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Conditional Laplace formula in regime switching
model: Application to defaultable bond.

Stéphane GOUTTE ∗†, Armand NGOUPEYOU ∗‡

September 22, 2011

Abstract

We give two different formulas to evaluate the conditional Laplace transform of a
regime switching Cox Ingersoll Ross model. One using the property of semi-affine of
this model and the other one using analytic approximation. Then we study the pricing
of bonds issued by two firms considering the default and the correlation risk. In fact,
we consider two firms with correlated default times and we obtain numerical formula
for the bonds prices considering the regime switching market credit notations and the
correlation between the two firms. Finally we give some numerical illustrations.

Keywords Conditional Laplace Transform; Default and Correlation risk; Zero coupon
bond; Regime switching; Credit migration.
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Introduction

In a crisis context where the credit notation of a country or a firm imply financial and
economics repercussion in other one, it is interesting to study the correlation and the im-
pact of the change of this notation on other country or firm. In the literature, models for
pricing defaultable securities have been introduced by Merton [23]. It consists of explic-
itly linking the risk of firm default and the value of the firm. Although this model is a
good issue to understand the default risk, it is less useful in practical applications since
it is too difficult to capture all the macroeconomics factors which appear in the dynamics
of the firm’s value. Hence, Duffie and Singleton [9] introduced the reduced form model-
ing which has been followed by Madan and Unal [22], Jeanblanc and Rutkowski [20] and
others. The main tool of this approach is the ”default intensity process” which describes
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in short terms the instantaneous probability of default. We should manage the default
risk considering the financial market as a network where every default can affect another
one and the propagation spread as far as the connections exist. In the literature, to deal
with this correlation risk, the most popular approach is the copula. It consists of defining
the joint distribution of the firms on the financial network considered given the marginal
distribution of each firm. El Karoui and al. developed in [13] a conditional density ap-
proach. Given this density, we can compute explicitly the default intensity processes of
firms considered. We will follow this approach and work without losing any generality
in the explicit case where financial network is defined only with two firms denoted by
A and B. We define default times by general Cox modeling and since density approach is
satisfied, we can use all results in [13]. We really don’t describe the conditional density but
we describe how the default intensity processes have been affected by a common factor
which represents the economic state of the firms. In fact, we define default intensity pro-
cess by a Cox-Ingersoll-Ross (CIR) model with regime switching parameter values. The
Cox-Ingersoll-Ross model was first considered to model the term structure of interest rate
by Cox and al. in [7]. The study of this class of processes was caution by the fact that it
allows us closed form expression of Laplace transform (see Duffie and al. [8]) and model
well the default intensity (Alfonsi and Brigo [1]). We choose to take parameter value of
the CIR process which depend of a regime switching process, typically a continuous time
Markov chain on finite space. Choi in [5] shows that regime switching CIR process cap-
ture more short term interest rate than non switching model. Indeed in a econometric
point of view, regime switching model were introduced by Hamilton in [16]. Many au-
thors used regime switching model to obtain option price formula as example american
option in Black and Scholes model was done by Elliott and Buffington in [12]. Our paper
allow us to obtain in a first time a formula which evaluate the value of the conditional
Laplace transform of a regime switching Cox Ingersoll Ross regarding to the semi affine
property of the regime switching Cox Ingersoll Ross model. This approach is based so on
the semi affine property and on solving Riccati’s equations. We extend in a second time
the analytic approximation found in Choi and Wirjanto [6]. Indeed Choi and Wirjanto in
[6] give an analytic approximation of the value of a zero coupon bond price with constant
CIR parameter and with constant time step model discretization. We extend this result in
three way: first to the case of evaluating conditional Laplace transform of a regime switch-
ing Cox Ingersoll Ross, secondly to price defaultable regime switching zero coupon bond
price and third to the case of non uniform deterministic time step model discretization.
Indeed in our case, the time step model discretization will depend of the regime switch-
ing stopping time. We apply this two formula to evaluate defaultable regime switching
zero coupon bond price. As said before, the regime switching will represent an economic
state of the firm A or B. For this, we will use a continuous time Markov chain called credit
migration process studied by Bielecki and Rutkowski in [4].

Hence in a first section, we will introduce the regime switching Cox-Ingersoll-Ross
model. Then we will give the two formulas to evaluate the conditional Laplace trans-
form of this model. Finally we will give the financial application by studying the price
of a Defaultable zero coupon bond price. For this we will introduce Markov copula and
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credit migration process. We will do some simulation to compare the formula result and
illustrate the model.

1 Regime switching model

Let T > 0 be a fixed maturity time and denote by (Ω,F := (F t)[0,T ],P) an underlying
probability space. We recall that a Cox Ingersoll Ross (CIR) process is the solution for all
t ∈ [0, T ], of the stochastic differential equation given by

dλt = κ(θ − λt)dt+ σ
√
λtdWt (1.1)

where W is a real one dimensional Brownian motion and κ, θ and σ are constant which
satisfy the condition σ > 0 and κθ > 0. We will assume that λ0 ∈ R+ and that 2κθ ≥ σ2.
This is to ensure that the process (λt) is strictly positive. We will now define the notion of
CIR process with each parameters values depend on the value of a Markov chain.

Definition 1.1. Let (X)t be a d-dimensional continuous time Markov chain on finite space Sd :=

{1, . . . ,K}d for all t ∈ [0, T ]. We will call a Regime switching CIR the process (λt) which is
the solution of the stochastic differential equation given for all t ∈ [0, T ] by

dλt = κ(Xt)(θ(Xt)− λt)dt+ σ(Xt)
√
λtdWt (1.2)

For all j ∈ {1, . . . ,K}d, we have that κ(j)θ(j) > 0 and 2κ(j)θ(j) ≥ σ(j)2

For simplicity, we will denote the values κ(Xt), θ(Xt) and σ(Xt) by κt, θt and σt. We
will denote by FXt := {σ(Xs); 0 ≤ s ≤ t}, the natural filtration generated by the continu-
ous Markov chain X .

Assumption 1.1. We assume that

(a) we know all the trajectory of the stochastic process (Xt)t∈[0,T ].

(b) X is independent of W

There exists an increasing FX -stopping time in interval [0, T ], where the value of the
Markov chain change. We denote by Γ this subdivision

0 = τ0 < τ1 < · · · < τM = T

So in each time intervals [τk, τk+1[, k ∈ {1, . . . n} the process X is constant. And so the
CIR regime switching process λ has constant parameter on this each time interval.

