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MINIMIZATION OF THE GROUND STATE FOR TWO PHASE CONDUCTORS IN LOW CONTRAST REGIME

In this article we consider the problem of the optimal distribution of two conducting materials with given volume inside a fixed domain, in order to minimize the first eigenvalue (the ground state) of a Dirichlet operator. It is known, when the domain is a ball, that the solution is radial, and it was conjectured that the optimal distribution of the materials consists in putting the material with the highest conductivity in a ball around the center. We show that this conjecture is not true in general. For this, we consider the particular case where the two conductivities are close to each other (low contrast regime) and we perform an asymptotic expansion with respect to the difference of conductivities. We find that the optimal solution is the union of a ball and an outer ring when the amount of the material with the higher density is large enough.

INTRODUCTION

Let Ω be a bounded domain in R d which is to be called the design region. Let m be a given positive number, 0 < m < |Ω|, where |Ω| is the Lebesgue measure of the design region Ω. Two materials with conductivities α and β (0 < α < β) are distributed in arbitrary disjoint measurable subsets A and B, respectively, of Ω so that A ∪ B = Ω and |B| = m. Consider the two-phases eigenvalue problem:

-div(σ∇u) =λu in Ω, [START_REF] Alvino | On optimization problems with prescribed rearrangements[END_REF] u =0 on ∂Ω, [START_REF] Conca | An extremal eigenvalue problem for a two-phase conductor in a ball[END_REF] with the conductivity σ = αχ A + βχ B . Let λ be the first eigenvalue of (1)-( 2) and u the associated eigenvector. The variational formulation for λ is [START_REF] Conca | Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball[END_REF] λ = min

u∈H 1 0 (Ω) Ω σ|∇u| 2 Ω u 2 = min u∈H 1 0 (Ω), u 2=1 Ω σ|∇u| 2 ,
where u 2 denotes the L 2 -norm of u. In this paper the set Ω is fixed and we are interested in the dependence of λ on A and B. Since A = Ω \ B, λ may be described as a function of B and we write λ = λ(B). We consider the problem of minimizing λ(B) with the constraint that the two phases are to be distributed in fixed proportions: minimize λ(B) [START_REF] Cox | Extremal eigenvalue problems for two-phase conductors[END_REF] subject to B ∈ B [START_REF] Dambrine | On the shape sensitivity of the first Dirichlet eigenvalue for two-phase problems[END_REF] where [START_REF] Gilbarg | Elliptic Partial Equations of Second Order[END_REF] B = {B ⊂ Ω, B measurable, |B| = m}

The existence of a solution to the problem (4)-( 6) remains an open question. In general, one may evidence microstructural patterns in relation to minimizing sequences and the original problem may have to be relaxed to include microstructural designs. Existence of a solution and optimality conditions in the class of relaxed designs has been discussed in Cox and Lipton [START_REF] Cox | Extremal eigenvalue problems for two-phase conductors[END_REF]. However, the original problem ( 4)-( 6) may still have a solution for particular geometries as is the case when Ω is a ball. When Ω = B(0, R) is a ball, the existence of a radially symmetric optimal set has been proved in [START_REF] Alvino | On optimization problems with prescribed rearrangements[END_REF], using rearrangement techniques and a comparison result for Hamilton-Jacobi equations and later, only using rearrangement techniques in [START_REF] Conca | An extremal eigenvalue problem for a two-phase conductor in a ball[END_REF]. Even, in this case an explicit solution to the problem is not known. It was conjectured in [START_REF] Conca | An extremal eigenvalue problem for a two-phase conductor in a ball[END_REF][START_REF] Conca | Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball[END_REF], for higher dimensions, that the solution B * to this problem is a ball B(0, R * ) like in the one-dimensional case [START_REF] Krein | On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability[END_REF], a result known since the 1950's. This conjecture has been recently reinforced by numerical tests in [START_REF] Conca | Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball[END_REF] and by the result in [START_REF] Dambrine | On the shape sensitivity of the first Dirichlet eigenvalue for two-phase problems[END_REF], where it is shown, using second order shape derivative calculus, that such a configuration is a local minimum for the problem when the volume constraint m is small enough.

