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MINIMIZATION OF THE GROUND STATE FOR TWO PHASE
CONDUCTORS IN LOW CONTRAST REGIME

CARLOS CONCA, ANTOINE LAURAIN, AND RAJESH MAHADEVAN

ABSTRACT. In this article we consider the problem of the optimal distribution of two
conducting materials with given volume inside a fixed domain, in order to minimize the
first eigenvalue (the ground state) of a Dirichlet operator. It is known, when the domain
is a ball, that the solution is radial, and it was conjectured that the optimal distribution of
the materials consists in putting the material with the highest conductivity in a ball around
the center. We show that this conjecture is not true in general. For this, we consider the
particular case where the two conductivities are close to each other (low contrast regime)
and we perform an asymptotic expansion with respect to the difference of conductivities.
We find that the optimal solution is the union of a ball and an outer ring when the amount
of the material with the higher density is large enough.

1. INTRODUCTION

Let Ω be a bounded domain in Rd which is to be called the design region. Let m be a
given positive number, 0 < m < |Ω|, where |Ω| is the Lebesgue measure of the design
region Ω. Two materials with conductivities α and β (0 < α < β) are distributed in
arbitrary disjoint measurable subsets A and B, respectively, of Ω so that A ∪ B = Ω and
|B| = m. Consider the two-phases eigenvalue problem:

−div(σ∇u) =λu in Ω,(1)
u =0 on ∂Ω,(2)

with the conductivity σ = αχA + βχB . Let λ be the first eigenvalue of (1)-(2) and u the
associated eigenvector. The variational formulation for λ is

(3) λ = min
u∈H1

0 (Ω)

∫
Ω

σ|∇u|2∫
Ω

u2
= min
u∈H1

0 (Ω),‖u‖2=1

∫
Ω

σ|∇u|2,

where ‖u‖2 denotes the L2-norm of u. In this paper the set Ω is fixed and we are interested
in the dependence of λ on A and B. Since A = Ω \ B, λ may be described as a function
of B and we write λ = λ(B). We consider the problem of minimizing λ(B) with the
constraint that the two phases are to be distributed in fixed proportions:

minimize λ(B)(4)
subject to B ∈ B(5)

where

(6) B = {B ⊂ Ω, B measurable, |B| = m}
The existence of a solution to the problem (4)-(6) remains an open question. In general,
one may evidence microstructural patterns in relation to minimizing sequences and the
original problem may have to be relaxed to include microstructural designs. Existence of
a solution and optimality conditions in the class of relaxed designs has been discussed in
Cox and Lipton [4]. However, the original problem (4)-(6) may still have a solution for
particular geometries as is the case when Ω is a ball. When Ω = B(0, R) is a ball, the
existence of a radially symmetric optimal set has been proved in [1], using rearrangement
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techniques and a comparison result for Hamilton-Jacobi equations and later, only using
rearrangement techniques in [2]. Even, in this case an explicit solution to the problem is
not known. It was conjectured in [2, 3], for higher dimensions, that the solution B∗ to this
problem is a ball B(0, R∗) like in the one-dimensional case [12], a result known since the
1950’s. This conjecture has been recently reinforced by numerical tests in [3] and by the
result in [5], where it is shown, using second order shape derivative calculus, that such a
configuration is a local minimum for the problem when the volume constraint m is small
enough.

In spite of these results, we prove in this paper that the conjecture is not true in general.
Indeed, the optimal domain B∗ cannot be a ball when α and β are close to each other and
m is sufficiently large (cf. Theorem 3). The theoretical base for this result is provided by
an asymptotic expansion of the eigenvalue with respect to β − α as β → α, which allows
us to approximate (4)-(6) by a simpler optimization problem (cf. Theorem 2). This is done
in Section 2. Through this asymptotic formulation we are not only able to show that the
previous conjecture is false but also we are able to compute numerical approximations of
the solution in design domains other than balls. The numerical results are presented in
Section 4. Another main feature of the paper is the proposal, in Section 3, of a descent
algorithm to solve the problem in general. This also permits to establish some necessary
optimality conditions and allows us to deduce certain features of the optimal solution.

2. OPTIMAL SETS FOR SMALL CONDUCTIVITY GAP

2.1. Asymptotic expansion. In this section we shall look at the problem of minimization
of the first eigenvalue in the special case where the conductivities of the two materials,
α and β, are close to each other (i.e. are in low contrast regime). Thus, we assume that
β = βε := α+εwith ε > 0 converging eventually to zero. If the material with conductivity
βε occupies the sub-domain B of Ω, the conductivity coefficient is, in this case,

(7) σ = σε(B) := αχA + βεχB = α+ εχB .

Let λε(B) be the first eigenvalue in the problem

−div(σε(B)∇uε) =λε(B) uε in Ω,(8)

uε =0 on ∂Ω(9)

for the conductivity σε(B). It is well-known, from the Kreı̆n-Rutman theorem [13], that the
first eigenvalue of a linear elliptic operator is simple and the corresponding eigenfunction
is of constant sign (and is the only eigenvalue whose eigenfunction does not change sign).
So, we can choose the eigenfunction uε = uε(B) corresponding to λε(B) to be positive
and normalize it using the condition

(10)
∫

Ω

(uε)2 = 1,

In this way, uε is uniquely defined. We affirm that, for fixed B, both λε(B) and uε(B)
depend analytically on the parameter ε. This result is classical in the perturbation theory
of eigenvalues and follows readily, for instance, from Theorem 3, Chapter 2.5 of Rellich
[16]. This justifies the ansätze

λε(B) = λ0(B) + ελ1(B) + . . .(11)

uε(B) = v0(B) + εv1(B) + . . .(12)

The convergence of the series in (12) holds in the spaceH1
0 (Ω). We first make some useful

observations about the the terms in ansätze (11)-(12).
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Proposition 1. In ansätze (11) and (12), the terms λ0(B) and v0(B) are independent of
B. In fact, λ0(B) = λ0 is the first eigenvalue in the problem

−α∆v0 =λ0v0 in Ω,(13)
v0 =0 on ∂Ω .(14)

The function v0 is the positive eigenfunction corresponding to λ0 and satisfies the normal-
ization condition

∫
Ω
v2

0 = 1.