Our aim is to find formula to evaluate the conditional Laplace transform of λ with
respect to X denoted by Φ. It is for all u ∈ C the expectation given by

Φ0,T,λ,X(u) = E
[
exp

(
−u
∫ T

0
λsds

)
|λ0 = λ,FXT

]
= Eλ,X

[
exp

(
−u
∫ T

0
λsds

)]
(1.3)
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2 Conditional Laplace transform formulas

2.1 A Ricatti approach

Remark 2.1. Assumption 1.1 implies that we know the sequence of increasing time Γ:

0 = τ0 < τ1 < · · · < τM = T

Proposition 2.1. The conditional Laplace transform of the regime switching CIR process (for u =

1) between time [τk, τk+1[ with λτk = λ and Xτk+1
= j ∈ Sd is given by

Φτk,τk+1,j := E
[
exp

(
−u
∫ τk+1

τk

rsds

)
|λτk = λ,Xτk+1

= j

]
= exp {−A(∆tk , j)λ−B(∆tk , j)}

(2.4)

where
∆tk = τk+1 − τk

and

A(∆tk , j) =
2

γj + κj
− 4γj
γj + κj

1

(γj + κj) exp(γj∆tk) + γj − κj
(2.5)

B(∆tk , j) = −κjθj(γj + κj)

σ2
j

∆tk + 2
κjθj
σ2
j

ln ((γj + κj) exp(γj∆tk) + γj − κj)− 2
κjθj
σ2
j

ln (2γj) (2.6)

γj =
√
κ2
j + 2σ2

j (2.7)

Proof. We recall that the constant parameter CIR process defined in (1.1) is an affine pro-
cess (see Duffie and al. [8]). So as in each step of time [τk, τk+1[, the stochastic process X
is constant. So the process λ is a classical CIR with constant parameter on this each step.
So on each step of time [τk, τk+1[, the process λ is affine, hence we can assume that the
expression of Φτk,τk+1,j is given by the form

exp {−A(∆tk , j)λτk −B(∆tk , j)} (2.8)

for some functions A(∆tk , j) and B(∆tk , j). Hence we proceed similarly as the proof of
Proposition 1 of Gourieroux [15]. By iterating expectation and taking a small time step dt,
we have that

Φτk,τk+1,j(1) = E
[
E
[
exp

(
−
∫ τk+1

τk

λsds

)
|λτk+dt = λ̃, Xτk+1

= j

]
|λτk = λ,Xτk+1

= j

]
= Eτk,j

[
Eτk+dt,j

[
exp

(
−
∫ τk+1

τk

λsds

)]]
We cut the integral in

∫ τk+1

τk
=
∫ τk+dt
τk

+
∫ τk+1

τk+dt

Φτk,τk+1,j(1) = Eτk,j
[
exp

(
−
∫ τk+dt

τk

λsds

)
Eτk+dt,j

[
exp

(
−
∫ τk+1

τk+dt
λsds

)]]
= Eτk,j

[
exp (−λτkdt) Φτk+dt,τk+1,j(1)

]
4



We use now the Assumption of the form of the conditional Laplace transform Φ

Φτk,τk+1,j(1) = Eτk,j [exp (−λτkdt) exp (−A(∆tk − dt, j)λτk+dt −B(∆tk − dt, j))]

Since we take a small time step dt we obtain

= Eτk,j
[
exp

{
−λτkdt−A(∆tk − dt, j)

(
λτk + κj(θj − λτk)dt+ σj

√
λτkdWt

)
−B(∆tk − dt, j)

}]
= Eτk,i,j [exp{−λτkdt−A(∆tk − dt, j)λτk −A(∆tk − dt, j)κjθjdt

+A(∆tk − dt, j)κjλτkdt−A(∆tk − dt, j)σj
√
λτkdWt −B(∆tk − dt, j)}]

=exp{−λτkdt−A(∆tk − dt, j)λτk −A(∆tk , j)κjθj +A(∆tk , j)κjλτk +
1

2
A(∆tk , j)

2σ2
jλτkdt−B(∆tk − dt, j)}

We regroup the λτk in factor

Φτk,τk+1,j(1) = exp

{(
−dt−A(∆tk − dt, j) +A(∆tk , j)κj +

1

2
A(∆tk , j)

2σ2
jdt

)
λτk

}
exp {−A(∆tk , j)κjθj −B(∆tk − dt, j)}

By identification this expression of the Laplace transform and our Assumption of the
form of this expression (2.8). We get the following system with λτk = λ,

A(∆tk , j) = dt+A(∆tk − dt, j)−A(∆tk , j)κj −
1

2
A(∆tk , j)

2σ2
jdt

B(∆tk , j) = A(∆tk , j)κjθj +B(∆tk − dt, j)

Taking dt→ 0, we obtain the two functions as solution of the system

A(∆tk , j) = dt+A(∆tk − dt, j)−A(∆tk , j)κj −
1

2
A(∆tk , j)

2σ2
jdt

B(∆tk , j) = A(∆tk , j)κjθj +B(∆tk − dt, j)

∂A(∆tk , j)

∂∆tk

= 1− κjA(∆tk , j)−
1

2
σ2
jA(∆tk , j)

2 (2.9)

∂B(∆tk , j)

∂∆tk

= κjθjA(∆tk , j) (2.10)

With initial condition equal to A(0, j) = 0 and B(0, j) = 0, for all j ∈ Sd since Φτk,τk,j =

Eτk
[
exp

(
−
∫ τk
τk
λsds

)]
= 1 The calculus of the solution of this system of Riccati equation

is straightforward and can be find for instance in Cox and al. [7].

We would like now to give an explicit form of the conditional Laplace transform of the
CIR process between time 0 and T. This is done by the following Theorem.
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Theorem 2.1. Assume that for all t ∈ [0, T ], the process (λt) follows a regime switching CIR,
then we have for all λ0 = λ > 0 and Xτ1 = i0 ∈ Sd that

Φ0,T,λ,X(1) = E
[
exp

(
−
∫ T

0
λsds

)
|λ0 = λ,FXT

]
:= Eλ,X

[
exp

(
−
∫ T

0
λsds

)]

= exp

−
M∑
j=1

BM−j(∆tj−1)

 exp (−A0(∆t0 , i0)λ)

where

A0(∆t0) =
2

γ1 + κ1
− 4γ1

γ1 + κ1

1

(γ1 + κ1) exp(γ1∆t0) + γ1 − κ1
(2.11)

BM−k(∆tj−1) = −κ
M−k+1θM−k+1(γM−k+1 + κM−k+1)

(σM−k+1)2
∆tj−1 (2.12)

+2
κM−k+1θM−k+1

(σM−k+1)2
ln
(

(γM−k+1 + κM−k+1) exp(γM−k+1∆tj−1) + γM−k+1 − κM−k+1
)

−2
κM−k+1θM−k+1

(σM−k+1)2
ln
(

2γM−k+1
)

γM−k+1 =
√

(κM−k+1)2 + 2(σM−k+1)2 (2.13)

where we denote for simplicity κj = κ(Xtj ), θj = θ(Xtj ) and σj = σ(Xtj )

Proof. We have a sequence of increasing time 0 = τ0 < τ1 < · · · < τM = T . Hence

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
= Eλ,X

[
exp

(
−
M−1∑
k=0

∫ τk+1

τk

λsds

)]
= Eλ,X

[
exp

(
−
M−1∑
k=0

∫ τk+∆tk

τk

λsds

)]

= Eλ,X

[
M−1∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)]

By Assumption 1.1, conditioning with respect to FτM−1 := FM−1, we obtain

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
= Eλ,X

[
E

[
M−1∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
|FM−1

]]

= Eλ,X

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
E

[
exp

(
−
∫ τM

τM−1

λsds

)
|FM−1

]]