In spite of these results, we prove in this paper that the conjecture is not true in general. Indeed, the optimal domain B * cannot be a ball when α and β are close to each other and m is sufficiently large (cf. Theorem 3). The theoretical base for this result is provided by an asymptotic expansion of the eigenvalue with respect to β -α as β → α, which allows us to approximate ( 4)-( 6) by a simpler optimization problem (cf. Theorem 2). This is done in Section 2. Through this asymptotic formulation we are not only able to show that the previous conjecture is false but also we are able to compute numerical approximations of the solution in design domains other than balls. The numerical results are presented in Section 4. Another main feature of the paper is the proposal, in Section 3, of a descent algorithm to solve the problem in general. This also permits to establish some necessary optimality conditions and allows us to deduce certain features of the optimal solution.

OPTIMAL SETS FOR SMALL CONDUCTIVITY GAP

2.1. Asymptotic expansion. In this section we shall look at the problem of minimization of the first eigenvalue in the special case where the conductivities of the two materials, α and β, are close to each other (i.e. are in low contrast regime). Thus, we assume that β = β ε := α+ε with ε > 0 converging eventually to zero. If the material with conductivity β ε occupies the sub-domain B of Ω, the conductivity coefficient is, in this case, [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] σ = σ ε (B) :

= αχ A + β ε χ B = α + εχ B .
Let λ ε (B) be the first eigenvalue in the problem

-div(σ ε (B)∇u ε ) =λ ε (B) u ε in Ω, (8) u ε =0 on ∂Ω (9)
for the conductivity σ ε (B). It is well-known, from the Kreȋn-Rutman theorem [START_REF] Krein | Linear operators leaving invariant a cone in a banach space[END_REF], that the first eigenvalue of a linear elliptic operator is simple and the corresponding eigenfunction is of constant sign (and is the only eigenvalue whose eigenfunction does not change sign). So, we can choose the eigenfunction u ε = u ε (B) corresponding to λ ε (B) to be positive and normalize it using the condition ( 10)

Ω (u ε ) 2 = 1,
In this way, u ε is uniquely defined. We affirm that, for fixed B, both λ ε (B) and u ε (B) depend analytically on the parameter ε. This result is classical in the perturbation theory of eigenvalues and follows readily, for instance, from Theorem 3, Chapter 2.5 of Rellich [START_REF] Rellich | Perturbation Theory of Eigenvalue Problems[END_REF]. This justifies the ansätze

λ ε (B) = λ 0 (B) + ελ 1 (B) + . . . (11) u ε (B) = v 0 (B) + εv 1 (B) + . . . ( 12 
)
The convergence of the series in [START_REF] Krein | On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability[END_REF] holds in the space H 1 0 (Ω). We first make some useful observations about the the terms in ansätze ( 11)- [START_REF] Krein | On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability[END_REF]. Proposition 1. In ansätze [START_REF] Kondratiev | Boundary value problems for elliptic equations in domains with conical or angular points[END_REF] and [START_REF] Krein | On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability[END_REF], the terms λ 0 (B) and v 0 (B) are independent of B. In fact, λ 0 (B) = λ 0 is the first eigenvalue in the problem

-α∆v 0 =λ 0 v 0 in Ω, (13) v 0 =0 on ∂Ω . ( 14 
)
The function v 0 is the positive eigenfunction corresponding to λ 0 and satisfies the normalization condition Ω v 2 0 = 1. Proof. In view of the analytic dependence of λ ε (B) and u ε (B) on ε, it follows that λ 0 (B) is the limit, as ε → 0, of λ ε (B) and that v 0 (B) is the limit of u ε (B) in H 1 0 (Ω) as ε → 0. Recalling that the eigenfunctions u ε (B) are positive it follows that v 0 (B) is non-negative. Passing to the limit in ( 8)- [START_REF] Kao | Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains[END_REF], as ε → 0, we obtain that λ 0 (B) and v 0 (B) solve the eigenvalue problem ( 13)- [START_REF] Lou | On singular sets of local solutions to p-laplace equations[END_REF] and Ω (v 0 (B))

2 = 1. As v 0 (B) is a positive eigenfunction,
it follows by the Kreȋn-Rutman theorem that λ 0 is necessarily the first eigenvalue of the eigenvalue problem ( 13)-( 14). Thus, λ 0 (B) and v 0 (B) are independent of B and shall be denoted by λ 0 and v 0 , respectively.