Proof. In view of the analytic dependence of λε(B) and uε(B) on ε, it follows that λ0(B)
is the limit, as ε → 0, of λε(B) and that v0(B) is the limit of uε(B) in H1

0 (Ω) as ε → 0.
Recalling that the eigenfunctions uε(B) are positive it follows that v0(B) is non-negative.
Passing to the limit in (8)-(10), as ε → 0, we obtain that λ0(B) and v0(B) solve the
eigenvalue problem (13)-(14) and

∫
Ω

(v0(B))
2

= 1. As v0(B) is a positive eigenfunction,
it follows by the Kreı̆n-Rutman theorem that λ0 is necessarily the first eigenvalue of the
eigenvalue problem (13)-(14). Thus, λ0(B) and v0(B) are independent of B and shall be
denoted by λ0 and v0, respectively. �

Proposition 2. In the ansatz (11), λ1(B) is given explicitly in terms of v0 as follows

(15) λ1(B) =

∫
B

|∇v0|2 dx .

The following orthogonality relations hold true

(16)
∫

Ω

v0 v1(B) dx = 0 =

∫
Ω

∇v0 · ∇v1(B) dx .

Proof. The term λ1(B) in the ansatz (11) is the derivative of λε(B) with respect to ε at
ε = 0, whereas the term v1(B) in the ansatz (12) is the derivative of uε(B) with respect to
ε at ε = 0. Differentiating the equations (8)-(10) with respect to ε at ε = 0, we obtain the
equations

−div(α∇v1(B))− λ0v1(B) = div(χB∇v0) + λ1(B) v0 in Ω,(17)

v1(B) =0 on ∂Ω(18)

and the first of the orthogonality relations in (16). We have seen in Proposition 1 that λ0 is
the first eigenvalue of the problem (13)-(14) and is simple, the eigenspace being generated
by the eigenfunction v0. Taking v1(B) as a test function in (13)-(14) and using the first
orthogonality relation in (16), we obtain the second orthogonality relation in (16). Finally,
the system (17)-(18) admits a solution, by the Fredholm alternative, if and only if the right
hand side is orthogonal to the eigenfunction v0. This condition leads to the relation∫

Ω

div(χB∇v0)v0 dx+ λ1(B)

∫
Ω

v2
0 dx = 0.

As
∫

Ω
v2

0 = 1, we obtain

λ1(B) = −
∫

Ω

div(χB∇v0)v0 dx

= −
∫
∂Ω

χBv0∇v0 · n dS +

∫
B

|∇v0|2 dx =

∫
B

|∇v0|2 dx .

�

Let us denote by
λ̃ε(B) = λε(B)− λ0 − ελ1(B)

the remainder in the ansatz (11). Although λ̃ε(B) is of order ε2 for fixed B, we need
estimates for λ̃ε(B) which are uniform with respect to B. This is given by the following
theorem.
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Theorem 1. For ε > 0 sufficiently small, there exists a constant C independent of ε and
B such that

(19) |λ̃ε(B)| ≤ C ε 3
2 ∀B ∈ B .

Proof. For the sake of clarity we divide the proof into several steps. Let ε > 0 be a
constant which is small compared to 1. In what follows, we use C to denote a generic
constant independent of ε and B.

STEP 1: We first show that

(20) λε(B) ≤ C , ‖uε(B)‖H1
0 (Ω) ≤ C .

The first inequality in (20) follows readily from the variational characterization of λε(B).
Indeed, choosing a function ϕ ∈ H1

0 (Ω) with
∫

Ω
ϕ2 = 1, we have

λε(B) = inf

{∫
Ω

σε(B)∇u · ∇u dx : u ∈ H1
0 (Ω),

∫
Ω

u2 = 1

}
(21)

≤
∫

Ω

σε(B)∇ϕ · ∇ϕ dx

≤ (α+ 1)

∫
Ω

∇ϕ · ∇ϕ dx

which proves the first estimate in (20). Now, using the uniform bound for λε(B) and using
the fact that the coefficients σε(B) are uniformly elliptic, we have

α‖uε(B)‖2H1
0 (Ω) ≤

∫
Ω

σε(B)∇uε(B) · ∇uε(B) dx = λε(B) ≤ C(22)

which proves the second estimate in (20).

STEP 2: Next, we show that

(23) |λε(B)− λ0| ≤ C ε .

As σε(B) ≥ α for all ε > 0, it follows from the variational characterization (21) of λε(B)
that

(24) λ0 ≤ λε(B) for all ε > 0 and for all measurable B ⊂ Ω .

