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Conditional Laplace formula in regime switching
model: Application to defaultable bond.

Stéphane GOUTTE *, Armand NGOUPEYOU **

September 22, 2011

Abstract

We give two different formulas to evaluate the conditional Laplace transform of a
regime switching Cox Ingersoll Ross model. One using the property of semi-affine of
this model and the other one using analytic approximation. Then we study the pricing
of bonds issued by two firms considering the default and the correlation risk. In fact,
we consider two firms with correlated default times and we obtain numerical formula
for the bonds prices considering the regime switching market credit notations and the
correlation between the two firms. Finally we give some numerical illustrations.

Keywords Conditional Laplace Transform; Default and Correlation risk; Zero coupon
bond; Regime switching; Credit migration.

MSC Classification (2010): 60H10 91G40 91G60 91B28 65C40

Introduction

In a crisis context where the credit notation of a country or a firm imply financial and
economics repercussion in other one, it is interesting to study the correlation and the im-
pact of the change of this notation on other country or firm. In the literature, models for
pricing defaultable securities have been introduced by Merton [23]. It consists of explic-
itly linking the risk of firm default and the value of the firm. Although this model is a
good issue to understand the default risk, it is less useful in practical applications since
it is too difficult to capture all the macroeconomics factors which appear in the dynamics
of the firm’s value. Hence, Duffie and Singleton [9] introduced the reduced form model-
ing which has been followed by Madan and Unal [22], Jeanblanc and Rutkowski [20] and
others. The main tool of this approach is the “default intensity process” which describes
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in short terms the instantaneous probability of default. We should manage the default
risk considering the financial market as a network where every default can affect another
one and the propagation spread as far as the connections exist. In the literature, to deal
with this correlation risk, the most popular approach is the copula. It consists of defining
the joint distribution of the firms on the financial network considered given the marginal
distribution of each firm. El Karoui and al. developed in [13] a conditional density ap-
proach. Given this density, we can compute explicitly the default intensity processes of
firms considered. We will follow this approach and work without losing any generality
in the explicit case where financial network is defined only with two firms denoted by
A and B. We define default times by general Cox modeling and since density approach is
satisfied, we can use all results in [13]. We really don’t describe the conditional density but
we describe how the default intensity processes have been affected by a common factor
which represents the economic state of the firms. In fact, we define default intensity pro-
cess by a Cox-Ingersoll-Ross (CIR) model with regime switching parameter values. The
Cox-Ingersoll-Ross model was first considered to model the term structure of interest rate
by Cox and al. in [7]. The study of this class of processes was caution by the fact that it
allows us closed form expression of Laplace transform (see Duffie and al. [8]) and model
well the default intensity (Alfonsi and Brigo [1]). We choose to take parameter value of
the CIR process which depend of a regime switching process, typically a continuous time
Markov chain on finite space. Choi in [5] shows that regime switching CIR process cap-
ture more short term interest rate than non switching model. Indeed in a econometric
point of view, regime switching model were introduced by Hamilton in [16]. Many au-
thors used regime switching model to obtain option price formula as example american
option in Black and Scholes model was done by Elliott and Buffington in [12]. Our paper
allow us to obtain in a first time a formula which evaluate the value of the conditional
Laplace transform of a regime switching Cox Ingersoll Ross regarding to the semi affine
property of the regime switching Cox Ingersoll Ross model. This approach is based so on
the semi affine property and on solving Riccati’s equations. We extend in a second time
the analytic approximation found in Choi and Wirjanto [6]. Indeed Choi and Wirjanto in
[6] give an analytic approximation of the value of a zero coupon bond price with constant
CIR parameter and with constant time step model discretization. We extend this result in
three way: first to the case of evaluating conditional Laplace transform of a regime switch-
ing Cox Ingersoll Ross, secondly to price defaultable regime switching zero coupon bond
price and third to the case of non uniform deterministic time step model discretization.
Indeed in our case, the time step model discretization will depend of the regime switch-
ing stopping time. We apply this two formula to evaluate defaultable regime switching
zero coupon bond price. As said before, the regime switching will represent an economic
state of the firm A or B. For this, we will use a continuous time Markov chain called credit
migration process studied by Bielecki and Rutkowski in [4].

Hence in a first section, we will introduce the regime switching Cox-Ingersoll-Ross
model. Then we will give the two formulas to evaluate the conditional Laplace trans-
form of this model. Finally we will give the financial application by studying the price
of a Defaultable zero coupon bond price. For this we will introduce Markov copula and



credit migration process. We will do some simulation to compare the formula result and
illustrate the model.

1 Regime switching model

Let T > 0 be a fixed maturity time and denote by (2, F := (F¢)o,r],P) an underlying
probability space. We recall that a Cox Ingersoll Ross (CIR) process is the solution for all
t € [0, 7], of the stochastic differential equation given by

A\ = k(0 — \)dt + o/ NdW, (1.1)

where W is a real one dimensional Brownian motion and «, § and ¢ are constant which
satisfy the condition o > 0 and 6 > 0. We will assume that \g € R" and that 2x6 > o2
This is to ensure that the process ()\;) is strictly positive. We will now define the notion of
CIR process with each parameters values depend on the value of a Markov chain.

Definition 1.1. Let (X), be a d-dimensional continuous time Markov chain on finite space S :=
{1,..., K} forall t € [0,T). We will call a Regime switching CIR the process ()\;) which is
the solution of the stochastic differential equation given for all t € [0,T] by

X = K(Xp)(0(X1) — M)t + o(Xy) v/ Ned W, (1.2)
Forall j € {1,..., K}%, we have that x(j)0(j) > 0 and 2x(5)0(j) > o(j)?

For simplicity, we will denote the values x(X;), 8(X;) and o(X;) by x¢, 6; and o;. We
will denote by F¥ := {0(X;);0 < s < t}, the natural filtration generated by the continu-
ous Markov chain X.

Assumption 1.1. We assume that
(a) we know all the trajectory of the stochastic process (Xt)ie[o0,17-
(b) X is independent of W

There exists an increasing F¥-stopping time in interval [0, 7], where the value of the
Markov chain change. We denote by I' this subdivision

O=m<nn< - <mmy=T

So in each time intervals [7;, 74+1[, k € {1,...n} the process X is constant. And so the
CIR regime switching process A has constant parameter on this each time interval.