Proposition 2. In the ansatz (11), λ 1 (B) is given explicitly in terms of v 0 as follows

(15) λ 1 (B) = B |∇v 0 | 2 dx .
The following orthogonality relations hold true

Ω v 0 v 1 (B) dx = 0 = Ω ∇v 0 • ∇v 1 (B) dx . (16) 
Proof. The term λ 1 (B) in the ansatz [START_REF] Kondratiev | Boundary value problems for elliptic equations in domains with conical or angular points[END_REF] is the derivative of λ ε (B) with respect to ε at ε = 0, whereas the term v 1 (B) in the ansatz [START_REF] Krein | On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability[END_REF] is the derivative of u ε (B) with respect to ε at ε = 0. Differentiating the equations ( 8)- [START_REF] Kao | Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains[END_REF] with respect to ε at ε = 0, we obtain the equations

-div(α∇v 1 (B)) -λ 0 v 1 (B) = div(χ B ∇v 0 ) + λ 1 (B) v 0 in Ω, (17) v 1 (B) =0 on ∂Ω (18)
and the first of the orthogonality relations in [START_REF] Rellich | Perturbation Theory of Eigenvalue Problems[END_REF]. We have seen in Proposition 1 that λ 0 is the first eigenvalue of the problem (13)- [START_REF] Lou | On singular sets of local solutions to p-laplace equations[END_REF] and is simple, the eigenspace being generated by the eigenfunction v 0 . Taking v 1 (B) as a test function in ( 13)-( 14) and using the first orthogonality relation in [START_REF] Rellich | Perturbation Theory of Eigenvalue Problems[END_REF], we obtain the second orthogonality relation in [START_REF] Rellich | Perturbation Theory of Eigenvalue Problems[END_REF]. Finally, the system (17)-(18) admits a solution, by the Fredholm alternative, if and only if the right hand side is orthogonal to the eigenfunction v 0 . This condition leads to the relation

Ω div(χ B ∇v 0 )v 0 dx + λ 1 (B) Ω v 2 0 dx = 0.
As Ω v 2 0 = 1, we obtain

λ 1 (B) = - Ω div(χ B ∇v 0 )v 0 dx = - ∂Ω χ B v 0 ∇v 0 • n dS + B |∇v 0 | 2 dx = B |∇v 0 | 2 dx .
Let us denote by

λε (B) = λ ε (B) -λ 0 -ελ 1 (B)
the remainder in the ansatz [START_REF] Kondratiev | Boundary value problems for elliptic equations in domains with conical or angular points[END_REF]. Although λε (B) is of order ε 2 for fixed B, we need estimates for λε (B) which are uniform with respect to B. This is given by the following theorem.

Theorem 1. For ε > 0 sufficiently small, there exists a constant C independent of ε and B such that

(19) | λε (B)| ≤ C ε 3 2 ∀B ∈ B .
Proof. For the sake of clarity we divide the proof into several steps. Let ε > 0 be a constant which is small compared to 1. In what follows, we use C to denote a generic constant independent of ε and B.

STEP 1: We first show that (20)

λ ε (B) ≤ C , u ε (B) H 1 0 (Ω) ≤ C .
The first inequality in (20) follows readily from the variational characterization of λ ε (B). Indeed, choosing a function ϕ ∈ H 1 0 (Ω) with Ω ϕ 2 = 1, we have

λ ε (B) = inf Ω σ ε (B)∇u • ∇u dx : u ∈ H 1 0 (Ω), Ω u 2 = 1 (21) ≤ Ω σ ε (B)∇ϕ • ∇ϕ dx ≤ (α + 1) Ω ∇ϕ • ∇ϕ dx
which proves the first estimate in (20). Now, using the uniform bound for λ ε (B) and using the fact that the coefficients σ ε (B) are uniformly elliptic, we have

α u ε (B) 2 H 1 0 (Ω) ≤ Ω σ ε (B)∇u ε (B) • ∇u ε (B) dx = λ ε (B) ≤ C (22)
which proves the second estimate in (20). As σ ε (B) ≥ α for all ε > 0, it follows from the variational characterization (21) of λ ε (B) that (24) λ 0 ≤ λ ε (B) for all ε > 0 and for all measurable B ⊂ Ω .