We know that E
[
exp

(
−
∫ τM
τM−1

λsds
)
|FM−1

]
is equal to Φ(τM−1, τM , XM ), where XM

is equal to XτM . So applying Proposition 2.1, we have that

E

[
exp

(
−
∫ τM

τM−1

λsds

)
|FM−1

]
= exp

{
−AM−1(∆tM−1 , XM )λτM−1 −BM−1(∆tM−1 , XM )

}
6



We recall that the quantitiesAM−1(∆tM−1 , XM ) andBM−1(∆tM−1 , XM ) are constants. Hence
replacing this result in the expectation gives

Eλ,X
[
exp

(
−
∫ T

0

λsds

)]
= Eλ,X

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
exp

{
−AM−1(∆tM−1 , XM )λτM−1 −BM−1(∆tM−1 , XM )

}]

= exp
{
−BM−1(∆tM−1 , XM )

}
Eλ,X

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−1(∆tM−1 , XM )λτM−1

)]

For the visibility of the calculus we will denote byAk−1 (resp. Bk−1) the quantityAk−1(∆tk−1
, Xk)

(resp. Bk−1(∆tk−1
, Xk)) for all k ∈ {0, . . . ,M − 1}. Hence

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
= exp {−BM−1}Eλ,X

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−1λτM−1

)]

We conditioning again with respect to FM−2 to obtain

Eλ,X
[
exp

(
−
∫ T

0

λsds

)]
= exp {−BM−1}Eλ,X

[
E

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−1λτM−1

)
|FM−2

]]

= exp {−BM−1}Eλ,X

[
M−3∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
E

[
exp

(
−
∫ τM−1

τM−2

λsds−AM−1λτM−1

)
|FM−2

]]

To continue, we need to evaluate the conditional expectation

E

[
exp

(
−
∫ τM−1

τM−2

λsds−AM−1λτM−1

)
|FM−2

]

For this we will denote by ϕτM−2,∆tM−2
this conditional expectation and we will use the

Lemma below to give an explicit form of this quantity.

Lemma 2.1. Assume that for all k ∈ {1, . . . ,M} that the conditional expectation ϕτM−k,∆tM−k
has a exponential affine structure form given by

ϕτM−k,∆tM−k
= exp

(
−AM−k(∆tM−k , XM−k+1)λτM−k −BM−k(∆tM−k , XM−k+1)

)
(2.14)

Then we can find explicits forms for functionsAM−k(∆tM−k , XM−k+1) andBM−k(∆tM−k , XM−k+1)

which are given by equations (2.5) and (2.6) with the recursive condition thatAM−k(0) = AM−k+1

and initial condition BM−k(0) = 0.

Proof. We proceed similarly as the proof of Proposition 2.1. Indeed

ϕτM−k,∆tM−k
:= E

[
exp

(
−
∫ τM−k+1

τM−k

λsds−AM−k+1λτM−k+1

)
|FM−k

]

= EM−k

[
exp

(
−
∫ τM−k+1

τM−k

λsds−AM−k+1λτM−k+∆tM−k

)]
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We take again a small time interval dt� ∆tM−2 to obtain

EM−k

[
exp

(
−
∫ τM−k+1

τM−k

λsds−AM−k+1λτM−k+∆tM−k

)]

= EM−k

[
EM−k+dt

[
exp

(
−
∫ τM−k+1

τM−k

λsds−AM−k+1λτM−k+∆tM−k

)]]

Then

EM−k+dt

[
exp

(
−
∫ τM−k+1

τM−k

λsds−AM−k+1λτM−k+1

)]

= EM−k

[
ϕ(τM−k + dt,∆tM−k − dt) exp

(
−
∫ τM−k+dt

τM−k

λsds

)]
We use the Assumption of the form of ϕ, this is equal to

EM−k

[
exp

(
−AM−k(∆tM−k − dt,XM−k+1)λτM−k+dt −BM−k(∆tM−k − dt,XM−k+1)

)
exp

(
−
∫ τM−k+dt

τM−k

λsds

)]

We simplify the notation and obtain

= EM−k

[
exp

(
−AM−k(∆tM−k − dt)λτM−k+dt −BM−k(∆tM−k − dt)

)
exp

(
−
∫ τM−k+dt

τM−k

λsds

)]
For small dt and using the stochastic differential equation of (λ)t∈[0,T ], we obtain

= EM−k[exp{−AM−k(∆tM−k − dt)
[
λτM−k + κM−k+1

(
θM−k+1 − λτM−k

)
dt+ σM−k+1

√
λτM−kdWt

]
−BM−k(∆tM−k − dt)− λτM−kdt}]

where κM−k+1 = κ(XτM−k+1
), θM−k+1 = θ(XτM−k+1

) and σM−k+1 = δ(XτM−k+1
).

= exp
{
−AM−k(∆tM−k − dt)λτM−k −AM−k(∆tM−k − dt)κ

M−k+1
(
θM−k+1 − λτM−k

)
dt
}

× exp
{
−BM−k(∆tM−k − dt)− λτM−kdt

}
EM−k

[
exp

(
−AM−k(∆tM−k − dt)σ

M−k+1
√
λτM−kdWt

)]
= exp

{
−AM−k(∆tM−k − dt)λτM−k −AM−k(∆tM−k)κM−k+1

(
θM−k+1 − λτM−k

)
dt
}

× exp
{
−BM−k(∆tM−k − dt)− λτM−kdt

}
exp

(
1

2
A2
M−k(∆tM−k)(σM−k+1)2λτM−kdt

)

By identifying with the assumed expression of ϕ in (2.14), we get{
AM−k(∆tM−k)=AM−k(∆tM−k − dt)−AM−k(∆tM−k)κM−k+1dt− 1

2A
2
M−k(∆tM−k)(σM−k+1)2dt+ dt

BM−k(∆tM−k)=BM−k(∆tM−k − dt) +AM−k(∆tM−k)κM−k+1θM−k+1dt

8



Taking dt close to zero, we get the two functions as solutions of:
∂AM−k(∆tM−k )

∂∆tM−k
= −AM−k(∆tM−k)κM−k+1 − 1

2A
2
M−k(∆tM−k)(σM−k+1)2 + 1

∂BM−k(∆tM−k )

∂∆tM−k
= AM−k(∆tM−k)κM−k+1θM−k+1

with condition for ∆tM−k ≡ 0, AM−k(0) = AM−k+1 and BM−k(0) = 0.
Hence by the proof of Proposition 2.1, we know the explicit form of AM−k(∆tM−k) and

BM−k(∆tM−k) which are given by equations (2.5), (2.6) with the new recursive condition
that AM−k(0) = AM−k+1 and initial condition BM−k(0) = 0

We come back to the proof of the Theorem 2.1, by applying the Lemma 2.1 with k = 2.
We obtain

E

[
exp

(
−
∫ τM−1

τM−2

λsds−AM−1λτM−1

)
|FM−2

]
= exp

(
−AM−2(∆tM−2)λτM−2 −BM−2(∆tM−2)

)
with deterministic function AM−2(∆tM−2) and BM−2(∆tM−2). Hence

Eλ,X
[
exp

(
−
∫ T

0

rsds

)]
= exp {−BM−1}Eλ,X

[
M−3∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
exp

(
−AM−2(∆tM−2)λtM−2 −BM−2(∆tM−2)