Our aim is to find formula to evaluate the conditional Laplace transform of A with
respect to X denoted by ®. It is for all u € C the expectation given by

T T
Porax(u) = E [exp <—u / )\Sds> Ao = )\,]-'7)5] =E\x [exp <—u / )\sds>](l.3)
0 0



2 Conditional Laplace transform formulas

2.1 A Ricatti approach
Remark 2.1. Assumption 1.1 implies that we know the sequence of increasing time I':
O=m<nn< - <my=T

Proposition 2.1. The conditional Laplace transform of the regime switching CIR process (for u =
1) between time |1y, Ti1[ with Ar, = Xand X.,,, = j € 8% is given by

Tk+1
Brprersy = E {exp (—u / d) Aoy = A Xy = 5| = exp {—A(Agy, J)A — B(Dgy, i)}
Tk

(2.4)

where

Atk = Tk+1 — Tk

and

- 2 4’)/1' 1
Vitrs R (vt ) exp(hAy) + 5 — K

. ki0: (v + K, ki ki
B(Ay,,j) = _wAtk + 2= In (7 + #5) exp(18) + 75 — #5) — 2= 57 In (235) - (2.6)
J J J

Vj =/ K5+ 207 (2.7)

Proof. We recall that the constant parameter CIR process defined in (1.1) is an affine pro-
cess (see Duffie and al. [8]). So as in each step of time [7x, 7;+1], the stochastic process X
is constant. So the process A is a classical CIR with constant parameter on this each step.
So on each step of time |7y, 7x+1[, the process A is affine, hence we can assume that the
expression of ¢

Te,mri1,j 18 given by the form

exp {—A(A¢,,j)Ar, — B(Ay,, 7))} (2.8)

for some functions A(Ay,,j) and B(4Ay,,j). Hence we proceed similarly as the proof of
Proposition 1 of Gourieroux [15]. By iterating expectation and taking a small time step dt,
we have that

Th+1 ~
(I)Tk,fk+1,j(1) = E [E |:eXp <_/ )\sd5> ‘)\Tk-l—dt = )\7X7'k+1 = ]:| ’)\Tk = )\7X7'k+1 = ]:|
Tk

Tk+1
= K |:E‘rk+dt,j {GXP <—/ /\Sd5>”
Tk

. . dt .
We cut the integral in [7**' = f;ﬁ + [

T +dt Th41
Qr (1) = Eppj [exp <—/ )\Sds> Er +dt,j [exp (—/ )\Sd3>”
Tk T +dt

= En; [exp (*Am dt) q>7’k‘|‘dta7—k+laj(]‘)]
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We use now the Assumption of the form of the conditional Laplace transform &
q)7k77k+17j(1) = Eqn; [exp (_)‘det> exp (—A(Ay, — dt7j>)“r}c+dt - B(Atk —dt,j))]

Since we take a small time step dt we obtain

Eryg [oxp {~Ardt = A(Aq, = dt, ) (A + 1550 = An )t + 03/ Ay dWr) = B(Ay, —d, j) }
= Em,i,j [exp{—/\det — A<Atk — dt,j)/\Tk — A(Atk — dt,j)/ﬂ?jejdt
FA(Ay, — dt, ) kjAn dt — A(Ay, — dt, )0/ Am AWy — B(Ay, — dt, )]

. . . 1 . .
=exp{—A dt — A(Ay, — dt, j)Ar, —A(Ay,,, §)Ki0; FA(Ay,, §)KjAr, j?A(Atk,j)Za?)\det ~B(Ay, — dt, j)}
We regroup the \,, in factor

P reiri(1) = exp { <—dt — A(Ay, —dt, )+ A(Ay,, j)Kj + QA(Atk,])2o']2~dt> Am}
exp {-A(Atk,j)ﬁjej - B(Atk - dtvj)}

By identification this expression of the Laplace transform and our Assumption of the
form of this expression (2.8). We get the following system with A\, = ),

. ) . 1 .
A(Ay,,5) = dt+A(Ay, —dt, j) — A(AtkaJ)“j - §A(Atkvj)2012‘dt
B(Ay,,j5) = A(Ay,4)kib; + B(Ay, — dt, j)

Taking dt — 0, we obtain the two functions as solution of the system

‘ . . 1 ‘
A(Atk7]) = dt+ A(Atk - dt?]) - A(Atw])"ij - iA(Atk’])ZUJQ'dt
B(Ay,,7) = A(Ay,,j)ki0; + B(Ay, —dt, j)

DA(A;, ] 1 .

éAik 7) = 1—-r;jA(Ay,J) — iajzA(Atk,j)Z (2.9)
k

8B(At 7]) .

78Atz = anjA(Atk,]) (2.10)

With initial condition equal to A(0, j) = 0 and B(0,j) = 0, for all j € S? since ®, ,, ; =
E,, [exp <— f:k’“ )\Sds)} = 1 The calculus of the solution of this system of Riccati equation
is straightforward and can be find for instance in Cox and al. [7]. O

We would like now to give an explicit form of the conditional Laplace transform of the
CIR process between time 0 and T. This is done by the following Theorem.



Theorem 2.1. Assume that for all t € [0,T], the process (\¢) follows a regime switching CIR,
then we have for all \og = A\ > 0and X, =ig € S that

T T
Qo7 x(l) =E [exp (—/ )\sds) Ao = )\’}‘:’X} = Eyx [exp (—/ )\sds)]
0 0

M
= exp { > BMj(At“)} exp (—Ao(Ayy,i0)N)
j=1

where
2 41 1
Ao(A — 2.11
0(At) TRl AT 1 AL (7L + m) exp(71Ag ) + AL — Al (2.11)
M—k+1gM—k+1( M—k+1  M—k+1
K 0 (v + K )
Byk(Ay_y) = — (oM—F+1)2 Ay
pMErLgM =kt M—k+1 |,  M—k+1 M—k+1 M—k+1
= (o M—FH1)2 In ((’Y T ) exp(y Ay )+ -
M—k+1gM—k+1
K 0 M—k+1
—2 (oM—F+1)2 In (27 )
AMkEL \/(,4\44%1)2 4 2(oM—kH1Y2 (2.13)

where we denote for simplicity k7 = k(Xy,), 07 = 0(Xy;) and 07 = o(Xy,)

Proof. We have a sequence of increasing time 0 = 79 < 7y < --- < 7)y = T. Hence

T M-1 Tha1
Exx [exp <—/ )\sds>] = Eyx |exp —Z/ Asds
0 Tk

k=0
Ex x

M-1 Tk+1
H exp (—/ )\sd5>
k=0 Tk

By Assumption 1.1, conditioning with respect to F,,

I1—1
T
Ex x [exp <—/ )\sds>] = Eyx
0

M1 Th+1 —
H exp <—/ /\sds) |Far-1
k=0 Tk

Ex x

=F)\ x

k=0

:= Fr—1, We obtain

E

M-2

Tk+1
H exp (/ )\st> E
k=0 Tk

We know that E {exp <— [ )\sds) \7]\/[_1} is equal to ®(7as—1, Tar, Xar), where Xy