On the other hand, using the variational characterization (21) and the fact that

λ 0 = Ω α∇v 0 • ∇v 0 dx,
we get the following estimate

λ ε (B) -λ 0 ≤ Ω σ ε (B)∇v 0 • ∇v 0 dx - Ω α∇v 0 • ∇v 0 dx = ε Ω χ B ∇v 0 • ∇v 0 dx . ( 25 
)
The claim (23) follows from (24) and (25). STEP 3: Now, we use the above estimate to show that

(26) u ε (B) -v 0 H 1 0 (Ω) ≤ C √ ε .
To begin with, we have

λ ε (B) -λ 0 = Ω σ ε (B)∇u ε (B) • ∇u ε (B) dx - Ω α∇v 0 • ∇v 0 dx = ε Ω χ B ∇u ε (B) • ∇u ε (B) dx +α Ω ∇u ε (B) • ∇u ε (B) dx - Ω ∇v 0 • ∇v 0 dx = ε Ω χ B ∇u ε (B) • ∇u ε (B) dx + 2α Ω ∇v 0 • ∇(u ε (B) -v 0 ) dx + α Ω ∇(u ε (B) -v 0 ) • ∇(u ε (B) -v 0 ) dx .
Rewriting the previous equality we get

α Ω |∇(u ε (B) -v 0 )| 2 dx + 2α Ω ∇v 0 • ∇(u ε (B) -v 0 ) dx = λ ε (B) -λ 0 -ε Ω χ B ∇u ε (B) • ∇u ε (B) dx . (27) 
Finally we obtain

α Ω |∇(u ε (B) -v 0 )| 2 dx + 2α Ω ∇v 0 • ∇(u ε (B) -v 0 ) dx ≤ |λ ε (B) -λ 0 | + ε Ω χ B ∇u ε (B) • ∇u ε (B) dx ≤ Cε (28)
where the last inequality is a consequence of ( 23) and (20). Dividing by ε and passing to the limit in (28), we have

(29) lim ε→0 α Ω |∇(u ε (B) -v 0 )| 2 dx ε + 2α Ω ∇v 0 • ∇v 1 (B) dx ≤ C .
In view of the second orthogonality relation in [START_REF] Rellich | Perturbation Theory of Eigenvalue Problems[END_REF] we conclude that (26) holds.

STEP 4: Finally, we show the estimate for the remainder λε (B)

(30) | λε (B)| = |λ ε (B) -λ 0 -ελ 1 (B)| ≤ C ε 3 2 .
On the one hand, we observe that

λ 0 + ελ 1 (B) -λ ε (B) ≥ Ω α∇v 0 • ∇v 0 dx + ε Ω χ B ∇v 0 • ∇v 0 dx - Ω σ ε (B)∇v 0 • ∇v 0 dx = 0 . (31)
On the other hand, we have

λ 0 + ελ 1 (B) -λ ε (B) ≤ Ω α∇u ε (B) • ∇u ε (B) dx + ε Ω χ B ∇v 0 • ∇v 0 dx - Ω σ ε ∇u ε (B) • ∇u ε (B) dx (32) ≤ ε Ω χ B ∇v 0 • ∇v 0 dx -ε Ω χ B ∇u ε (B) • ∇u ε (B) dx = ε Ω χ B ∇(v 0 -u ε (B)) • ∇(v 0 -u ε (B)) dx + 2ε Ω χ B ∇u ε (B) • ∇(v 0 -u ε (B)) dx .v (33)
So, by the result of Step 3, it follows from (31) and (33) that

|λ 0 + ελ 1 (B) -λ ε (B)| ≤ ε v 0 -u ε (B) 2 H 1 0 (Ω) + 2Cε v 0 -u ε (B) H 1 0 (Ω) ≤ Cε 2 + Cε 3 2 ≤ Cε 3 2 .
This completes the proof of the estimate (19).