)]

= exp {−BM−1 −BM−2}Eλ,X

[
M−3∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−2(∆tM−2)λτM−2

)]

Conditioning an other time with respect to now FM−3. We obtain

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
= exp {−BM−1 −BM−2}Eλ,X

[
E

[
M−3∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−2λτM−2

)
|FM−3

]]

= exp

−
2∑
j=1

BM−j

Eλ,X

[
M−4∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
E

[
exp

(
−
∫ τM−2

τM−3

λsds−AM−2λτM−2

)
|FM−3

]]

We can now again apply Lemma 2.1 with k = 3. We obtain again that

E

[
exp

(
−
∫ τM−2

τM−3

λsds−AM−2λτM−2

)
|FM−3

]
= exp

(
−AM−3(∆tM−3)λτM−3 −BM−3(∆tM−3)

)
And so

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
=exp

−
3∑
j=1

BM−j

Eλ,X

[
M−4∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−3(∆tM−3)λτM−3

)]

By iterating the conditioning with respect to FM−k, k going to 4 to M and applying the
Lemma 2.1 we finally obtain

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
= exp

−
M∑
j=1

BM−j

 exp (−A0(∆t0)λτ0)

with by hypothesis λτ0 = λ and A0(∆t0) = A0(∆t0 , Xτ1) with Xτ1 = i0 ∈ Sd.
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We can now obtain the general expression of the conditional Laplace transform of the
regime switching CIR process by Theorem 2.1.

Corollary 2.1. For all u ∈ C, we have that the conditional Laplace transform of the regime switch-
ing CIR process conditioned on λ0 = λ and Xτ1 = i0 ∈ Sd is given by

Φ0,T,λ,X(u) := Eλ,X
[
exp

(
−u
∫ T

0
λsds

)]

= exp

−
M∑
j=1

B̃M−j
(
∆tM−j

) exp
(
−Ã0 (∆t0 , i0)λ

)
(2.15)

where the function B̃M−j for j = {1, . . . ,M} and Ã0 are given by equations (2.11) and (2.12)
taking parameters κ̃j := ˜κ(Xτj ) = κj , θ̃j := ˜θ(Xτj ) = uθj and σ̃j := ˜σ(Xτj ) =

√
uσj .

Proof. Since E
[
exp

(
−u
∫ T

0 λsds
)
|λ0 = λ,FXT

]
= Eλ,X

[
exp

(
−
∫ T

0 (uλs)ds
)]

. This is the
conditional Laplace transform of a process (uλ)t which is still a CIR process with new
parameters κ̃t = κt, θ̃t = uθt and σ̃t =

√
uσt, for all t ∈ [0, T ]. Hence applying Theorem 2.1

with this set of parameters gives the result as expected.

2.2 Analytic approximation

We now give an analytical approximation to evaluate the conditional Laplace trans-
form of a regime switching CIR. For this, we extend the result obtained in Choi and Wir-
janto [6]. They obtained an analytic approximation of a zero coupon bond price in the
particular case of constants parameters model and with constant time step discretization
model.

2.2.1 Construction of the times grid

Let ∆t be a fixed time step, then starting in time 0 we partition the time interval [0, T ]

in time step of

– size ∆t if there is no jump of the Markov process between time 0 to ∆t.

– size τ1 if there is the first jump of the Markov process at stopping time τ1 less tan ∆t.

Hence we denote by h1 the first time step of size ∆t or τ1. Then we will proceed as the
following: at time tk, corresponding of the time after the step hk, we construct the step
hk+1 of size

– ∆t if there is no jump of the Markov process between time tk to tk + ∆t.

– τi if there is the i jumps of the Markov process at stopping time τi less tan tk + ∆t.
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As an example of the construction

-

∆t 2∆t 3∆t 4∆t

0

τ1 τ2 τ3

Tt1-�
h1

t2-�
h2

t3-�
h3

t4-�
h4

t5-�
h5

t6-�
h6

t7-�
h7

-�
h8

This construction imply that hk = tk − tk−1 ≤ ∆t and that the parameter of the
regime switching CIR are constants (and bounded) in this each time interval [tk, tk+1[,
k ∈ {0, 1, . . . , n− 1}. It follows as an application of the tree property of conditional expec-
tation that the conditional Laplace transform of λ which follows a regime switching CIR
is given by

Φ0,T,λ,X(u) := E
[
exp

(
−u
∫ T

0
λsds

)
|λ0,FXT

]
= Eλ0,X

[
exp

(
−u
∫ T

0
λsds

)]
= Et0λ0,XE

t1
λ,X . . .E

tn−1

λ,X

[
exp

(
−u
∫ T

0
λsds

)]
(2.16)

Proposition 2.2. Let for all k ∈ {1, . . . , n− 1},

Fk = exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1λn−k

)
(2.17)

Then we have

Et0λ0,X

exp
(
−u
∫ T

0 λsds
)

∏n−1
i=1 Fi

 = exp

(
−u

2

n∑
k=1

h2
kakκk−1θk−1 −

u

2
h1λ0 [1 + a1 (1− κ0h1)]

)
Fn

(2.18)

where

an−1 = 1 +
hn
hn−1

+
hn
hn−1

an (1− hnκn−1) and an = 1 (2.19)

Proof. Using trapezoidal rule we obtain that the expectation at time tn−1 is given by

Etn−1

λ0,X

[
exp

(
−u
∫ T

0
λsds

)]
= Etn−1

λ0,X

[
exp

(
−u

n∑
i=1

(
λi + λi−1

2
hi

))]

= exp

(
−u

n−2∑
i=1

(
λi + λi−1

2
hi

)
− uλn−2

2
hn−1

)
Etn−1

λ,X

[
exp

(
−u

2
[hnλn + hnλn−1 + hn−1λn−1]

)]

Using the approximation

λn ' λn−1 + κn−1 (θn−1 − λn−1)hn + σn−1

√
λn−1∆Wn−1

11



where ∆Wn−1 = Wn −Wn−1 and denote by Gn−2 the quantity

exp

(
−u

n−2∑
i=1

(
λi + λi−1

2
hi

)
− uλn−2

2
hn−1

)

We obtain that Etn−1

λ0,X

[
exp

(
−u
∫ T

0 λsds
)]

is equal to

Gn−2E
tn−1

λ0,X

[
exp

(
−u

2

[
hn

(
λn−1 + κn−1 (θn−1 − λn−1)hn + σn−1

√
λn−1∆Wn−1

)
+ hnλn−1 + hn−1λn−1

])]
= Gn−2 exp

(
−u

2

[
hnλn−1 + h2

nκn−1θn−1 − h2
nκn−1λn−1 + hnλn−1 + hn−1λn−1

])
×Etn−1

λ0,X

[
exp

(
−u

2
hnσn−1

√
λn−1∆Wn−1

)]

Moreover we have that if ε ∼ N (0, 1) then for a constant K we have

E
[
exp

(
K
√
Tε
)]

= exp

(
K2T

2

)
(2.20)

