �4 þ �5Þ 	1k k 	2k k
þ 2�9 	2k k 	3k k þ 2�8 	1k k 	3k k
þ �6 	1k k þ �7 	2k k ð21Þ
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where �1¼ k1k2k3, �2¼ k1k4, �3¼ k5k6k7, �4¼ k5k8,

�5¼ k1(k11� k14), �6¼ 2(k1k3�1þ k1�3), �7¼
2(k5k7�2þ k5�4), �8¼ k1k13� ($k19þ k18), �9¼
�k15k9þ k5k20k7.

Inequality (21) can be rewritten in terms of V1, V2

and V3 as follows:

_V0 � �ð�1 � 2k12 � 2k1k16ÞV1 � ð�2 � 2k5k17ÞV2

� ð�3 þ 2k10ÞV3 þ 2 ~�
ffiffiffiffiffiffi
V1

p ffiffiffiffiffiffi
V2

p
þ ~�7

ffiffiffiffiffiffi
V2

p
þ 2 ~�9

ffiffiffiffiffiffi
V2

p ffiffiffiffiffiffi
V3

p
þ ~�6

ffiffiffiffiffiffi
V1

p
þ 2 ~�8

ffiffiffiffiffiffi
V1

p ffiffiffiffiffiffi
V3

p
ð22Þ

where ~� ¼ P5
j¼0 ~�j, ~�j ¼ �jffiffiffiffiffiffi


min
S1

p ffiffiffiffiffiffi

min
S2

p , j ¼ 1, . . . , 5;

~�8 ¼ �8ffiffiffiffiffiffi

min
S1

p ffiffiffiffiffiffi

min
S3

p , ~�9 ¼ �9ffiffiffiffiffiffi

min
S2

p ffiffiffiffiffiffi

min
S3

p , ~�6 ¼ �6ffiffiffiffiffiffi

min
S1

p , ~�7 ¼ �7ffiffiffiffiffiffi

min
S2

p .

Using the following inequalities:

ffiffiffiffiffiffi
V1

p ffiffiffiffiffiffi
V2

p
� ’1

2
V1 þ 1

2’1
V2

ffiffiffiffiffiffi
V1

p ffiffiffiffiffiffi
V3

p
� ’2

2
V1 þ 1

2’2
V3

ffiffiffiffiffiffi
V2

p ffiffiffiffiffiffi
V3

p
� ’3

2
V2 þ 1

2’3
V3 8’iði ¼ 1, 2, 3Þ2 �0, 1½,

ð23Þ
by substituting (23) into (22), we obtain

_V0 � �ð�1 � 2k12 � 2k1k16 � ~�’1 � ~�8’2ÞV1

� ð�2 � 2k5k17 � ~�

’2
� ~�9’3ÞV2

� ð�3 þ 2k10 � ~�8

’2
� ~�9

’3
ÞV3

þ ~�6 	1k k þ ~�7 	2k k, ð24Þ
and consequently, we have

_V0 � ��ðV1 þ V2 þ V3Þ þ �ð
ffiffiffiffiffiffi
V1

p
þ

ffiffiffiffiffiffi
V2

p
Þ

� ��V0 þ � 
ffiffiffiffiffiffi
V0

p
, ð25Þ

where �¼min(�1, �2, �3), � ¼ maxð ~�6, ~�7Þ, where

�1 ¼ �1 � 2k12 � 2k1k16 � ~�’1 � ~�8’2 4 0, �2 ¼ �2�
2k5k17 � ~�

’2
� ~�9’3 4 0, �3 ¼ �3 þ 2k10 � ~�8

’2
� ~�9

’3
4 0,

and  4 0, such that  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 þ V2 þ V3

p
4

ffiffiffiffiffiffi
V1

p þ ffiffiffiffiffiffi
V2

p
.

So that

�1 4 2k12 þ 2k1k16 þ ~�’1 þ ~�8’2

�2 4 2k5k17 þ ~�

’2
þ ~�9’3

�3 4
~�8

’2
þ ~�9

’3
� 2k10: ð26Þ

Next, consider the following change of variable

v ¼ 2
ffiffiffiffiffiffi
V0

p
, the time derivative of v is given by

_v � ��vþ  �: ð27Þ

From Theorem 4.1 we have }(t, l)¼��lþ �, there-
fore (9) can be expressed as

_l ¼ ��lþ  �, lðt0Þ ¼ l0 � 0 ð28Þ
and its solution is given as

lðtÞ ¼ lðt0Þe��ðt�t0Þ þ r � ð1� e��ðt�t0ÞÞ ð29Þ
where r ¼  �

� depends on parameters �i (i¼ 1, 2, 3).
Now, in order to prove the strongly uniformly

practical stability (refer to Corollary 4.2) of (28), first
let us prove the uniform practical stability. Suppose
that l(t0)� �h1. Then, from (29) we have:

lðtÞ � lðt0Þ þ r

� �h1 þ r � �h2 ð30Þ

so that l(t0)� �h1 implies l(t)� �h2, 8t� t0. According to
(PS1), (28) is uniformly practically stable.