On the other hand, using the variational characterization (21) and the fact that

λ0 =

∫
Ω

α∇v0 · ∇v0 dx,

we get the following estimate

λε(B)− λ0 ≤
∫

Ω

σε(B)∇v0 · ∇v0 dx−
∫

Ω

α∇v0 · ∇v0 dx

= ε

∫
Ω

χB∇v0 · ∇v0 dx .(25)

The claim (23) follows from (24) and (25).

STEP 3: Now, we use the above estimate to show that

(26) ‖uε(B)− v0‖H1
0 (Ω) ≤ C

√
ε .
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To begin with, we have

λε(B)− λ0 =

∫
Ω

σε(B)∇uε(B) · ∇uε(B) dx−
∫

Ω

α∇v0 · ∇v0 dx

= ε

∫
Ω

χB∇uε(B) · ∇uε(B) dx

+α

(∫
Ω

∇uε(B) · ∇uε(B) dx−
∫

Ω

∇v0 · ∇v0 dx

)
= ε

∫
Ω

χB∇uε(B) · ∇uε(B) dx + 2α

∫
Ω

∇v0 · ∇(uε(B)− v0) dx

+ α

∫
Ω

∇(uε(B)− v0) · ∇(uε(B)− v0) dx .

Rewriting the previous equality we get

α

∫
Ω

|∇(uε(B)− v0)|2 dx+ 2α

∫
Ω

∇v0 · ∇(uε(B)− v0) dx

= λε(B)− λ0 − ε
∫

Ω

χB∇uε(B) · ∇uε(B) dx .(27)

Finally we obtain

∣∣∣∣α ∫
Ω

|∇(uε(B)− v0)|2 dx+ 2α

∫
Ω

∇v0 · ∇(uε(B)− v0) dx

∣∣∣∣
≤ |λε(B)− λ0|+ ε

∣∣∣∣∫
Ω

χB∇uε(B) · ∇uε(B) dx

∣∣∣∣
≤ Cε(28)

where the last inequality is a consequence of (23) and (20). Dividing by ε and passing to
the limit in (28), we have

(29)
∣∣∣∣limε→0α

∫
Ω
|∇(uε(B)− v0)|2 dx

ε
+ 2α

∫
Ω

∇v0 · ∇v1(B) dx

∣∣∣∣ ≤ C .
In view of the second orthogonality relation in (16) we conclude that (26) holds.

STEP 4: Finally, we show the estimate for the remainder λ̃ε(B)

(30) |λ̃ε(B)| = |λε(B)− λ0 − ελ1(B)| ≤ C ε 3
2 .

On the one hand, we observe that

λ0 + ελ1(B)− λε(B) ≥
∫

Ω

α∇v0 · ∇v0 dx+ ε

∫
Ω

χB∇v0 · ∇v0 dx

−
∫

Ω

σε(B)∇v0 · ∇v0 dx

= 0 .(31)
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On the other hand, we have

λ0 + ελ1(B)− λε(B) ≤
∫

Ω

α∇uε(B) · ∇uε(B) dx+ ε

∫
Ω

χB∇v0 · ∇v0 dx

−
∫

Ω

σε∇uε(B) · ∇uε(B) dx(32)

≤ ε
∫

Ω

χB∇v0 · ∇v0 dx− ε
∫

Ω

χB∇uε(B) · ∇uε(B) dx

= ε

∫
Ω

χB∇(v0 − uε(B)) · ∇(v0 − uε(B)) dx

+ 2ε

∫
Ω

χB∇uε(B) · ∇(v0 − uε(B)) dx .v(33)

So, by the result of Step 3, it follows from (31) and (33) that

|λ0 + ελ1(B)− λε(B)| ≤ ε‖v0 − uε(B)‖2H1
0 (Ω) + 2Cε‖v0 − uε(B)‖H1

0 (Ω)

≤ Cε2 + Cε
3
2

≤ Cε 3
2 .

This completes the proof of the estimate (19). �

Corollary 1. Let λε(B) be the first eigenvalue in (8)-(9), λ0 the first eigenvalue of problem
(13)-(14) and let λ1(B) be as in Proposition 2. Then, we have

(34)
∣∣∣∣ inf
B∈B

λε(B)− λ0 − ε inf
B∈B

λ1(B)

∣∣∣∣ ≤ Cε 3
2 ,

where C is a constant independent of ε and B ∈ B

Proof. The proof is immediate from the estimate (19). �

Corollary 2. Let C be the constant independent of ε and B ∈ B appearing in (19) of
Theorem 1. If B?ε ∈ B is a minimizer of λε(·) then we have the following estimate:

(35)
∣∣∣∣λ1(B?ε )− inf

B∈B
λ1(B)

∣∣∣∣ ≤ 2 Cε
1
2 .

Proof. Let B?ε ∈ B be a minimizer for λε(B). Then, we have

ε

∣∣∣∣λ1(B?ε )− inf
B∈B

λ1(B)

∣∣∣∣
=

∣∣∣∣(λε(B?ε )− λ0 − ελ1(B?ε ))− (λε(B?ε )− λ0 − ε inf
B∈B

λ1(B))

∣∣∣∣
≤ |λε(B?ε )− λ0 − ελ1(B?ε )|+

∣∣∣∣ inf
B∈B

λε(B)− λ0 − ε inf
B∈B

λ1(B)

∣∣∣∣
≤ 2 Cε

3
2(36)

where the inequalities follow from (30) and (34). Thus, we have obtained (35). �

Remark 1. The Corollary 1 tells us that, in low contrast regimes, asymptotically the min-
imum value of λε(·) can be calculated approximately by calculating the minimum of λ1(·)
which is easily achieved using Theorem 2. In addition, the previous corollary gives us to
understand that a minimizer for λε(·) is approximately a minimizer for λ1(·) when ε is
small. It can be seen, by similar arguments, that a minimizer for λ1(·) is approximately
a minimizer for λε(·) when ε is small. This remark will be used later in Section 4 to
determine numerical approximations of the set B minimizing λ(B) in low contrast regime.