TM—1

is equal to X,,,. So applying Proposition 2.1, we have that

E

™ L
€Xp <_/ >\st> |fM1] = €exXp {—AMfl(At]u_pXM))\T]\/j_l - BM*l(At]u_pXM)}
TM—1

6

M—-1 m+ Ay,
e (-3 |
Tk

(2.12)

,{Mkarl)

MN

™ L
exp / Asds | | Far—1
TM—1



We recall that the quantities Ayr—1(A¢,, ,, Xar) and Byr—1(As,,_,, Xar) are constants. Hence
replacing this result in the expectation gives

T M—2 Tht1
E)\,X [exp <—/ Aéd5>] = E)\’X |:H exp (—/ )\sds) exp {_Aﬂffl(At]u_17X]\/I))\T]u_l — BMl(AtM_17XJ\/I)}:|
0 k=0 Tk

M—2

Tk+1
H exp (—/ Asds — AM—l(AtMleM))‘TMl):|
Tk

= exp{—Bu-1(Avy;_,, Xm)} Exx [
k=0

For the visibility of the calculus we will denote by Ay_; (resp. B_1) the quantity Ax_1(A¢,_,, Xi)
(resp. By—1(Ay, _,, Xi)) forall k € {0,..., M —1}. Hence

M—2

Tk+1
H exp <—/ Asds — AM_1/\TM1>
k=0 Tk

We conditioning again with respect to F /_» to obtain

T M2 Tht1 _
Ex x [exp (-/ /\Sds)] = exp{-Bu_1}Exx |E| ] exp (-/ /\sds—AM_l)\TMfl) | F a2
0 k=0 Tk
M-—-3

Thi1l TM—1 —
exp{~Bu-1}Exx | [] exp (f/ /\Sds> E |exp 7/ Asds — Ani—1Xryy_y | [Far—2
Tk TM—2

k=0

T
E)“X [exp (—/ )\sd8>] = eXp{—BM_l}E)\yX
0

To continue, we need to evaluate the conditional expectation

TM—1 .
exp —/ Asds — Ap—1 ey, | | F -2
TM—2

For this we will denote by ¢-,, , A, this conditional expectation and we will use the
Lemma below to give an explicit form of this quantity.

E

Lemma 2.1. Assume that for all k € {1,..., M} that the conditional expectation ¢r,, , A,
has a exponential affine structure form given by

Pra—r Dy, — XP (_AM_k?(AtIMfk’XM_k?"rl))\TMfk - BM—k‘(AtIM—k’XM_k"Fl)) (2-14)

Then we can find explicits forms for functions Aps— i (A¢yy s Xns—k+1) and Bag—p(Aeyy s Xvi—k+1)
which are given by equations (2.5) and (2.6) with the recursive condition that Apr_,(0) = Apr—g+1
and initial condition By (0) = 0.

Proof. We proceed similarly as the proof of Proposition 2.1. Indeed

TM —k+1 o
SOTAI—k,AtM_k, = E exp _/ ASdS_AM7k+1)\T]y[_k+1 |~FM7k

TM—k

TM —k+1
exp | — / ASds - AM*k‘Fl)\TM—k"FAtM_k
TM—k

= Eyk




We take again a small time interval dt < A4,, , to obtain

TM —k+1
eXp | — / )\Sds - AM*k‘i’l)\TI\/I—k‘i‘AtMik
TM —k

TM —k+1
Enr—kyar |exp —/ Asds — Ak 1Ay 4Ac,,
TM —k

Enr—&

=Epn—g

Then

TM—k+1
Enr—k+ae |exp —/ Asds — AN k41 Ay _jois
TM—k
TM—kt+dt
O(Tar—k +dt, Ay, , —dt)exp | — / Asds
TM —k

We use the Assumption of the form of ¢, this is equal to

=En—k

TM—ktdt
En [exp (—An—k(Deyy = dt, Xnsr—ks1)Aryy_tde — Br—k(Deyy_y, — dt, Xar—k41)) exp (—/ Asd5>:|
TM—k

We simplify the notation and obtain

T™M —k+dt
= EM—k [exp (_AM—k(AtM_k — dt))\TM,k—i-dt — BM—k(AtM_k — dt)) exp (—/ )\sd8>]
TM —k

For small dt and using the stochastic differential equation of (\),c(o, 7], we obtain

= B slexp{—An k(A , = db) Ay + R (0T Va4 oML N aw]
_BM—k(Athk — dt) — )\TMfkdt}]

where M= = (X,

), 9M—k+1 — 9(X

mipsy) and oML = §(X

7'Mfk+1)'
= exp { = Au k(Do — Ay — A p(Dyyy — AN (MR )
x exp {—By_x(Dey,  — dt) — Ay oy} By [exp (—AM_k(AtM_k — dt)oMk+ )\TM_detﬂ

= oxp { —Ank(Bay = Ay — Anrp(Dayy M (MR At

1 _
X exp {_BM—k(Atwpk - dt) - >‘7'M—kdt} exXp <2A%\4—k(Ath)(UM k+1)2>\7'lwkdt>

By identifying with the assumed expression of ¢ in (2.14), we get

AM—k‘(At]\/I—k) = AM—k(Athk - dt) - AM—k(Athk)’{M_k—i_ldt - %A?\/[fk(Athk)(O-M_k—i_lydt + dt
Brr—k(Bty )= Br—k(Beyy = dt) + Anrog (D, &M 0N R G



Taking d; close to zero, we get the two functions as solutions of:

OAM—k(Dty, )
Olipr_y,

OByr—k(Atpy )
Ot pr_y, o

_AM*k(AtM_k)HMikJrl - %A?W—k(AtM—k)(UMikJer +1
AM—k(AtA4_k)/‘5M_k+19M_k+l
with condition for Ay, , =0, Apr—x(0) = Apr—g+1 and By, (0) = 0.