Next, let us prove the uniformly quasi-practical
stability of (28). Suppose that there exist �h14 0, =4 0,
T4 0, l(t0)� �h1 and t� t0þT. Equation (29) verifies
the following inequality:

lðtÞ � lðt0Þe��T þ r

� �h1e
��T þ r � = ð31Þ

so that l(t0)� �h1 implies l(t)�=, 8t� t0þT. According
to (PS2), (28) is uniformly practically quasi-stable.

Then, according to definition (PS3), (28) is strongly
uniformly practically stable.

In order to prove the strong uniform practical
stability of (17), we check all the conditions of
Theorem 4.1. It is clear that from (30) and (31),
�h15 �h2, =5 �h2, then condition (i) of Theorem 4.1 is
satisfied.

Now by using (18), we have 
minkek2�
V0(t, e)� 
max kek2, V0(t, e) is a Lyapunov function,
locally Lipschitz in e, where 
min ¼
minf
min

Si
, i ¼ 1, 2, 3g and 
max ¼ maxf
max

Si
, i ¼ 1, 2, 3g.

Taking d1(kek)¼ 
minkek2, d2(kek)¼ 
maxkek2. Next,
for (t, e)2 IRþ�B�h2

, d1(kek)�V0(t, e)� d2(kek) and
from (25) }ðt,V0ðt, eÞÞ ¼ ��V0 þ � 

ffiffiffiffiffiffi
V0

p
. Then, the

conditions (ii) and (iii) of Theorem 4.1 are verified.
Next, we prove condition (iv) of Theorem 4.1. On

one hand v(t0)� �h1 (because l(t0)� �h1) implies v(t)� �h2
(because l(t)� �h2), 8t� t0. Moreover,V0ðt, eÞ ¼ 1

4 vðtÞ2.
Then, it follows that v(t0)� �h1, implies

minke0k2 5 1

4 �h
2
1. Hence, ke0k5 1

2
ffiffiffiffiffiffi

min

p �h1.

On the other hand, 1
4 vðtÞ2 ¼ V0ðt, eÞ ¼


maxkeðtÞk2 5 1
4 �h

2
2. Hence, keðtÞk5 1

2
ffiffiffiffiffiffiffi

max

p �h2. This
proves the uniform practical stability of (17). Con-
sequently 05 1

2
ffiffiffiffiffiffi

min

p �h1 5 1
2

ffiffiffiffiffiffiffi

max

p �h2. Writing the above
inequality in the following form, we have 
max�h21 5

min�h22, that implies d2(�h1)5 d1(�h2). Finally, all
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conditions of Theorem 4.1 hold. Then, this implies the

strongly uniformly practical stability of (17).

Remark 4.4:

(1) Inequality (26) depends on the Lipschitz

constants. From Lipschitz constants, we can

calculate the minimum value of �i (i¼ 1, 2, 3).

Then, we tune �i in order to precisely adjust

the time convergence of the observer.
(2) In inequality (25), � depends on parametric

uncertainties (see �6 and �7). If IM

parameters are exactly known �¼ 0 otherwise

(under uncertainties) � 6¼ 0. Then the precision

of the observer depends on �,  and �.
The radius of the ball in the practical stability

proof is r ¼  �
� . This radius can be adjusted

by tuning �(�i).

5. Experimental results

The proposed observer algorithm has been tested

using a 1.5 kW IM, whose data are reported in

Tables 1 and 2.
The experimental set-up is equipped with:

(1) Three phases inverter operated with a symme-

trical PWM technique with 5 kHz switching

frequency.
(2) A permanent magnet synchronous motor con-

trolled by industrial drive and used to provide

a desired speed.
(3) A custom floating-point digital signal processor

dSPACE (DS1103) board, and its interface.

The dSPACE board performs data acquisition

(two stator currents, DC-link voltage, load

torque and rotor speed, by means of a 512 ppr

incremental encoder, and only for monitoring

purposes), computes the control algorithm and

generates the PWM signals for the inverter
actuation.

The algorithms implemented in the dSPACE board
have a total time computational cost of 100ms.
The experimental sampling time T is equal to 200 ms.
The parameters were chosen as follows: �¼ 0.01,
k¼ 0.012, kc1¼ 0.01, kc2¼ 0.01, $¼ 5, �1¼ 2000,
�2¼ 3400 and �3¼ 2 to satisfy convergence conditions.

The identified parameters of the IM have previously
been obtained off-line and they are assumed to be close
of the real values of the IM, it is clear that they are not
exactly the real values. However, in the sequel these
identified parameters are used to represent the so-called
‘nominal system’ and they will be used to start the test
on the performance of the proposed observer.