We prove the following theorem which provides a characterization of the minimizer of
λ1(·), in terms of the level sets of the gradient of v0.



i
i

“two-phase_vHAL” — 2011/9/22 — 11:27 — page 7 — #7 i
i

i
i

i
i

MINIMIZATION OF THE GROUND STATE FOR TWO PHASE CONDUCTORS IN LOW CONTRAST REGIME 7

Theorem 2. There exists c∗ ≥ 0 such that whenever B is a measurable subset of Ω
satisfying

{x : |∇v0(x)| < c∗} ⊂ B ⊂ {x : |∇v0(x)| ≤ c∗}
and |B| = m, then B is an optimal solution for the problem of minimizing λ1(B) over
B ∈ B.

Proof. Let f(c) := |{x ∈ Ω : |∇v0(x)| ≤ c}|, f is clearly an increasing function with
0 ≤ f(c) ≤ |Ω|. Let c∗ := inf{c : f(c) ≥ m}. We have f(c∗) ≥ m, indeed, let
ck > c∗ be a decreasing sequence such that ck → c∗. On one hand f(ck) ≥ m and
limk→∞ f(ck) ≥ m. On the other hand

lim
k→∞

f(ck) = lim
k→∞

|{x ∈ Ω : |∇v0(x)| ≤ ck}|

= | ∩k∈N {x ∈ Ω : |∇v0(x)| ≤ ck}|
= |{x ∈ Ω : |∇v0(x)| ≤ c∗}| = f(c∗),

so that f(c∗) ≥ m. In a similar way we have |{x : |∇v0(x)| < c∗}| ≤ m, indeed
let ck < c∗ be an increasing sequence with ck → c∗. On one hand f(ck) < m and
limk→∞ f(ck) ≤ m. On the other hand

lim
k→∞

f(ck) = lim
k→∞

|{x ∈ Ω : |∇v0(x)| ≤ ck}|

= | ∪k∈N {x ∈ Ω : |∇v0(x)| ≤ ck}|
= |{x ∈ Ω : |∇v0(x)| < c∗}|,

so that |{x ∈ Ω : |∇v0(x)| < c∗}| ≤ m.
If B is a measurable set such that {x : |∇v0(x)| < c∗} ⊂ B ⊂ {x : |∇v0(x)| ≤ c∗}
and |B| = m then B is an optimal solution for the problem of minimization of λ1(·)
over B. Indeed if D is any measurable subset of Ω such that |D| = m, we shall have
|B ∩Dc| = |Bc ∩D|. Therefore,∫

D

|∇v0|2 dx =

∫
D∩B

|∇v0|2 dx+

∫
D∩Bc

|∇v0|2 dx

≥
∫
D∩B

|∇v0|2 dx+

∫
Dc∩B

|∇v0|2 dx =

∫
B

|∇v0|2 dx

as |∇v0| ≥ c∗ on D ∩Bc whereas |∇v0| ≤ c∗ on Dc ∩B. �

Remark 2. If {x : |∇v0(x)| = c∗} is of measure zero, then the unique solution (up to
a set of measure zero) is the set {x : |∇v0(x)| < c∗} which shall also be open if Ω is
a sufficiently smooth domain (as by Theorem 8.14 [6] it can be concluded that ∇v0 is of
class C1). In view of Proposition 3 proved below, this will be the case when Ω is a disk.

2.2. Disproving the disk conjecture. In this section we show that, for ε sufficiently small,
the distribution of materials which corresponds to placing material β in a ball around the
centre of Ω when Ω is a ball is not optimal for the problem (4)-(6).

In particular, let Ω = B(0, 1) ⊂ Rd be the ball of center 0 and radius 1. Then, the
solution v0 of (13)-(14) is radial and smooth. By setting w0(|x|) := v0(x), equation (13)-
(14) becomes, using the Laplacian in polar (r, θ) or spherical (r, θ, ϕ) coordinates, for
d = 2, 3

r2w′′0 (r) + (d− 1)rw′0(r) + r2λ0

α
w0(r) = 0,(37)

w′0(0) = 0, w0(1) = 0.(38)

where the boundary conditions (38) correspond to the continuity of the gradient at the ori-
gin and the Dirichlet condition on the boundary, respectively. The solution of this equation
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FIGURE 1. Functions w0(r) (plain), and w1(r) = −w′0(r) (dashed) in
dimensions d = 2 (left) and d = 3 (right). r1

d is such thatw1 is increasing
on [0, r1

d] and decreasing on [r1
d, 1], and r0

d is such that w1(r0
d) = w1(1).

is

w0(r) = J0(ηdr) if d = 2,(39)

w0(r) = j0(ηdr) if d = 3,(40)

where J0 and j0 denote Bessel functions of the first and second kind, respectively and
ηd (d=2,3) are their respective zeros. We introduce the notation w1(r) := −w′0(r). The
function w0 is decreasing and so w1 is positive. The behaviour of the functions w0 and w1

is depicted in Figure 1.

Proposition 3. For Ω = B(0, 1), the level set {|∇v0| = c} has zero measure for each
c ≥ 0.