Hence by the proof of Proposition 2.1, we know the explicit form of Ap;_r(A¢,, ,) and

Bur—k(At,,_,) which are given by equations (2.5), (2.6) with the new recursive condition
that Ay (0) = Apr—g+1 and initial condition By, (0) = 0 O

We come back to the proof of the Theorem 2.1, by applying the Lemma 2.1 with k = 2.
We obtain

E

TM -1 _
exp <_/ Asds — AMl)\TI\/Il) "FM2] = exp (_AM*Q(AtM—2))\7'IM—2 - BM*Q(AthQ))

TM -2

with deterministic function Ayr_2(A¢,,_,) and Byr—2(Ay,,_,). Hence

T M—3 _—
Ex x [exp (7/ rsds)} =exp{—Bu-1}Ex x [H exp (f/ >\st> exp (—Am—2(Aiy o)Ay — BJVI2(AtMg)):|
0 k=0 Tk
M—3 _—
=exp {—Bzuf1 — BMfg}EA,X |: H exp (—/ )\Sds - A]\{Q(AtM2))\7—MQ>:|
k=0 Tk

Conditioning an other time with respect to now Fj;_3. We obtain

T M—3 Tht1 _
Ex x [eXP (*/ )\sds):| =exp{—Bm—-1— Bym-2}Ey x |E H exp */ Asds — Apr—odry o | [ Fa—3
0 k=0

Tk

M—4

2 Th+1 T™M -2 —
=exp 7ZBM_]- Ex x H exp f/ Asds | E |exp 7/ Asds — Apr—oXdry o | [ Fai—3
j=1 k=0 Tk TM—3

We can now again apply Lemma 2.1 with k£ = 3. We obtain again that

E

TM -2 _
exp (—/ Asds — AM—Q)\TMQ> ’]:M—?)] = exp (_AM—?)(Ath?,))‘TMfa - BM—3(Aths))

TM -3

And so

T 3
E)\7X [exp <—/ )\sd8>] =eXp —ZBM_]' E)“X
0 :
j=1

M4 Tk+1
H eXp <_/ Asds — AM—3(AtM3))‘TMs>
k=0 Tk

By iterating the conditioning with respect to F/_, k going to 4 to M and applying the
Lemma 2.1 we finally obtain

T M
Ex x [exp (—/ )\sds>] = exp{ — E Bur—j ¢ exp (—Ao(Ag ) Ary)
0 .
Jj=1

with by hypothesis A\;; = A and Ag(Ay,) = Ag(Ayy, X7 ) with X7 =g € S, O

9



We can now obtain the general expression of the conditional Laplace transform of the
regime switching CIR process by Theorem 2.1.

Corollary 2.1. Forall v € C, we have that the conditional Laplace transform of the regime switch-
ing CIR process conditioned on \g = A and X, = iy € S is given by

T
‘I)O,T,A,Xw) = Eyx {exp <—u/ )\Sd5>}
0

M

= exp{ =Y Buy (B, ,) pexp (—Ao(Aio) ) (215)
j=1

where the function Byr_j for j = {1,..., M} and Ay are given by equations (2.11) and (2.12)
taking parameters &7 := k(X-,) = K/, 0l = 0(X-,) = ub? and 67 := o(X-,) = \/uo’.

Proof. Since E {exp (—u fOT )\sds> | Ao = A,]—"{f] = E)x {exp <— fOT(u)\S)dsﬂ. This is the
conditional Laplace transform of a process (u)); which is still a CIR process with new
parameters /k; = Ky, 0, = ub; and 6, = Vuoy, for all t € [0, T]. Hence applying Theorem 2.1
with this set of parameters gives the result as expected. O

2.2 Analytic approximation

We now give an analytical approximation to evaluate the conditional Laplace trans-
form of a regime switching CIR. For this, we extend the result obtained in Choi and Wir-
janto [6]. They obtained an analytic approximation of a zero coupon bond price in the
particular case of constants parameters model and with constant time step discretization
model.

221 Construction of the times grid

Let A; be a fixed time step, then starting in time 0 we partition the time interval [0, T']
in time step of

— size Ay if there is no jump of the Markov process between time 0 to A;.
— size 7y if there is the first jump of the Markov process at stopping time 71 less tan A;.

Hence we denote by h; the first time step of size A; or 7;. Then we will proceed as the
following: at time ¢, corresponding of the time after the step hj, we construct the step
hyi1 of size

— Ay if there is no jump of the Markov process between time ¢, to ¢ + A;.

— 7; if there is the 7 jumps of the Markov process at stopping time 7; less tan ¢ + A:.

10



As an example of the construction

At 2At 3At 4At
7 ‘ ‘ 7 ‘ ‘ ™3
% \ \ % \ \ % I -
0 t1 o i3 14 t5 ts t7 T
hi  ho ha ha  hs he hr hg

This construction imply that hy = t; — t,—1 < A; and that the parameter of the
regime switching CIR are constants (and bounded) in this each time interval [t, {541,
ke {0,1,...,n—1}. It follows as an application of the tree property of conditional expec-
tation that the conditional Laplace transform of A which follows a regime switching CIR
is given by

T
Do rax(u) = E[exp (—u / )\Sds> |A0,fﬂ
0

T
Exo.x [exp <—u/ )\Sds>}
0
T
= Et)?o’XE’;l,X . ]Ei:; [exp <—u/0 )\Sd5>} (2.16)

Proposition 2.2. Let forall k € {1,...,n —1},

h3_
Fj, = exp (Tuzagkaik H)\nk) (2.17)

Then we have

T

o exp <7u fO )\Sds> u ) u

EXo.x Hn—ll 7 A ) E hiakkk—10k—1 — §h1)\0 14 a1 (1—koh1)] | Fn
=1t k=1

(2.18)

where

hn, hn,
+——an (1 — hpkp—1) and ap, =1 (2.19)
hn—l hn—l

Ap—1 = 1+

Proof. Using trapezoidal rule we obtain that the expectation at time ¢,,_; is given by

T n
A + i
tn—1 o tn—1 i i—1,
EAO,X [exp (u/o )\Sds)] = EAO,X exp (u El <2h2>)]

n—2
— exp <—uz <)\+2)\1h) - u)\n22hn_1> Efy [exp (—g i + Bt + hn_l)\n_l])]
=1

Using the approximation
)\n =~ )\nfl + Kn—1 (enfl - )\nfl) hn +opn-1 MAanl

11



where AW,,_1 = W,, — W,,_1 and denote by G,,_» the quantity

n—2
A + A Ap—
exp <—uz (21}%) —u—y 2hn1>

i=1

We obtain that Ef\’;‘)l( [exp (—u fOT )\sdsﬂ is equal to

anQEf\TST;{ {GXP (7% [hn <)\n71 + Kn—1 (Qn,1 - Anfl) hn +on-1v )\nflAWn71> + hn)\nfl + hnfl)\nfl
= Gu20x (=5 [hndact + A2n10n-1t = h2kno1 Aot + hudnot + oot Aaoi])