Applying (2.20) and factorize by −uλn−1hn−1

2 give

=Gn−2 exp

(
u2

8
h3
nσ

2
n−1λn−1a

2
n

)
exp

(
−uλn−1hn−1

2

[
1 +

hn
hn−1

+
hn
hn−1

an (1− hnκn−1)

]
−u

2
h2
nanκn−1θn−1

)
=Gn−2 exp

(
−u

2
h2
nanκn−1θn−1

)
exp

(
−uλn−1hn−1

2
an−1

)
F1

Hence

Etn−1

λ0,X

exp
(
−u
∫ T

0 λsds
)

F1

 = Gn−2 exp

(
u2

8
h3
nσ

2
n−1λn−1

)
exp

(
−uλn−1hn−1

2
an−1

)

Then we can obtain the conditional expectation based on the information until tn−2 with
Gn−3 the quantity

exp

(
−u

n−3∑
i=1

(
λi + λi−1

2
hi

)
− uλn−3

2
hn−2

)

Etn−2

λ0,X

Etn−1

λ,X

exp
(
−u
∫ T

0 λsds
)

F1

 = Gn−3 exp
(
−u

2
h2
na

2
nκn−1θn−1

)
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×Etn−2

λ0,X

[
exp

(
−u

2
[λn−1hn−1an−1 + hn−2λn−2 + hn−1λn−2]

)]
= Gn−3 exp

(
−u

2
h2
nanκn−1θn−1

)
exp

(
u2

8
h3
n−1σ

2
n−2λn−2a

2
n−1

)
exp

(
−u

2
λn−2hn−1an−1 −

u

2
κn−2 (θn−2 − λn−2)h2

n−1an−1 − hn−2λn−2 − hn−1λn−2

)
= Gn−3 exp

(
−u

2
h2
nanκn−1θn−1

)
exp

(
u2

8
h3
n−1σ

2
n−2λn−2a

2
n−1

)
exp

(
−u

2
h2
n−1an−1κn−2θn−2

)
× exp

(
−u

2
λn−2hn−1an−1 +

u

2
κn−2λn−2h

2
n−1an−1 − hn−2λn−2 − hn−1λn−2

)
= Gn−3 exp

(
−u

2
h2
nanκn−1θn−1 −

u

2
h2
n−1an−1κn−2θn−2

)
F2

× exp

(
−u

2
λn−2hn−2

[
1 +

hn−1

hn−2
+
hn−1

hn−2
an−1 (1− κn−2hn−1)

])
= Gn−3 exp

(
−u

2
h2
nanκn−1θn−1 −

u

2
h2
n−1an−1κn−2θn−2

)
exp

(
−u

2
λn−2hn−2an−2

)
F2

Hence repeating iterating calculus gives

Etn−kλ0,X

exp
(
−u
∫ T

0 λsds
)

∏k−1
i=1 Fi

=Gn−k−1 exp

(
−u

2

k∑
i=1

h2
n−k+ian−k+iκn−k+i−1θn−k+i−1

)

× exp
(
−u

2
λn−khn−kan−k

)
Fk

Then until time t0, we obtain finally the expected result.

Et0λ0,X

exp
(
−u
∫ T

0 λsds
)

∏n−1
i=1 Fi

=exp

(
−u

2

n∑
k=1

h2
kakκk−1θk−1 −

u

2
h1λ0 [1 + a1 (1− κ0h1)]

)
Fn

Theorem 2.2. For all u ∈ C, the conditional Laplace transform Φ of the regime switching CIR
process is given by

ln (Φ0,T,λ,X(u)) = ln

(
Et0λ0,X

[
exp

(
−u
∫ T

0
λsds

)])
= −u

2

n∑
k=1

h2
kakκk−1θk−1 −

u

2
h1λ0 [1 + a1 (1− κ0h1)]

+

n∑
k=1

ln

(
Et0λ0,X

[
exp

{
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1

[
λ0 +

n−k∑
i=0

κi(θi − λi)hi+1 +
n−k∑
i=0

σi
√
λi∆Wi

]}])
(2.21)

where the sequence a is defined in Proposition 2.2.

Proof. As in [6], we see that it would be difficult to compute the expression Etn−k−1

λ0,X
[Fk]

explicitly. What why we simply approximate the expression Fk at time tn−k by E0
λ0,X

[Fk].
First we can use the following approximation

λn−k ' λ0 +
n−k∑
i=0

κi(θi − λi)hi+1 +
n−k∑
i=0

σi
√
λi∆Wi
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Then

Fk =exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1λn−k

)

=exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1

[
λ0 +

n−k∑
i=0

κi(θi − λi)hi+1 +

n−k∑
i=0

σi
√
λi∆Wi

])
(2.22)

Hence approximate the expression of Fk at time tn−k by the expectation at time 0, we
obtain

ln

Et0λ0,X

exp
(
−u
∫ T

0 λsds
)

∏n−1
i=1 Fi

 ' ln

Et0λ0,X

exp
(
−u
∫ T

0 λsds
)

∏n
k=1 E

t0
λ0,X

[Fk]


= ln

Et0λ0,X
[
exp

(
−u
∫ T

0 λsds
)]

∏n
k=1 E

t0
λ0,X

[Fk]


= ln

(
Et0λ0,X

[
exp

(
−u
∫ T

0
λsds

)])
− ln

(
n∏
k=1

Et0λ0,X [Fk]

)

= ln (Φ0,T,λ,X(u))−
n∑
k=1

ln
(
Et0λ0,X [Fk]

)
Then using (2.22) gives the result.

Remark 2.2. In the no switching regime case, we find the same expression as in [6]. Indeed we
have in this case that hk ≡ h = T

N for an N ∈ N and (κk, θk, σk) ≡ (κ, θ, σ).

3 Application to price defaultable bond

3.1 Credit migration model

Let T > 0 be a fixed maturity time and denote by (Ω,F := (F t)[0,T ],P) an underlying
probability space.

Definition 3.2. A Notation is a label given by an entity which measure the viability of a firm.
This graduate notation goes to 1 to K, which means default of the firm. We will call a Indicator
of notation a continuous time homogeneous Markov chain (X)t∈[0,T ] on the finite space S =

{1, . . . ,K}.

As in Section 1, we will denote by FXt := {σ(Xs); 0 ≤ s ≤ t}, the natural filtration
generated by the continuous Markov chain X . The generator matrix of X will be denoted
by ΠX and it is given by

ΠX
ij ≥ 0 if i 6= j for all i, j ∈ S and ΠX

ii = −
∑
j 6=i

Πij otherwise. (3.23)

14



We can remark that ΠX
ij represents the intensity of the jump from state i to state j. In this

part, we work in hazard rate framework and we use the credit rating migration modeliza-
tion. We find conditions to work in Markov setting. We will assume that the intensity of
default of each firms will depend on the Indicator of notation of each firms. For simplicity
and without restriction we will work we two firms denoted by A and B.

3.1.1 Markov Copula

Let A and B be two firms with respectively: Indicator of notation (XA)t∈[0,T ] and
(XB)t∈[0,T ]. Generator matrix ΠA and ΠB and natural filtration (FA)t∈[0,T ] and (FB)t∈[0,T ].
Let us denote by X the bivariate processes X = (XA, XB), which is a finite continuous
time Markov chain with respect to its natural filtration FX = FA,B . We recall now the
Corollary 5.1 of Bielecki and al. [2], applied on our case, which gives the condition that
the components of the bivariate processes X are themselves Markov chain with respect to
their natural filtration.