Proof. Since v0(x) = w0(|x|), we have∇v0(x) = w′0(|x|) x
|x|

and consequently we have

|∇v0|(x) = −w′0(|x|) .

Thus, the measure of the set {|∇v0|(x) = c} is positive if and only if the measure of one of
the sets {x : w′0(|x|) = c} or {x : w′0(|x|) = −c} is positive. Thus, if {x : w′0(|x|) = −c}
has positive measure, this is the same as saying S := {x : ∇v0(x) = −c x|x|} has positive
measure. That is, the set {x : ∇ (v0(x) + c|x|) = 0} has positive measure. By a classical
result due to Morrey [15], if ψ ∈ W 1,1

loc , then ∇ψ = 0 almost everywhere on the set
{ψ = 0}. Applying this result to the function∇ (v0 + c|x|), we get

∇2 (v0 + c|x|) = 0

almost everywhere on the set of positive measure S defined above. So, now taking the
trace we obtain

−∆v0(x) =
c(d− 1)

|x|
on a set of positive measure. Then, by equation (13), this means that we have

w0(r) =
αc(d− 1)

λ0r

on a set of positive measure which is clearly in violation of the behaviour of the Bessel
function J0 or j0. This concludes our proof. �

Let ωd denote the volume of the unit ball, i.e. we have ωd = π for d = 2 and ωd = 4π/3
for d = 3 and let r0

d and r1
d be the constants mentioned in the caption of Figure 1.
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Proposition 4. When Ω is a ball, in two or three dimensional space, the unique symmet-
rical optimal domain B∗ which is solution of the minimization problem for λ1(B) over
B ∈ B is of two possible types

• Type I: If m ≤ ωd(r0
d)
d then B∗ = B(0, (m/ωd)

1/d) or,
• Type II: If m > ωd(r

0
d)
d then there exists ξ0 and ξ1 with

(m/ωd)
1/d < ξ0 < ξ1 < 1

and B∗ = B(0, ξ0) ∪
(
B(0, 1) \B(0, ξ1)

)
.

Proof. In view of Theorem 2, Proposition 3 and Remark 2, a solution to the problem of
minimization of λ1(·) over B is the set B∗ = {x ∈ Ω : |∇v0(x)| ≤ c∗} where c∗ is
as in Theorem 2. Moreover, it is the unique solution (up to a set of measure zero). We
may also write it as B∗ = {x ∈ Ω : w1(|x|) ≤ c∗}. Whenever m ≤ ωd (r0

d)
d, the

equation w1(r) = c∗ has exactly one solution ξ in (0, 1). In this case the solution to our
minimization problem isB∗ = B(0, ξ) consisting of a single component in the center. The
constraint |B∗| = m implies ξ = (m/ωd)

1/d.
In the case m > ωd (r0

d)
d, the equation w1(r) = c∗ has two solutions ξ0 and ξ1 in

(0, 1). Then the solution set is

B∗ = B(0, ξ0) ∪
(
B(0, 1) \B(0, ξ1)

)
which completes our proof. �

In [3] it was conjectured, based on numerical tests, that the infimum of the first eigenvalue
of (4)-(5) is attained when the material with the highest conductivity is placed in a con-
centric disk in the center of the domain. We prove that this conjecture is false, at least in
two- or three- dimensional space, for β close to α and when the proportion of the material
β exceeds a certain quantity.

Theorem 3. When Ω = B(0, 1), for β = α + ε sufficiently close to α and given an m >
ωd(r

0
d)
d, the distribution of the materials wherein the material with the higher conductivity

β is placed in a concentric disk in the center of the domain is not optimal for the problem
(4)-(5).

Proof. Our proof is based on Corollary 2 and Proposition 4. We shall assume that m >
ωd(r

0
d)
d. Let B? be the minimizer of λ1(·) over B ∈ B, which according to Proposition

4, is the union of a ball B(0, ξ0) and a ring or shell B(0, 1) \ B(0, ξ1). Let Bm be the
concentric ball inB(0, 1) having the volumem. We show thatBm cannot be the minimizer
of λε(·) in the problem (4)-(5) whenever β = α + ε is less than a certain quantity, to be
precise, if

2Cε
1
2 < |λ1(Bm)− λ1(B∗)| .

For such an ε > 0, if we assume that Bm is a minimizer for λε(·) in the problem (4)-(5),
then, by (35) of Corollary 2, we obtain

|λ1(Bm)− λ1(B∗)| ≤ 2Cε
1
2 .

This is clearly a contradiction. So, for ε > 0 as above, Bm cannot be a minimizer of λε(·)
in the problem (4)-(5). �

3. DESCENT ALGORITHM AND NECESSARY OPTIMALITY CONDITION

In this section we consider domains Ω with any shape, and not only the case of a disk
as in the previous section. We describe an algorithm which, starting from a given initial
measurable set B0, allows to find a new measurable set B1 such that the first eigenvalue
λ1 is decreased, i.e.

λ(B1) ≤ λ(B0).
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Algorithms based on a similar principle have been used successfully to minimize eigenval-
ues in problems with indefinite weight [9, 10]. It may be used, as we shall see in Subsection
4.2, to obtain numerical results. This algorithm allows to derive necessary optimality con-
ditions; see Corollary 3, which in turn may be used to derive properties of the optimal setB
for particular geometries such as symmetric domains or polygonal domains. More details
may be found at the end of this section.