XE’;Z}I( [exp (—%hno’nq \/EAVV?H)}

Moreover we have that if e ~ A/(0, 1) then for a constant K we have

K2T
E [exp (K\/TE)} = exp < 5 ) (2.20)
Applying (2.20) and factorize by —% give
2 An—1hn— hn, hn,
=Gp_2exp <u8hio'1%,1)‘n—1ai>e}(p<_u;1 [1 + 1 + Ean (1 - hnﬁn—l):| _gh%anﬁn—len—1>

An—1hp_
=Gp_2exp <_gh721an"<ﬂn—10n—l> €xXp (_unlnlan_1> Fy

2
Hence
. exp <*Uf(;r )\sds) u2 UAp—1hn—1
Ey s = Gpooexp| —h3o2 A1 )exp | ——"—"—a,1
0s £ 8 2

Then we can obtain the conditional expectation based on the information until ¢,,_» with

Gr—3 the quantity
n—3
i + i An—
exp <_UZ <+21hl> —u 5 Shn_2>

i=1

T
exp (—u fO )\Sds)
05 ’ Fl 2

12



U
XE?:;_;( {GXP (—5 [A—1hn1an—1 + hp oAy 2 + hn—l)\n—2]>:|
U, 9 u? 3 2 2
= Gp_3exp <—§hnan/€n_1¢9n_1) exp <8hn10n2)\n_2an1>
U U
exp <_§)\n—2hn—lan—l - §/€n—2 (en—Q - A71—2) h%_lan—l - hn—2>\n—2 - hn—l)\n—2>
U u? U
= Gp_3exp (—ghian/ﬁn_len_ﬁ exp <8h§1—1072;—2)\n—2ai—1> exp (—ghi_lan_mn_gﬁn_g)
U U
X exp <_§)\n—2hn—1an—1 + §/€n—2An—2hi_1an—1 — hp—2Xp—o — hn—l)\n—Z)

U
= Gp_3exp (—gh%annn_ﬁn_l —

u
X exp <—2)\n2hn2 [1 +

U
= Gp_3exp (—gh%an/@n,lﬁn,l —

2
s B s anp—1 (1 - 5n2hnl):| )
Hence repeating iterating calculus gives

u
hi_lan—mn—ﬁn—2> Fy
hn—l + hn—l
u u
Eh%_lan715n720nf2> exp (—5)\%2%72%72) Fy
i exp (—u fOT /\sds>
Ao Hfz_ll F;

k
u 2
=Gp—k—1€xp (-2 E hn—k+¢an—k+mn—k+i—19n—1<;+z‘—1)

i=1
u
X exp (_5)\nfkhn7kan7k> F

Then until time t(, we obtain finally the expected result.

exp (—u fOT )\st>
H?;f F;

u & u
Eg\OmX =exp (—2 Z hiakﬁk,lek,l - §h1)\0 [1 + a1 (1 - ﬁohﬂ]) Fn
k=1

O]

Theorem 2.2. For all v € C, the conditional Laplace transform @ of the regime switching CIR
process is given by

In (®orax(u) = In (Etfo,x [QXP (‘“ /OT Ast)D

u & u
= -3 > hiapkp_10p—1 — Shido[1+ar (1= kohn)]
k=1

n—k n—k
=0 =0

n
h3
t —k+1
+ E In (E)\OOVX eXP{nSJrU%Z—ka%—kH

k=1
where the sequence a is defined in Proposition 2.2.
Proof. As in [6], we see that it would be difficult to compute the expression Ei’;}” [F]
explicitly. What why we simply approximate the expression F}, at time ¢,,_j, by Egm x [Frl-
First we can use the following approximation

n—k n—k
Mk = X+ Z ki(0; — Ni)hiv1 + Z Ui\/EAW/}
=0 =0

13



Then
Mk
Fj, =exp %Uzai—kai—mﬁ\n—k

n—k+1 2 2 2
=exp TU Un—kan—k+1

n—=k n—=k
Ao + Z Ki(0; — Xi)hig1 + Z aivV AW,
=0 =0

) (2.22)

Hence approximate the expression of Fj, at time ¢,_; by the expectation at time 0, we

) In (Eto {exp (‘“ Jy Asds) )

obtain

" exp (—u fOT )\Sds>
In EAO,X

12

[T F [Ti1 EX, x [Fi]
Et)\(]O’X [exp (—u fOT )\sds)}

HZ:l Et)\OmX [F]

= In (IE&OO’X [exp <—u /0 ' )\sds>]) —In (ﬁ EY « [Fi]

k=1

= In(®orax(u) — Zln (Ef\ooﬁX [Fk]>
k=1

Then using (2.22) gives the result.
O

Remark 2.2. In the no switching regime case, we find the same expression as in [6]. Indeed we
have in this case that hy, = h = % foran N € N and (ky, O, 01,) = (5,0, 0).

3 Application to price defaultable bond

3.1 Credit migration model

Let T > 0 be a fixed maturity time and denote by (2, F := (F;)p,r], P) an underlying
probability space.

Definition 3.2. A Notation is a label given by an entity which measure the viability of a firm.
This graduate notation goes to 1 to K, which means default of the firm. We will call a Indicator
of notation a continuous time homogeneous Markov chain (X),cjo,r) on the finite space S =
{1,..., K}

As in Section 1, we will denote by FX = {0(X,);0 < s < t}, the natural filtration
generated by the continuous Markov chain X. The generator matrix of X will be denoted
by ITI¥ and it is given by

Hf](- >0 ifi#jforalli,j€S and Il = — Z II;; otherwise. (3.23)
J#1

14
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We can remark that Hfj(- represents the intensity of the jump from state i to state j. In this
part, we work in hazard rate framework and we use the credit rating migration modeliza-
tion. We find conditions to work in Markov setting. We will assume that the intensity of
default of each firms will depend on the Indicator of notation of each firms. For simplicity
and without restriction we will work we two firms denoted by A and B.

3.1.1 Markov Copula

Let A and B be two firms with respectively: Indicator of notation (X A)te[o,T} and
(X®)1e(0,717- Generator matrix II* and IT” and natural filtration (F*),c(o 7] and (F?);ep0.7-
Let us denote by X the bivariate processes X = (X“, X?), which is a finite continuous
time Markov chain with respect to its natural filtration F* = F45B. We recall now the
Corollary 5.1 of Bielecki and al. [2], applied on our case, which gives the condition that
the components of the bivariate processes X are themselves Markov chain with respect to
their natural filtration.