Corollary 3.2. Consider two Markov chain XA and XB , with respect to their own filtrations FA

andFB , and with values in S. Suppose that their respective generators are ΠA
ij and ΠB

hk with i, j, h
and k are in S. Consider the system of equations in the unknowns ΠX

ij,hk where i, j, h, k ∈ S and
(i, h) 6= (j, k):∑

k∈S
ΠX
ij,hk = ΠA

ij ∀h, i, j ∈ S, i 6= j and
∑
j∈S

ΠX
ij,hk = ΠB

hk ∀i, h, k ∈ S, h 6= k (3.24)

Suppose that the above system admits a solution such that the matrix ΠZ :=
(

ΠZ
ij,hk

)
i,j,h,k∈S

with
ΠX
ii,hh = −

∑
(j,k)∈S×S,(j,k)6=(i,h)

ΠX
ij,hk (3.25)

properly defines an infinitesimal generator of a Markov chain with values in S × S. Consider,
the bivariate Markov chain X = (XA, XB) on S × S with generator matrix ΠX . Then, the
components XA and XB are Markov chain with respect to their own filtrations, their generators
are ΠA and ΠB .

Hence we can formulate a Definition of a Markov copula.

Definition 3.3. A Markov copula between the Markov chains XA and XB is any solution to
system (3.24) such that the matrix ΠX , with ΠX

ii,hh given in (3.25), properly defines an infinitesimal
generator of a Markov chain with values in S × S .

3.1.2 Markov copula in the hazard rate framework

Assume that there is only two state S = {0, 1}, before and after the default time. We
denote by F := (Ft)t∈[0,T ] such that Ft = F t ∨FXt . Let τA and τB be the two default times
of firms A and B. Let define for all t ∈ [0, T ]:

HA
t = 1{τA≤t} and HB

t = 1{τB≤t} (3.26)
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We define now some filtrations

GAt = Ft ∨HBt , , GBt = Ft ∨HAt and Gt = Ft ∨HAt ∨HBt

where HA (resp. HB) is the natural filtration generated by HA (resp. HB). And we will
denote G := (Gt)t∈[0,T ], GA :=

(
GAt
)
t∈[0,T ]

and GB :=
(
GBt
)
t∈[0,T ]

. Let now consider λi :=

λi(X), for i ∈ {A,B} two F-progressively non-negative processes defined on (Ω,G,P)

endowed with the filtration F. We assume that
∫∞

0 λi(Xs)ds = +∞ and we set:

τ i = inf

{
t ∈ R+,

∫ t

0
λi(Xs)ds ≥ − ln(U i)

}
, i ∈ {A,B}.

where U i are mutually independent uniform random variables defined on (Ω,G,P) which
are independent of λi. The stopping times τA and τB are totally inaccessible and condi-
tionally independent given the filtration F, moreover the (H)-hypothesis is satisfied (i.e.
that every local F-martingale is a local G-martingale too). The process λi is called the
F-intensity of the firm i and we have that

M i
t = H i

t −
∫ t∧τ i

0
λi(Xs)sds

are G-martingales. In general case, processes λi are F ∨ G(i)-adapted which jump when
any default occurs. This jump impacts the default of the firm and makes some correla-
tion between the firms. In our case, the correlation is constructed using the F-Markov
chain X = (XA, XB). Since from the explicit formula of the intensity given the survey
probability for each i ∈ {A,B}:

λit = − 1

P(τ i ≥ t|Git)
dP(τ i ≥ θ|Git)

dθ

∣∣∣
θ=t

We can find, from Bielecki and al. [3] (Example 4.5.1 p 94), that the formula of the condi-
tional survey probability with respect to G is given by:

P(τ i ≥ θ|Gt) = 1τ i≥tE
[
e−
∫ θ
t λ

i(Xs)ds|Ft
]

(3.27)

for i ∈ {A,B}. The Markov chain X will explain how the curve of the default bond moves
with different states (regimes) of the financial market.

3.1.3 Construction of the Markov chain

We are now going to present the canonical construction of a conditional Markov chain
X, based on a given filtration F and a stochastic infinitesimal generator Π. This construc-
tion can be found in Bielecki and Rukowski [4] or Eberlein and Ozkan [10], which we
follow closely in the exposition. Each component ΠX

ij : Ω × [0, T ] → R+ are bounded, F-
progressively measurable stochastic processes. We recall that for every i, j ∈ S, i 6= j, pro-
cesses Πij are non-negative and Πii(t) = −

∑
j 6=i Πij(t). The process X is constructed from

an initial distribution µ and the F-conditional adapted infinitesimal generator Π by enlarg-
ing the underlying probability space (Ω,F ,PT ) to a probability space denoted in the sequel
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by (Ω,F ,QT ). The new probability space is obtained as a product space of the underlying
one with a probability space supporting the initial distribution µ of X and a probability
space supporting a sequence of uniformly distributed random variables, which control,
together with the entries of the infinitesimal generator Π, the laws of jump times (τk)k∈N
of X and jump heights. We denote by F its trivial extension from the original probability
space (Ω,F ,PT ) to (Ω,F ,QT ). We refer to [4] or Grbac [14] for detail of this construc-
tion. However an important step of this construction is that they construct a discrete time
process (Xk)k∈N which allow us to construct the migration process X as

Xt := Xk−1 for all t ∈ [τk−1, τk[, k ≥ 1 (3.28)

where τk are the jump time. An important result is that the progressive enlargement of
filtration Ft := F t ∨ FXt , t ∈ [0, T ] satisfies the (H)-hypothesis which is that every local
F-martingale is a local F-martingale too. For the next of this paper we will work under the
enlarging probability space (Ω,F ,QT ) where Ft := F t ∨FXT . The expectation will be take
under the probability measure QT but for simplicity we will note EQT by E.

3.2 Pricing defaultable bond with Markov copula

3.2.1 Defaultable Model

Let W = (W 1,W 2) be a bi-dimensionnal real Brownian motion defined as

Ft = σ{W 1
s ; 0 ≤ s ≤ t} and FXt = σ{W 2

s ; 0 ≤ s ≤ t}

We suppose the existence of two firms A and B with our own indicator of notation
XA and XB which are FX -adapted. Then there is two infinitesimal generator ΠA and ΠB

generated by the Brownian motion W 2. We construct the credit migration process X as the
Markov copula of the bivariate process (XA, XB). We will denote by ΠX the infinitesimal
generator process of X which is a matrix with K2 rows and columns since the cardinal of
the state of notation is K. Denote by N = K2, we can write ΠX as

ΠX =


π(1,1) . . . π(1,N)

π(2,1 . . . π(2,N)
...