Given an initial measurable set B0, let uB0
and λ(B0) denote the first eigenvector and

eigenvalue, respectively, for problem (1)-(2). Introduce the quantity

(41) M (B0, c) = |{x : |∇uB0(x)| ≤ c}|

Lemma 1. The function M (B0, c) is non-decreasing with respect to c and is such that
M (B0, c) → 0 as c → 0 and M (B0, c) → |Ω| as c → ∞. Furthermore, it is a right-
continuous function. It is also left continuous at any c if and only if the Lebesgue measure
of {x : |∇uB0

(x)| = c} is zero.

Proof. The function M (B0, c) is monotone non-decreasing due to the set inclusion {x :
|∇uB0

(x)| ≤ c} ⊂ {x : |∇uB0
(x)| ≤ c′} whenever c ≤ c′. Due to the integrability of

|∇uB0
|, we have |{x : |∇uB0

(x)| > c}| → 0 as c → ∞ and therefore, we can conclude
that M (B0, c)→ |Ω| as c→∞. Also, M (B0, c)→ 0 as c→ 0 as it is known that the set
of critical points for uB0 is of measure zero [14]. The right continuity may be seen from
the following

M (B0, c+)−M (B0, c) = lim
cn↘c

M (B0, cn)−M (B0, c)

= lim
cn↘c

|{x : c < |∇uB0(x)| ≤ cn}|

= | ∩n {x : c < |∇uB0
(x)| ≤ cn}|

= 0

as the latter intersection is empty.
On the other hand,

M (B0, c)−M (B0, c−) = lim
cn↗c

M (B0, c)−M (B0, cn)

= lim
cn↗c

|{x : cn < |∇uB0
(x)| ≤ c}|

= | ∩n {x : cn < |∇uB0
(x)| ≤ c}|

= |{x : |∇uB0
(x)| = c}|,

which yields the assertion on left continuity. �

Now define

(42) c0 := inf{c : M (B0, c) ≥ m}.
As in the proof of Theorem 2, it may be shown that |{x : |∇uB0

(x)| ≤ c0}| ≥ m and
|{x : |∇uB0

(x)| < c0}| ≤ m. Let B1 be any measurable subset of Ω which satisfies
{x : |∇uB0

(x)| < c0} ⊂ B1 ⊂ {x : |∇uB0
(x)| ≤ c0} and |B1| = m.

We have the following result

Theorem 4. Given an initial measurable set B0 ⊂ Ω with |B0| = m, let c0 be as defined
in (42) and letB1 be a measurable set as above having measurem. Then we have λ(B1) ≤
λ(B0). Furthermore, if M (B0, c) is continuous, then equality holds if and only ifB1 = B0

almost everywhere.

Proof. Consider the decompositions

B0 = (B0 ∩B1) ∪ (B0 ∩Bc1),

B1 = (B0 ∩B1) ∪ (Bc0 ∩B1).
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Since |B0| = |B1| = m we have with the above decompositions |B0 ∩ Bc1| = |Bc0 ∩ B1|.
Noticing that |∇uB0

| ≥ c0 on Bc1 and |∇uB0
| ≤ c0 on B1, we may write∫

B0

|∇uB0
|2 =

∫
B0∩B1

|∇uB0
|2 +

∫
B0∩Bc

1

|∇uB0
|2

≥
∫
B0∩B1

|∇uB0
|2 + c20|B0 ∩Bc1|(43)

=

∫
B0∩B1

|∇uB0
|2 + c20|Bc0 ∩B1|

≥
∫
B0∩B1

|∇uB0 |2 +

∫
Bc

0∩B1

|∇uB0 |2 =

∫
B1

|∇uB0 |2,(44)

Therefore

λ(B0) = α

∫
Ω

|∇uB0
|2 + (β − α)

∫
B0

|∇uB0
|2

≥ α
∫

Ω

|∇uB0
|2 + (β − α)

∫
B1

|∇uB0
|2(45)

≥ min
u∈H1

0 (Ω),||u||2=1

(
α

∫
Ω

|∇u|2 + (β − α)

∫
B1

|∇u|2
)

= λ(B1) ,(46)

and the inequality is proved.
Now, let us assume that M (B0, c) is continuous. In view of Lemma 1, the continuity

of M (B0, c) implies that the set {x : |∇uB0(x)| = c0} has zero measure, so that B1 can
be taken to be {x : |∇uB0(x)| ≤ c0}. The equality λ(B1) = λ(B0) holds if and only if
equality holds in (45), (46). In particular, equality in (45) holds only if equality holds in
(43) and (44). Thus, as |∇uB0

(x)| > c0 on Bc1, for equality to hold in (43) we need that
|B0 ∩ Bc1| = 0. Consequently, we also have |Bc0 ∩ B1| = 0. Thus, we have shown that
B1 = B0 except for a set of measure zero. �

Remark 3. Using Theorem 4, we may obtain a sequence of domains Bn such that

λ(Bn) ≤ λ(Bn−1).

However, it is not a priori guaranteed that Bn converges to an admissible set B∗ in some
topology for which the map B 7→ λ(B) is lower semicontinuous. Even by supposing this,
we cannot say that B∗ is a global optimum for the problem.

The following corollary derives immediately from Theorem 4.

Corollary 3 (Necessary optimality condition). If a measurable set B∗ is optimal for the
problem (4) - (5) and if M (B∗, c) is continuous at c∗ for c∗ defined analogously as in
(42) with B∗ replacing B0, then up to a set of measure zero, B∗ is equal to the level set
{x : |∇uB∗(x)| ≤ c∗}.