Corollary 3.2. Consider two Markov chain X and X5, with respect to their own filtrations F4

and FB, and with values in S. Suppose that their respective generators are H;‘} and 15, withi, j, h

and k are in S. Consider the system of equations in the unknowns Hf](. ne Where i, j,h k € S and

(i,h) # (4, k):

S I =T VhijeSi#j and Y TS, =15 VihkeSh#k (3.24)
keS jES

Suppose that the above system admits a solution such that the matrix 1% := (HZZJ hk)
with

1,5,h, k€S

T, = — > I (3.25)

(7,k)ES XS, (5,k)# (i)
properly defines an infinitesimal generator of a Markov chain with values in S x S. Consider,
the bivariate Markov chain X = (X4, XP) on S x S with generator matrix TIX. Then, the

components X and X are Markov chain with respect to their own filtrations, their generators
are 1T and 115,

Hence we can formulate a Definition of a Markov copula.

Definition 3.3. A Markov copula between the Markov chains X* and X is any solution to
system (3.24) such that the matrix TIX, with Hff nh Siven in (3.25), properly defines an infinitesimal
generator of a Markov chain with values in S x S.

3.1.2 Markov copula in the hazard rate framework

Assume that there is only two state S = {0, 1}, before and after the default time. We
denote by I := (F;),e[0,7] such that 7y = F; v FiX. Let 74 and 77 be the two default times
of firms A and B. Let define for all ¢t € [0, T7:

H'=1pacy and HP =158, (3.26)

15



We define now some filtrations
GA=FVHE, |, GE=FVvH! and G =FVvH VH]

where H4 (resp. #?) is the natural filtration generated by H4 (resp. H?). And we will
denote G := (Gt)epo.1)/ GA = (gtA)te[oﬂ and G? := (gf)te[oﬂ- Let now consider \¢ :=
A(X), for i € {A, B} two F-progressively non-negative processes defined on (2, G,P)
endowed with the filtration F. We assume that [ X(X)ds = +oc and we set:

. t . .
7% = inf {t € R+,/ N(X,)ds > —1n(Ul)}, i € {A,B}.
0

where U* are mutually independent uniform random variables defined on (2, G, P) which
are independent of \’. The stopping times 74 and 77 are totally inaccessible and condi-
tionally independent given the filtration F, moreover the (#H)-hypothesis is satisfied (i.e.
that every local F-martingale is a local G-martingale too). The process \' is called the
F-intensity of the firm i and we have that

) ) tAT )
Mi—Hi— / N(X,)ods
0

are G-martingales. In general case, processes X’ are F V G(V-adapted which jump when
any default occurs. This jump impacts the default of the firm and makes some correla-
tion between the firms. In our case, the correlation is constructed using the F-Markov
chain X = (X4, XP). Since from the explicit formula of the intensity given the survey
probability for each i € {A, B}:

1 dP(7% > 0|G})

M= ——— :
EOP(rt > tGY) do

0=t

We can find, from Bielecki and al. [3] (Example 4.5.1 p 94), that the formula of the condi-
tional survey probability with respect to G is given by:

P(r 2 0]Gy) = Lz B [e” I XX 7] (327)

fori € {A, B}. The Markov chain X will explain how the curve of the default bond moves
with different states (regimes) of the financial market.

3.1.3 Construction of the Markov chain

We are now going to present the canonical construction of a conditional Markov chain
X, based on a given filtration F and a stochastic infinitesimal generator II. This construc-
tion can be found in Bielecki and Rukowski [4] or Eberlein and Ozkan [10], which we
follow closely in the exposition. Each component Hfg : Q x [0,7] — R are bounded, F-
progressively measurable stochastic processes. We recall that for every i, j € S, # j, pro-
cesses II;; are non-negative and II;(t) = — ) ot L) The process X is constructed from
an initial distribution x and the F-conditional adapted infinitesimal generator II by enlarg-
ing the underlying probability space (€2, F, Pr) to a probability space denoted in the sequel
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by (2, F,Qr). The new probability space is obtained as a product space of the underlying
one with a probability space supporting the initial distribution x of X and a probability
space supporting a sequence of uniformly distributed random variables, which control,
together with the entries of the infinitesimal generator II, the laws of jump times (7% )ken
of X and jump heights. We denote by F its trivial extension from the original probability
space (Q,F,Pr) to (Q,F,Qr). We refer to [4] or Grbac [14] for detail of this construc-
tion. However an important step of this construction is that they construct a discrete time
process (X )ren which allow us to construct the migration process X as

X=Xy forall te€[mp_i,m[, k>1 (3.28)

where 7, are the jump time. An important result is that the progressive enlargement of
filtration F; := F; V FX, t € [0,T) satisfies the (H)-hypothesis which is that every local
F-martingale is a local F-martingale too. For the next of this paper we will work under the
enlarging probability space (€2, F,Qr) where F; := F; V F;X. The expectation will be take
under the probability measure Qr but for simplicity we will note EX7 by E.

3.2 Pricing defaultable bond with Markov copula
3.2.1 Defaultable Model
Let W = (W', W?) be a bi-dimensionnal real Brownian motion defined as
Fi=o{Who<s<t} and FX=c{W20<s<t}

We suppose the existence of two firms A and B with our own indicator of notation
X4 and X? which are F¥-adapted. Then there is two infinitesimal generator IT4 and 11"
generated by the Brownian motion W2. We construct the credit migration process X as the
Markov copula of the bivariate process (X*, X ). We will denote by II* the infinitesimal
generator process of X which is a matrix with K2 rows and columns since the cardinal of
the state of notation is K. Denote by N = K 2 we can write IIX as

7'['(1,1) . 7T(1,N)
HX _ 7T(2’1 e 7T(2,N)
TI'(NJ) 7T(N,N)

The possible state are N couples which are given by
E:={(1,1),(1,2),...,(1,K),(2,1),(2,2),..., (2, K),... (K,1),(K,2),...,(K,K)}

With this construction, we obtain two sequence of increasing F~ -stopping time in in-
terval [0, T], where the notation of each firm change. We denote by T'* this subdivision

0§7{4<T§4<~-<Tf§T

Respectively by T'5



Remark 3.3. This is no reason that the number of change of credit notation n and m of the two
firms A and B to be the equal.

So in each time intervals [}, 7/ [, withi = Aand k € {1,...n} ori = Band k €
{1,...m} the credit migration process X is constant.

Assumption 3.2. We assume that the both intensities processes \* and AP follow a regime switch-
ing CIR given for i = {A, B} by
A\ = k(X)(0(Xy) — ADdt 4 o( X))/ NidW} (3.29)

We will assume in the sequel that the risk-free interest rate (r;) is deterministic for all
t e [0,T).