...
π(N,1) . . . π(N,N)


The possible state are N couples which are given by

E := {(1, 1), (1, 2), . . . , (1,K), (2, 1), (2, 2), . . . , (2,K), . . . (K, 1), (K, 2), . . . , (K,K)}

With this construction, we obtain two sequence of increasing FX -stopping time in in-
terval [0, T ], where the notation of each firm change. We denote by ΓA this subdivision

0 ≤ τA1 < τA2 < · · · < τAn ≤ T

Respectively by ΓB

0 ≤ τB1 < τB2 < · · · < τBm ≤ T
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Remark 3.3. This is no reason that the number of change of credit notation n and m of the two
firms A and B to be the equal.

So in each time intervals [τ ik, τ
i
k+1[, with i = A and k ∈ {1, . . . n} or i = B and k ∈

{1, . . .m} the credit migration process X is constant.

Assumption 3.2. We assume that the both intensities processes λA and λB follow a regime switch-
ing CIR given for i = {A,B} by

dλit = κ(Xt)(θ(Xt)− λit)dt+ σ(Xt)
√
λitdW

1
t (3.29)

We will assume in the sequel that the risk-free interest rate (rt) is deterministic for all
t ∈ [0, T ].

Remark 3.4. We have that the intensity process (λit) depends on the value of the credit migration
process X = (XA, XB). Hence each firm A and B have an increasing sequence of stopping times
given by:

– for the firm A it is 0 ≤ τA1 < τA2 < · · · < τAn ≤ T

– for the firm B it is 0 ≤ τB1 < τB2 < · · · < τBm ≤ T

Hence with this two sequence, we construct another sequence by reorganizing this two sequence in
once where we put all the stopping time τAi , i ∈ {1, . . . n} and τBj , j ∈ {1, . . . ,m} in increasing
order. We obtain a new increasing sequence of stopping time of size M ∈ N given by 0 ≤ τ1 <

τ2 < · · · < τM ≤ T

As an example of the construction

-

0

τA1

τ1

τA2

τ2

τB1

τ3

τA3

τ4

τB2

τ5

τA4

τ6 T

Let (Xt)t∈[0,T ] be a credit migration process which take value in a finite state space
S × S such that for all k ∈ {0, . . . ,M − 1} and all t ∈ [τk, τk+1[, Xt is constant.

Remark 3.5. By this construction, we have that on each interval t ∈ [τk, τk+1[ that the regime
switching CIR process λi defined in (3.29) is a classical CIR with constant parameter.

Example 3.1. We can take a sequence of increasing stopping time which is an equidistant subdi-
vision of the time interval [0, T ] on M interval τk = k∆t = k TM . Then we can take (Xt)t∈[0,T ] as
continuous time bivariate homogeneous Markov chain on finite state space S which is constant on
each time interval [τk, τk+1[= [τk, τk + ∆t[.
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3.2.2 Explicit zero coupon bond price formula

Definition 3.4. We will denote by
(
Di
t,T

)
t∈[0,T ]

, i = {A,B} the price of a defaultable discounted

bond price which pays $1 at the maturity T.

Using the partitioning time and the notation defined as the previous subsection, then
by the general asset pricing theory in Harrison and Pliska [17] and [18], the defaultable
discounted bond price Dt,T at time t given λ = λ0 and Xτ1 = i0 ∈ S × S is given by

Proposition 3.3. For i = {A,B}, we have for all t ∈ [0, T ] that

Di
t,T = (1−H i

t)E
[
exp

(
−
∫ T

t
(rs + λis)ds

)
|FXt , λ0

]
(3.30)

Remark 3.6. The quantity
(
rt + λit

)
t∈[0,T ]

can be see as a default-adjusted interest rate process.
The part

(
λit
)
t∈[0,T ]

is the risk-neutral mean loss rate of the instrument due to the default of the
firm i ∈ {A,B}. The quantity

(
rt + λit

)
t∈[0,T ]

therefore represents the probability and the timing
of default, as well as for the effect of losses on default. This model allows us to capture a economic
health of each firm since for each firm i ∈ {A,B}, the stochastic process (λit) has parameters whose
values depend on the credit notation of the firm. And by the construction of the migration process
X , we have correlation between each firm notation. This allows the model to capture financial
health correlation between each firm, like the impact of the default of one firm against the others.

Proposition 3.4. Under Assumptions 1.1 and 3.2, we have for i ∈ {A,B} that the defaultable
bond price can be obtained by two formula

1. Riccati Approach:

Di
0,T = (1−H i

0) exp

(
−
∫ T

0
rsds

)
exp

−
M∑
j=1

BM−j(∆tj−1)

 exp (−A0(∆t0 , i0)λ)

(3.31)

where quantity A and B are the same as given in Theorem 2.1.

2. Analytic Approximation:

Di
0,T =(1−H i

0)exp

(
−
∫ T

0
rsds

)
exp

{
−u

2

n∑
k=1

h2
n−k+1an−k+1κn−kθn−k −

u

2
h1λ0 [1 + a1 (1− κ0h1)]

}

× exp

{
n∑
k=1

ln

(
Et0λ0,X

[
exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1

[
λ0 +

n−k∑
i=0

κi(θi − λi)hi+1 +

n−k∑
i=0

σi
√
λi∆Wi

])])}
(3.32)

where the sequence a is defined in Proposition 2.2.

Proof. For point 1. apply Theorem 2.1 and Proposition 3.3 to the particular case t = 0 and
θ = T . And for point 2. apply Theorem 2.2 with u = 1.
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4 Simulation: Pricing zero coupon Bond in the two firms case
with two regime.

We work on simulated data. We fixe the time maturity of zero coupon bond at T = 10

(i.e. a ten years ahead maturity). We chose that the deterministic interest rate equals to
zero.

4.1 The model parameters and heuristic

In the one regime case, which is called ”standard economic” regime, we take for value
of the CIR default intensity the value in Table 1.

Parameters κ θ σ

Values 0.1 0.15 0.15

Table 1: Parameters values of the CIR default intensity.

This set of parameters gives a value of the Zero coupon Bond equals to 0.6086. We now
do some simulation of our paper model. First we begin with the heuristic of the calculus
of the defaultable Bond price. We will proceed by a Monte Carlo approach with MC ∈ N
steps:

1. We know the value of the infinitesimal generator ΠX of the credit migration process X.

2. We generate a sequence of increasing stopping time and the time correspondent trajec-
tory of X.

3. (a) We apply the formula (3.31) to calculate the price of this defaultable Bond price for
the firm A or B.

(b) We apply the construction of the time grid studied in subsection 2.2.1. Then we
applied the formula (3.32).

4. We come back to step 1. until we will have do MC times this methods.

Hence assume that we have 2 regimes which represents a ”normal” economic regime
(regime 0) and a ”crisis” regime (regime 1). The Credit migration process X is then done
in a set of four state

{(0, 0); (1, 0); (0, 1); (1, 1)}

We fix the infinitesimal generator ΠX of the credit migration process X such that

ΠX =


−0.1083 0.0455 0.0455 0.0174

0.0542 −0.1644 0.0082 0.1004

0.0542 0.01 −0.1644 0.1003

0.0542 0.01 0.01 −0.0741



20



which correspond to a transition matrix of

PX =


0.90 0.04 0.04 0.02

0.05 0.85 0.01 0.09

0.05 0.01 0.85 0.09

0.05 0.01 0.01 0.93


In other words, if we are in a state where only the firm A is on ”crisis” (i.e. state (1,0))

the probability that the firm B go into ”crisis” in the next time step is 0.01.