Corollary 1. Let λ ε (B) be the first eigenvalue in (8)-( 9), λ 0 the first eigenvalue of problem (13)-( 14) and let λ 1 (B) be as in Proposition 2. Then, we have

(34) inf B∈B λ ε (B) -λ 0 -ε inf B∈B λ 1 (B) ≤ Cε 3 2 ,
where C is a constant independent of ε and B ∈ B

Proof. The proof is immediate from the estimate (19).

Corollary 2. Let C be the constant independent of ε and B ∈ B appearing in (19) of Theorem 1. If B ε ∈ B is a minimizer of λ ε (•) then we have the following estimate:

(35) λ 1 (B ε ) -inf B∈B λ 1 (B) ≤ 2 Cε 1 2 .
Proof. Let B ε ∈ B be a minimizer for λ ε (B). Then, we have

ε λ 1 (B ε ) -inf B∈B λ 1 (B) = (λ ε (B ε ) -λ 0 -ελ 1 (B ε )) -(λ ε (B ε ) -λ 0 -ε inf B∈B λ 1 (B)) ≤ |λ ε (B ε ) -λ 0 -ελ 1 (B ε )| + inf B∈B λ ε (B) -λ 0 -ε inf B∈B λ 1 (B) ≤ 2 Cε 3 2 (36) 
where the inequalities follow from (30) and (34). Thus, we have obtained (35).

Remark 1. The Corollary 1 tells us that, in low contrast regimes, asymptotically the minimum value of λ ε (•) can be calculated approximately by calculating the minimum of λ 1 (•) which is easily achieved using Theorem 2. In addition, the previous corollary gives us to understand that a minimizer for λ ε (•) is approximately a minimizer for λ 1 (•) when ε is small. It can be seen, by similar arguments, that a minimizer for λ 1 (•) is approximately a minimizer for λ ε (•) when ε is small. This remark will be used later in Section 4 to determine numerical approximations of the set B minimizing λ(B) in low contrast regime.

We prove the following theorem which provides a characterization of the minimizer of λ 1 (•), in terms of the level sets of the gradient of v 0 . 

lim k→∞ f (c k ) = lim k→∞ |{x ∈ Ω : |∇v 0 (x)| ≤ c k }| = | ∩ k∈N {x ∈ Ω : |∇v 0 (x)| ≤ c k }| = |{x ∈ Ω : |∇v 0 (x)| ≤ c * }| = f (c * ), so that f (c * ) ≥ m.
In a similar way we have |{x :

|∇v 0 (x)| < c * }| ≤ m, indeed let c k < c * be an increasing sequence with c k → c * . On one hand f (c k ) < m and lim k→∞ f (c k ) ≤ m.
On the other hand

lim k→∞ f (c k ) = lim k→∞ |{x ∈ Ω : |∇v 0 (x)| ≤ c k }| = | ∪ k∈N {x ∈ Ω : |∇v 0 (x)| ≤ c k }| = |{x ∈ Ω : |∇v 0 (x)| < c * }|, so that |{x ∈ Ω : |∇v 0 (x)| < c * }| ≤ m. If B is a measurable set such that {x : |∇v 0 (x)| < c * } ⊂ B ⊂ {x : |∇v 0 (x)| ≤ c * }
and |B| = m then B is an optimal solution for the problem of minimization of λ 1 (•) over B. Indeed if D is any measurable subset of Ω such that |D| = m, we shall have

|B ∩ D c | = |B c ∩ D|. Therefore, D |∇v 0 | 2 dx = D∩B |∇v 0 | 2 dx + D∩B c |∇v 0 | 2 dx ≥ D∩B |∇v 0 | 2 dx + D c ∩B |∇v 0 | 2 dx = B |∇v 0 | 2 dx as |∇v 0 | ≥ c * on D ∩ B c whereas |∇v 0 | ≤ c * on D c ∩ B.
Remark 2. If {x : |∇v 0 (x)| = c * } is of measure zero, then the unique solution (up to a set of measure zero) is the set {x : |∇v 0 (x)| < c * } which shall also be open if Ω is a sufficiently smooth domain (as by Theorem 8.14 [START_REF] Gilbarg | Elliptic Partial Equations of Second Order[END_REF] it can be concluded that ∇v 0 is of class C 1 ). In view of Proposition 3 proved below, this will be the case when Ω is a disk.

2.2.