Remark 3.4. We have that the intensity process (\i) depends on the value of the credit migration
process X = (X4, XPB). Hence each firm A and B have an increasing sequence of stopping times
given by:

—fortheﬁrmAitisOST{‘<TQA<~--<T§‘ST
— forthefirmBitis0< 1P <P <... <78 <T

Hence with this two sequence, we construct another sequence by reorganizing this two sequence in
once where we put all the stopping time 7, i € {1,...n}and 72, j € {1,...,m} in increasing
order. We obtain a new increasing sequence of stopping time of size M € N given by 0 < 11 <
o< <1ty T

As an example of the construction

| | | | | | .
[ [ [ [ [ [ [ [
0 7 m T3 Ty ™ T T

Let (Xt);c(o,r) be a credit migration process which take value in a finite state space
S x Ssuch thatforall k € {0,...,M — 1} and all ¢ € [7x, Tk+1[, Xt is constant.

Remark 3.5. By this construction, we have that on each interval t € 1y, 41| that the regime
switching CIR process X' defined in (3.29) is a classical CIR with constant parameter.

Example 3.1. We can take a sequence of increasing stopping time which is an equidistant subdi-
vision of the time interval [0, T] on M interval 7y = kA, = k. Then we can take (Xt)tepo,1) a8
continuous time bivariate homogeneous Markov chain on finite state space S which is constant on
each time interval [Ty, T41[= [Tk, Tk + A¢|.
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3.2.2 Explicit zero coupon bond price formula

Definition 3.4. We will denote by (Dz T) 01 i = {A, B} the price of a defaultable discounted
"~/ tefo,

bond price which pays $1 at the maturity T.

Using the partitioning time and the notation defined as the previous subsection, then
by the general asset pricing theory in Harrison and Pliska [17] and [18], the defaultable
discounted bond price D; 1 at time t given A = A\g and X, =ig € S x Sis given by

Proposition 3.3. For i = { A, B}, we have for all t € [0, T that

fp= (- H)E [exp (— [ A;)ds) 7, Ao} (3.30)

Remark 3.6. The quantity (r; + )\ﬁ)te[oﬂ
The part (X), €0.7] is the risk-neutral mean loss rate of the instrument due to the default of the
firmi € {A, B}. The quantity (. + A}), cl0.1] therefore represents the probability and the timing
of default, as well as for the effect of losses on default. This model allows us to capture a economic
health of each firm since for each firm i € {A, B}, the stochastic process (\L) has parameters whose
values depend on the credit notation of the firm. And by the construction of the migration process
X, we have correlation between each firm notation. This allows the model to capture financial
health correlation between each firm, like the impact of the default of one firm against the others.

can be see as a default-adjusted interest rate process.

Proposition 3.4. Under Assumptions 1.1 and 3.2, we have for i € {A, B} that the defaultable
bond price can be obtained by two formula

1. Riccati Approach:
Dy = (1 — Hp)exp (—/ rsds> exp { — ZBM_j(AtjA) exp (—Ao(A¢y,70) )
0 -
7j=1

(3.31)

where quantity A and B are the same as given in Theorem 2.1.

2. Analytic Approximation:

T n
: : u u
Dop=(1—Hg)exp (-/ 7“st> exp {—2 > 1Okt FnkOn—k — Aol +ar (1 - Hohl)]}
0 k=1

X exp {Z In (Ef\(’mX

k=1

M1
n—k+l 2 2 2
XP | T Y Tk nkt1

n—=k n—k
Ao +Z Ki(0; — Xi)hiv1 +Z oiv/ N AW;
=0 =0

where the sequence a is defined in Proposition 2.2.

Proof. For point 1. apply Theorem 2.1 and Proposition 3.3 to the particular case ¢t = 0 and
¢ = T. And for point 2. apply Theorem 2.2 with v = 1. O
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4 Simulation: Pricing zero coupon Bond in the two firms case
with two regime.

We work on simulated data. We fixe the time maturity of zero coupon bond at 7" = 10
(i.e. a ten years ahead maturity). We chose that the deterministic interest rate equals to
Zero.

4.1 The model parameters and heuristic

In the one regime case, which is called “standard economic” regime, we take for value
of the CIR default intensity the value in Table 1.

’Parameters H K ‘ 0 ‘ o ‘
’ Values H 0.1 ‘ 0.15 ‘ 0.15 ‘

Table 1: Parameters values of the CIR default intensity.

This set of parameters gives a value of the Zero coupon Bond equals to 0.6086. We now
do some simulation of our paper model. First we begin with the heuristic of the calculus
of the defaultable Bond price. We will proceed by a Monte Carlo approach with MC € N
steps:

1. We know the value of the infinitesimal generator ITX of the credit migration process X.

2. We generate a sequence of increasing stopping time and the time correspondent trajec-
tory of X.

3. (a) We apply the formula (3.31) to calculate the price of this defaultable Bond price for
the firm A or B.

(b) We apply the construction of the time grid studied in subsection 2.2.1. Then we
applied the formula (3.32).

4. We come back to step 1. until we will have do MC times this methods.

Hence assume that we have 2 regimes which represents a “normal” economic regime
(regime 0) and a “crisis” regime (regime 1). The Credit migration process X is then done
in a set of four state

{(0,0); (1,0); (0,1); (1, 1)}

We fix the infinitesimal generator IT¥ of the credit migration process X such that

—0.1083 0.0455  0.0455  0.0174
0.05642 —0.1644 0.0082  0.1004
0.0542 0.01 —0.1644  0.1003
0.0542 0.01 0.01 —0.0741

I~ =
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which correspond to a transition matrix of

0.90 0.04 0.04 0.02
0.05 0.85 0.01 0.09
0.05 0.01 0.85 0.09
0.05 0.01 0.01 0.93

PX =

In other words, if we are in a state where only the firm A is on “crisis” (i.e. state (1,0))
the probability that the firm B go into “crisis” in the next time step is 0.01.

Credit Migration Process

.-
©nF
(1,0)
0.0 : :

I I I I I I |
10 20 30 40 50 60 70
Switch

Regimes

Figure 1: Example of trajectory of the credit migration process X.
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Figure 2: Example of instant of regime switching of the credit migration process X.

Figure 1 and 2 give an example of the trajectory of the credit migration process X and
of the sequence of stopping time 7 where the credit migration process jumps.
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We need to have four set of CIR default intensity parameters. Let for i € {A, B}, /¢, &

and p’ be real valued such that the set of parameters are given by Table 2

’ Parameters H KX 0x ‘ ox
(0,0) 0.1 0.15 0.15
(1,0) 0.1+ v 0.15 4 &4 0.15 4 p4
(0,1) 0.1+ 5 0.15 + &8 0.15 + pP
(1,1) 0.1+ 408 | 0154+644+6B | 015+ p2 +pP

Table 2: Parameters values of the CIR default intensity in the 2 regimes case.