The experimental results for ‘the nominal case’
(no uncertainties) are shown in Figure 1. These figures
show that the estimated speed (Figure 1(a)) and the
estimated load torque (Figure 1(d)) converge to their
actual values (Figure 1(b)) and (Figure 1(c)), respec-
tively. From this figure, we can see that the good
performance of the observer under ‘nominal’ condi-
tions. In this test, the initial value of the stator
resistance is set equal to the identified value, and it is
shown (Figure 1(e)) its convergence to a steady state
value which is almost independent of the operating
condition (observable and unobservable area).
The convergence of the resistance estimator also
reduces the speed observation error. From this figure,
it follows that the estimated stator resistance rated
value is constant. However, the behaviour of the
observer is affected near and under conditions of
unobservability. Comparing to the observer given in
Ghanes et al. (2006), we noted that the estimated speed
and load torque are not unstable near and under
conditions of unobservability. However under these
conditions, the asymptotically convergence of the
errors dynamics is not ensured due to the inputs are
not persistent in this zone. This is why we have
introduced the practical stability.

The robustness of the observer is tested by
introducing þ50% variation on rotor resistance value
used in the observer parameters (Figure 2). This figure
displays similar experimental results for the stator
resistance nominal case under unobservability condi-
tions. Comparing to ‘nominal case’ (Figure 1), it
appears a static error between the estimated speed
(Figure 2(b)) and measured speed (Figure 2(a)) when
the motor is under conditions of observability.

A second robustness test is made now by
introducing �50% variation on rotor resistance value.
The experimental results are shown in Figure 3. For the
speed and load torque estimation, the conclusion is the
same as þ50% variation case (Figure 2).

Table 1. Motor parameters values of the
set-up.

Nominal rate power 1.5 kW
Nominal angular speed 1430 rpm
Number of pole pairs 2
Nominal voltage 220V
Nominal current 7.5A

Table 2. Motor identified parameters.

Rs 1.633� Msr 0.099H
Rr 0.93� J 0.0111Nm s rad�1

Ls 0.142H fv 0.0018Nm s rad�1

Lr 0.076H
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Figure 1. Nominal case. (a, c) measured speed (rad s�1) and load torque. (Nm), (b, c, e) estimation speed (rad s�1), load torque
(Nm) and stator resistance (ohm).
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Figure 2. þ50% rotor resistance variation (refer to Figure 1 for details of a–e).
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Figure 3. �50% rotor resistance variation (refer to Figure 1 for details of a–e).
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Figure 4. �20% stator resistance initial value variation (refer to Figure 1 for details of a–e).

International Journal of Control 1637

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
l
u
m
i
n
e
a
u
,
 
A
.
]
 
A
t
:
 
1
6
:
0
1
 
2
8
 
A
u
g
u
s
t
 
2
0
0
9



0 1 2 3 4 5 6 7 8 9
−20

0

20

40

60

0 1 2 3 4 5 6 7 8 9
0

2

4

6

0 1 2 3 4 5 6 7 8 9
1.62

1.64

1.66

1.68

1.7

oh
m

Time (s)

b 

a 

d 

c 

e 

ra
d

s–1
N

m

Figure 5. þ20% stator resistance initial value variation (refer to Figure 1 for details of a–e).
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Figure 6. þ20% rotor self-inductance variation (refer to Figure 1 for details of a–e).
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The aim of the next test is to show the good
performances at high speed (under observability
conditions) and low speed (under unobservability
conditions i.e. low-excitation frequency), when the
observer is initialised by a wrong value of the stator
resistance R̂s (nominal value 	 20%).

Figures 4 and 5 display an experimental result of
this test with respectively �20% and þ20% deviation
for the stator resistance initial value. We conclude that
the initialisation of the observer by the wrong value
of stator resistance does not affect is performance.
The estimated speed (Figures 4(a) and 5(a)) converges
to the measured speed (Figures 4(b) and 5(b)). It is the
same conclusion to the load torque; see respectively
Figures 4(d) and 5(d) and Figures 4(c) and 5(c).

By comparing these results to the previous works
(Ghanes et al. 2006; Traoré et al. 2006), we noted that
the load torque is much better estimated. This is
mainly due to the additional terms included in the
proposed observer design and the better estimation of
stator resistance rated value (Figures 4(e) and 5(e)).

A new test is made by introducing a variation of
þ20% on rotor self-inductance and on stator self-
inductance values. The results of these tests are shown
in Figures 6 and 7, respectively. By analysing these
figures, it can be noted that stator self-inductance

variation affects more the performance of the adaptive
observer than rotor self-inductance variation.

6. Conclusion

This study has investigated the observer design for

IM drive without mechanical sensors (speed sensor,
load torque sensor). The major contributions of this

study are:

(1) The design of an adaptive interconnected
observer that estimates the rotor speed, the

rotor fluxes, the load torque and the stator
resistance (critical parameter at low speed).

(2) Based on Lyapunov theory, sufficient condi-

tions have been given to prove the properties of
the practical stability of the error estimation

dynamics are satisfied even under or near
unobservability conditions.

(3) The successful application of the observer

scheme on experimental set-up with a signifi-
cant sensorless observer benchmark.

The experimental results confirm that the
observer can be applied to reconstruct the state at

low frequencies (near and under conditions of turning
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Figure 7. þ20% stator self-inductance variation (refer to Figure 1 for details of a–e).
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unobservability) without turning off the observer gains
at low frequencies. Moreover, the robustness of the
observer is verified by introducing significant para-
meter variations tests.

Note

1. For details about choice of reference frames (in the
current case, dq-frame), see Chiasson (1995).
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