Proof. It is enough to apply the previous theorem taking B∗ in place of B0, c∗ instead of
c0 and then to take B1 = {x : |∇uB∗(x)| ≤ c∗}, which is allowed due to the continuity
of M (B∗, ·) at c∗. Then, λ(B1) ≤ λ(B∗) and B∗ is optimal, so we have the equality
λ(B1) = λ(B∗). The conclusion follows, as by Theorem 4, equality holds only if B1 is
almost everywhere equal to B∗. �

Assuming that the hypotheses of Corollary 3 are satisfied we obtain the following re-
sults for certain geometries.

The disk case. In the case Ω = B(0, R) the optimal set B∗ should include the origin.
Indeed, in [2], it is shown that the optimal domain is radially symmetric. The regularity
and the radial symmetry of the solution imply that the gradient of u vanishes at the origin
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0 and therefore, by Corollary 3, it follows that 0 ∈ B∗.

The ring or torus case. If one is able to show the radial symmetry of the solution as in
the disk case, then due to the Dirichlet condition and the positivity of the solution, it is
clear that the gradient of u vanishes at one point along a radius of the domain and by radial
symmetry, the gradient of u vanishes on a whole circle whose center is the center of the
ring or torus. Using Corollary 3 we obtain that this circle is in B∗. This property may be
observed for instance in Figure 5 for different ratios m/|Ω|.

Domains with corners in two dimensions. In this case the optimal set B∗ contains a
neighbourhood of the corners with angle smaller than π while its complementA∗ = Ω\B∗
contains a neighbourhood of the corners with angle greater than π. Indeed, let P ∈ ∂Ω be
a conical (corner) point of Ω and denote ϑ the associated angle at this corner. The classical
theory of solution of elliptic partial differential equations in non-smooth domains [7, 8, 11]
establishes that in view of the Dirichlet boundary conditions, uB∗ may be written as

uB∗(x) = crπ/ϑ sin

(
πθ

ϑ

)
+ us(x),

where c is the coefficient of the singularity which depends on the geometry of the domain,
θ corresponds to polar coordinates with center P and θ = 0 or θ = ϑ on the tangents to
∂Ω at P , and us ∈ H2(Ω) satisfies us(x) = O(rπ/ϑ+1) as x→ P . Therefore

|∇uB∗(x)| = O(rπ/ϑ−1) as x→ P

and

|∇uB∗(x)| → 0 if ϑ < π, |∇uB∗(x)| → ∞ if ϑ > π as x→ P.

Therefore, in view of Corollary 3, when ϑ < π, B∗ contains a neighbourhood of P since
|∇uB∗(x)| → 0 as x → P and we may find a small enough neighbourhood of P that
will be included in {x : |∇uB∗(x)| ≤ c∗}. When ϑ > π then A∗ = Ω \ B∗ contains a
neighbourhood of P since |∇uB∗(x)| → ∞ as x→ P . These properties may be observed
in the Figures 2, 3 and 4.

Symmetrical domains. If the domain Ω has symmetries, then it is probably possible to
show that the optimal domain has the same symmetries, as in [2]. Thus, if Ω ⊂ R

d has d
independent hyperplanes of symmetry, it is expected that the solution set B∗ includes the
point which is the intersection of these hyperplanes. If Ω is a square for instance, as in
Figure 2, the center of this square belongs to B∗.

These properties are corroborated by numerical results shown in Section 4.1 for such
domains in the case when α and β are close enough.

4. NUMERICAL RESULTS

The aims of this section are twofold. On the one hand we would like to obtain approx-
imate numerical solutions of problem (4)-(5) by applying Remark 1 and Theorem 2 in the
case of nearly equal conductivities. On the other hand, in the general case, we would like
to explore the numerical utility of the algorithm described in Section 3.

4.1. In low contrast regime. In this section we compute numerical approximations of so-
lutions of the optimization problem (4)-(5) for general geometries Ω, under the assumption
of low contrast regime, i.e. β = βε = α+ ε for small ε. Following Remark 1, the solution
B∗ of the auxiliary problem corresponding to the minimization of λ1(·) (see Theorem 2)
is then an approximate solution for (4)-(6) for small ε. For the computation of B∗, we
compute the function f(c) defined in the proof of Theorem 2 and look for c∗ such that
f(c∗) = m. Numerically, this may be achieved by simple dichotomy for instance.
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In Figures 2 to 6, the nearly optimal distributionB∗ for various geometries Ω and values
m are plotted. We also plot the isolines of |∇v0|2, where v0 is the solution of (13)-(14), i.e.
v0 is the first eigenvector with constant conductivity α. In all these examples, the features
mentioned at the end of Section 3 are seen to hold. For domains with salient angles, such
as in Figures 2 to 4, the setB∗ contains a neighbourhood of these corners. On the contrary,
reentrant corners such as in Figure 4 are always in A∗ since the gradient is unbounded at
these points. We also observe that the set B∗ always contains a point (or more in the case
of radial symmetry as in Figure 5) inside the domain. This interior point corresponds to
the place where the gradient of v0 vanishes and thus is expected to be in B∗ according
to Corollary 3. For domains without corners, the optimal set may or may not touch the
boundary as show Figures 5 and 6.

In general the optimal set B∗ seem to have a complex structure and a certain regularity,
except for some particular values of m as in Figure 2(c).