Remark 4.7. For i € {A, B}, the constant v*, £ and p* are choose such that the CIR condition
holds, i.e. 2k x0x > 0%

4.2 Comparison of the different formula to evaluate defaultable bond price.
4.2.1 Convergence

We know that the formula of the conditional survey probability with respect to G is
given by equation (3.27). We would like now to compare the different formula to pricing
defaultable zero coupon bond (i.e. formulas (3.27), (3.31) and (3.32)).

In tables 3, 4 and 5, we resume the convergence results in the case of a four state regime
parameters defined as in Table 2.

A B

Parameters: || v v EB | pA | pP

03] 0 |01

fA
02 0 0

Values:

Table 3: Values of the constant parameters defined in Table 2.

(0,0)
0.6086

(1,0)
0.3777

(0,1)
0.2740

(1,1)
0.0668

Regimes:

Bond price values:

Table 4: Values of the Bond price standard formula in ¢ = 0 in each regime with a maturity 7' = 10

years.

Remark 4.8. We take for time step parameter A, appearing in subsection 2.2.1 for the calculus of
(3.32) the value 0.01. Indeed, we obtain similar price for different value of Ay.

With this set of parameters, we obtain what we expected. Indedd, we can see in Table
4 that in “crisis” regime (i.e. (1,0), (0,1) and (1,1)) the probability of default of the firm
is bigger than in ”“standard economic” regime (i.e. (0,0)). In Table 5, we can see that
all formuals converge then the number of Monte Carlo simulations increase. Whereas the
bond price value given by formula (3.31) based on Riccati approach or formula (3.32) based
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Bond Price (3.31) (std) C.T.(sec.) (3.32) (Std) C.T. (3.27) | C.T.
MC =100 | 0.5619 (0.1110) 1.94 0.5585 (0.1699) | 15.98 | 0.6500 | 1.95
MC =300 | 0.5692 (0.1015) 5.34 0.5587 (0.1602) | 52.52 | 0.6233 | 6.61
MC =400 | 0.5736 (0.0949) 6.87 0.5649 (0.1505) | 60.48 | 0.6400 | 9.58
MC =500 || 0.5748 (0.0927) 7.97 0.5658 (0.1511) | 78.32 || 0.6360 | 12.44
MC = 1000 || 0.5738 (0.0961) 16.31 0.5654 (0.1533) | 146.51 || 0.6220 | 33.23
MC = 2000 || 0.5727 (0.0995) 27.33 0.5646 (0.1533) | 221.22 || 0.5770 | 96.78

Table 5: Results for the formulas convergence in ¢ = 0 with initial regime the regime (0,0) and
maturity 7' = 10 years.

Bond Price | (3.32)
Ar=1 0.5612
A;=0.1 | 05648
A; =0.01 | 0.5649

on analytic approach converge quicker than the value given by formula (3.27). Indeed, it
is sufficient to take 400 Monte Carlo simulation to converge while it is necessary to take
at least 2000 Monte Carlo simulations with formula (3.27). The difference of 10~! on the
value given by (3.31) and (3.32) could be due to the error approximation of the conditional
expectation at time ¢,,_j, of F}, (see. proof of Theorem 2.2). Hence our two formulas need
less simulation than formula (3.27) to converge. Moreover we observe that the Riccati
approach formula (3.31) need a smaller computation time. Only 6.87 sec while formula
(3.32) needs 60.48 sec and formula (3.27) needs 96.78 sec. Hence formula based on Riccati
approach needs ten times less times than Analytic approach to converge.

4.2.2 Bond price with respect to the maturity T.

Bond Price || (3.31) (MC = 400) | (3.32) (MC = 400) | (3.27) (MC = 2000)
T=1 0,9926 0,9923 0,9940
T=2 0,9709 0,9696 0,9770
T=5 0,8458 0,8405 0,8480
T=1 0,7376 0,7261 0,7365
T =10 0,5736 0,5649 0,5770
T=15 0,3579 0,3948 0,3505

Table 6: Value of the Defaultable zero coupon bond price at time 0 with respect to the maturity
time T with A; = 0.01.

We observe in Table 6 and Figure 3 that the three formulas give similar result. Whereas,
first, we made this simulation taking 2000 Monte Carlo simulations for the Probabilistic

23
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Value of the zero coupon defaultable bond
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T
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7
Time to maturity

Figure 3: Graphs of the value of the Defaultable zero coupon bond price at time 0 with respect to
the maturity time T" with A, = 0.01 (MC=400 for the two first formulas and 2000 for the Probability
approach).

approach (formula (3.27)). Secondly, we remark, when the maturity T is greater than 10,
that the result given by the analytic approximation is no more better than the other. This
relative mispricing was observe in the non regime switching case and uniform step time
model discretization in [6] as soon as the maturity T is greater than 10.

4.3 Other simulations with Riccati approach formula.

4.3.1 Bond Price all over time ¢ € [0, 7]

Taking parameters as in Table 3, we can draw the value of a defaultable zero coupon
bond price over time ¢ € [0, T| using formula (3.31). An example is given in Figure 4.

1.05F

0.95

o
©

0.85

0.75

Zero Goupon Bond Price
o
4]

°
N

0.65

0.6

0.55

i i i i i i i i i i
(o] 1 2 3 4 5 6 7 8 9 T=10

Figure 4: Price of a defaultable zero coupon bond price in each time t between time 0 to maturity
T.
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4.3.2 Bond Price in function of probability that B goes to crisis

Taking parameters as in Table 3, we evaluate the price of a defaultable zero coupon
bond in functon of the probability P (X;1a, = (0,1)|X; = (0,0)) and P (X2, = (1,1)|.X; = (0,0)).
This is p{‘5 and py',. Hence we take a parametric transition matrix of the form: a transition

matrix of
1—a—-3b a 2b b

0.05 0.85 0.01 0.09
0.05 0.01 0.85 0.09
0.05 0.01 0.01 0.93

pPX =

where a, b € [0, 1]. We obtain the following result:

Defaultable zero coupon bond price
° ° ° °

12 0.18 0.14 0.15 0.16 0.17 0.18 0.1
Value of b

Figure 5: Price of a defaultable zero coupon bond price in ¢ = 0 for maturity 7' = 10 and values of

a = 0.04 in function of b.

Hence we observe in Figure 5 that when b grows up (i.e. the probability P (X1 a, = (1,1)|X; = (0,0))),
the price of the defaultable zero coupon bond price of the firm A decreases. This means
that the economic status of the firm B (the probability to go in crisis) impact the value of
the defaultable zero coupon bond of the firm A.
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