10 20 30 40 50 60 70

(0,0)

(1,0)

(0,1)

(1,1)

Switch

R
eg

im
es

 

 

Credit Migration Process

Figure 1: Example of trajectory of the credit migration process X.
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Figure 2: Example of instant of regime switching of the credit migration process X.

Figure 1 and 2 give an example of the trajectory of the credit migration process X and
of the sequence of stopping time τ where the credit migration process jumps.
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We need to have four set of CIR default intensity parameters. Let for i ∈ {A,B}, νi, ξi

and ρi be real valued such that the set of parameters are given by Table 2

Parameters κX θX σX

(0,0) 0.1 0.15 0.15

(1,0) 0.1 + νA 0.15 + ξA 0.15 + ρA

(0,1) 0.1 + νB 0.15 + ξB 0.15 + ρB

(1,1) 0.1 + νA + νB 0.15 + ξA + ξB 0.15 + ρA + ρB

Table 2: Parameters values of the CIR default intensity in the 2 regimes case.

Remark 4.7. For i ∈ {A,B}, the constant νi, ξi and ρi are choose such that the CIR condition
holds, i.e. 2κXθX ≥ σ2

X

4.2 Comparison of the different formula to evaluate defaultable bond price.

4.2.1 Convergence

We know that the formula of the conditional survey probability with respect to G is
given by equation (3.27). We would like now to compare the different formula to pricing
defaultable zero coupon bond (i.e. formulas (3.27), (3.31) and (3.32)).

In tables 3, 4 and 5, we resume the convergence results in the case of a four state regime
parameters defined as in Table 2.

Parameters: νA νB ξA ξB ρA ρB

Values: 0.2 0 0 0.3 0 0.1

Table 3: Values of the constant parameters defined in Table 2.

Regimes: (0, 0) (1, 0) (0, 1) (1, 1)

Bond price values: 0.6086 0.3777 0.2740 0.0668

Table 4: Values of the Bond price standard formula in t = 0 in each regime with a maturity T = 10

years.

Remark 4.8. We take for time step parameter ∆t appearing in subsection 2.2.1 for the calculus of
(3.32) the value 0.01. Indeed, we obtain similar price for different value of ∆t.

With this set of parameters, we obtain what we expected. Indedd, we can see in Table
4 that in ”crisis” regime (i.e. (1, 0), (0, 1) and (1, 1)) the probability of default of the firm
is bigger than in ”standard economic” regime (i.e. (0, 0)). In Table 5, we can see that
all formuals converge then the number of Monte Carlo simulations increase. Whereas the
bond price value given by formula (3.31) based on Riccati approach or formula (3.32) based
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Bond Price (3.31) (std) C.T.(sec.) (3.32) (Std) C.T. (3.27) C.T.
MC = 100 0.5619 (0.1110) 1.94 0.5585 (0.1699) 15.98 0.6500 1.95
MC = 300 0.5692 (0.1015) 5.34 0.5587 (0.1602) 52.52 0.6233 6.61
MC = 400 0.5736 (0.0949) 6.87 0.5649 (0.1505) 60.48 0.6400 9.58
MC = 500 0.5748 (0.0927) 7.97 0.5658 (0.1511) 78.32 0.6360 12.44
MC = 1000 0.5738 (0.0961) 16.31 0.5654 (0.1533) 146.51 0.6220 33.23
MC = 2000 0.5727 (0.0995) 27.33 0.5646 (0.1533) 221.22 0.5770 96.78

Table 5: Results for the formulas convergence in t = 0 with initial regime the regime (0, 0) and
maturity T = 10 years.

Bond Price (3.32)
∆t = 1 0.5612

∆t = 0.1 0.5648
∆t = 0.01 0.5649

on analytic approach converge quicker than the value given by formula (3.27). Indeed, it
is sufficient to take 400 Monte Carlo simulation to converge while it is necessary to take
at least 2000 Monte Carlo simulations with formula (3.27). The difference of 10−1 on the
value given by (3.31) and (3.32) could be due to the error approximation of the conditional
expectation at time tn−k of Fk (see. proof of Theorem 2.2). Hence our two formulas need
less simulation than formula (3.27) to converge. Moreover we observe that the Riccati
approach formula (3.31) need a smaller computation time. Only 6.87 sec while formula
(3.32) needs 60.48 sec and formula (3.27) needs 96.78 sec. Hence formula based on Riccati
approach needs ten times less times than Analytic approach to converge.

4.2.2 Bond price with respect to the maturity T.

Bond Price (3.31) (MC = 400) (3.32) (MC = 400) (3.27) (MC = 2000)
T = 1 0,9926 0,9923 0,9940
T = 2 0,9709 0,9696 0,9770
T = 5 0,8458 0,8405 0,8480
T = 7 0,7376 0,7261 0,7365
T = 10 0,5736 0,5649 0,5770
T = 15 0,3579 0,3948 0,3505

Table 6: Value of the Defaultable zero coupon bond price at time 0 with respect to the maturity
time T with ∆t = 0.01.

We observe in Table 6 and Figure 3 that the three formulas give similar result. Whereas,
first, we made this simulation taking 2000 Monte Carlo simulations for the Probabilistic
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Figure 3: Graphs of the value of the Defaultable zero coupon bond price at time 0 with respect to
the maturity time T with ∆t = 0.01 (MC=400 for the two first formulas and 2000 for the Probability
approach).

approach (formula (3.27)). Secondly, we remark, when the maturity T is greater than 10,
that the result given by the analytic approximation is no more better than the other. This
relative mispricing was observe in the non regime switching case and uniform step time
model discretization in [6] as soon as the maturity T is greater than 10.

4.3 Other simulations with Riccati approach formula.

4.3.1 Bond Price all over time t ∈ [0, T ]

Taking parameters as in Table 3, we can draw the value of a defaultable zero coupon
bond price over time t ∈ [0, T ] using formula (3.31). An example is given in Figure 4.
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Figure 4: Price of a defaultable zero coupon bond price in each time t between time 0 to maturity
T.
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4.3.2 Bond Price in function of probability that B goes to crisis

Taking parameters as in Table 3, we evaluate the price of a defaultable zero coupon
bond in functon of the probabilityP (Xt+∆t = (0, 1)|Xt = (0, 0)) andP (Xt+∆t = (1, 1)|Xt = (0, 0)).
This is pX1,3 and pX1,4. Hence we take a parametric transition matrix of the form: a transition
matrix of

PX =


1− a− 3b a 2b b

0.05 0.85 0.01 0.09

0.05 0.01 0.85 0.09

0.05 0.01 0.01 0.93


where a, b ∈ [0, 1]. We obtain the following result:
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Figure 5: Price of a defaultable zero coupon bond price in t = 0 for maturity T = 10 and values of
a = 0.04 in function of b.

Hence we observe in Figure 5 that when b grows up (i.e. the probabilityP (Xt+∆t = (1, 1)|Xt = (0, 0))),
the price of the defaultable zero coupon bond price of the firm A decreases. This means
that the economic status of the firm B (the probability to go in crisis) impact the value of
the defaultable zero coupon bond of the firm A.
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