4.2. The disk case for general β. We shall apply the algorithm of Section 3 to get an
idea of the optimal solution in the case of a disk for any value of β. As was commented in
Remark 3, the convergence of the sequence Bn is not guaranteed and even if the domains
Bn do converge to a domainB∗, this domain is not necessarily optimal for problem (4)-(5).
So as to make the algorithm more effective, we include a second step, wherein we make
local perturbations to theB∗ in some descent directions with the aid of the shape derivative
obtained in [3] (cf. the same for more details). By repeating these two steps, successively,
it is plausible that these iterations lead to a global optimum.

One of the main difficulty when solving the discrete version of (4)-(5) comes from the
volume constraint |B| = m. Indeed from a numerical point of view it is not possible to
satisfy the volume constraint exactly due to the discretization. Given an initial set B0,
the new set B1 is numerically determined by dichotomy using the gradient of the solution
uB0

according to (42). The new set B1 does not satisfy exactly the constraint |B1| = m,
but we may compute an intermediate point I lying between grid points, and such that the
constraint |B1| = m is satisfied. The numerical scheme is modified accordingly using
interpolation.

We present results in dimension d = 2. For the numerical tests we take α = 1, Ω =
B(0, 1). The initial domain is B0 = B(0, 0.75) (cf. Figure 7) and we test different values
of β > α.

In Figure 8, the optimal setsB∗ with conductivity β are depicted in black. These results
show that the algorithm is able to perform topological changes, since the initial set B0 has
only one connected component, while the optimal domain B∗, 1 = α < 1.01 < β ≤ 1.15,
has two connected components (Type II). For β = 1.16 and higher initial values β, we
observe an optimal set B∗ of Type I mentioned in Proposition 4. This leads us to think
that, for β ≥ 1.16, the proportion of the material β may need to be higher in order to
produce solutions of Type II.
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(a) m/|Ω| = 0.1427 (b) m/|Ω| = 0.2634

(c) m/|Ω| = 0.5 (d) m/|Ω| = 0.8318

(e) isolines of |∇v0|2

FIGURE 2. Nearly optimal distribution B? in the square case. The dark
region corresponds to B and the material β, the white region to A and
material α. As predicted by Corollary 3, the optimal domainB? contains
the corners of the square, as well as the center since the gradient of the
eigenfunction vanishes at that point.
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(a) m/|Ω| = 0.2473 (b) m/|Ω| = 0.4861

(c) m/|Ω| = 0.6377 (d) m/|Ω| = 0.7742

(e) isolines of |∇v0|2

FIGURE 3. Nearly optimal distributions B? in the crescent case for dif-
ferent values of m. The dark region corresponds to B and the material
β, the white region to A and material α. As predicted by Corollary 3,
the approximately optimal domainB? always contains the corners of the
crescent and a point in the center where the eigenfunction vanishes.
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(a) m/|Ω| = 0.3370 (b) m/|Ω| = 0.5673

(c) m/|Ω| = 0.7546 (d) m/|Ω| = 0.8424

(e) isolines of |∇v0|2

FIGURE 4. Nearly optimal distributions B? in the polygon case for dif-
ferent values of m. The dark region corresponds to B and the material
β, the white region toA and material α. As predicted by Corollary 3, the
approximately optimal domain B? contains the corners of the polygon
with angle less than π and a point in the center where the gradient of the
eigenfunction vanishes. Note that A∗ = Ω \ B∗ contains a neighbour-
hood of the point with the reentrant corner, i.e. the corner with angle
greater than π. Indeed, in this corner the gradient is unbounded.



i
i

“two-phase_vHAL” — 2011/9/22 — 11:27 — page 17 — #17 i
i

i
i

i
i

MINIMIZATION OF THE GROUND STATE FOR TWO PHASE CONDUCTORS IN LOW CONTRAST REGIME 17

(a) m/|Ω| = 0.1702 (b) m/|Ω| = 0.2932

(c) m/|Ω| = 0.5308 (d) m/|Ω| = 0.9072

(e) isolines of |∇v0|2

FIGURE 5. Nearly optimal distributionsB? in the ring case for different
values of m. The dark region corresponds to B and the material β, the
bright region to A and material α. As predicted by Corollary 3, the
approximately optimal domain B? contains a ring at mid-distance to the
two boundaries. It corresponds to the place where the gradient of the
eigenfunction vanishes. For m large enough, the domain B∗ touches
the outer boundary of the ring, but it never touches the inner boundary,
where the gradient attains its maximum (as long as m < |Ω|).
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(a) m/|Ω| = 0.2551 (b) m/|Ω| = 0.4786

(c) m/|Ω| = 0.5914 (d) m/|Ω| = 0.7011

(e) isolines of |∇v0|2

FIGURE 6. Nearly optimal distributionsB? in the case of an ellipse with
two holes for different values of m. The dark region corresponds to B
and the material β, the bright region to A and material α. In this case
we observe that the approximately optimal set B∗ has several connected
components, except maybe for large m, and touches the boundary. The
set B∗ always has a connected component in the center of the domain.
This corresponds to a point where the gradient of the eigenfunction van-
ishes.
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FIGURE 7. Initial domain B0 = B(0, 0.75) (black disk) and domain
Ω = B(0, 1) (black disk and white ring)

(a) α = 1, β = 1.05 (b) α = 1, β = 1.10

(c) α = 1, β = 1.15 (d) α = 1, β = 1.16

FIGURE 8. Optimal sets A∗ and B∗ for different values of β close to
α. The set B∗ is represented in black, the set A∗ in white. The optimal
region B∗ is of type II for 1 = α < 1.01 < β ≤ 1.15 and of type I for
β = 1.16.
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