Disproving the disk conjecture. In this section we show that, for ε sufficiently small, the distribution of materials which corresponds to placing material β in a ball around the centre of Ω when Ω is a ball is not optimal for the problem ( 4)-( 6).

In particular, let Ω = B(0, 1) ⊂ R d be the ball of center 0 and radius 1. Then, the solution v 0 of ( 13)-( 14) is radial and smooth. By setting w 0 (|x|) := v 0 (x), equation ( 13)-( 14) becomes, using the Laplacian in polar (r, θ) or spherical (r, θ, ϕ) coordinates, for d = 2, 3 r 2 w 0 (r) + (d -1)rw 0 (r) + r 2 λ 0 α w 0 (r) = 0, (37)

w 0 (0) = 0, w 0 (1) = 0. ( 38 
)
where the boundary conditions (38) correspond to the continuity of the gradient at the origin and the Dirichlet condition on the boundary, respectively. The solution of this equation is

w 0 (r) = J 0 (η d r) if d = 2, ( 39 
)
w 0 (r) = j 0 (η d r) if d = 3, (40) 
where J 0 and j 0 denote Bessel functions of the first and second kind, respectively and η d (d=2,3) are their respective zeros. We introduce the notation w 1 (r) := -w 0 (r). The function w 0 is decreasing and so w 1 is positive. The behaviour of the functions w 0 and w 1 is depicted in Figure 1. In the case m > ω d (r 0 d ) d , the equation w 1 (r) = c * has two solutions ξ 0 and ξ 1 in (0, 1). Then the solution set is

B * = B(0, ξ 0 ) ∪ B(0, 1) \ B(0, ξ 1 )
which completes our proof.

In [START_REF] Conca | Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball[END_REF] it was conjectured, based on numerical tests, that the infimum of the first eigenvalue of ( 4)-( 5) is attained when the material with the highest conductivity is placed in a concentric disk in the center of the domain. We prove that this conjecture is false, at least in two-or three-dimensional space, for β close to α and when the proportion of the material β exceeds a certain quantity. Theorem 3. When Ω = B(0, 1), for β = α + ε sufficiently close to α and given an m > ω d (r 0 d ) d , the distribution of the materials wherein the material with the higher conductivity β is placed in a concentric disk in the center of the domain is not optimal for the problem (4)- [START_REF] Dambrine | On the shape sensitivity of the first Dirichlet eigenvalue for two-phase problems[END_REF].

Proof. Our proof is based on Corollary 2 and Proposition 4. We shall assume that m > ω d (r 0 d ) d . Let B be the minimizer of λ 1 (•) over B ∈ B, which according to Proposition 4, is the union of a ball B(0, ξ 0 ) and a ring or shell B(0, 1) \ B(0, ξ 1 ). Let B m be the concentric ball in B(0, 1) having the volume m. We show that B m cannot be the minimizer of λ ε (•) in the problem (4)-( 5) whenever β = α + ε is less than a certain quantity, to be precise, if 2Cε

1 2 < |λ 1 (B m ) -λ 1 (B * )| .
For such an ε > 0, if we assume that B m is a minimizer for λ ε (•) in the problem (4)-( 5), then, by (35) of Corollary 2, we obtain

|λ 1 (B m ) -λ 1 (B * )| ≤ 2Cε 1 2
. This is clearly a contradiction. So, for ε > 0 as above, B m cannot be a minimizer of λ ε (•) in the problem (4)-(5).

DESCENT ALGORITHM AND NECESSARY OPTIMALITY CONDITION

In this section we consider domains Ω with any shape, and not only the case of a disk as in the previous section. We describe an algorithm which, starting from a given initial measurable set B 0 , allows to find a new measurable set B 1 such that the first eigenvalue λ 1 is decreased, i.e.

λ(B 1 ) ≤ λ(B 0 ).

Algorithms based on a similar principle have been used successfully to minimize eigenvalues in problems with indefinite weight [START_REF] Hintermüller | Principal eigenvalue minimization for an elliptic problem with indefinite weight and Robin boundary conditions[END_REF][START_REF] Kao | Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains[END_REF]. It may be used, as we shall see in Subsection 4.2, to obtain numerical results. This algorithm allows to derive necessary optimality conditions; see Corollary 3, which in turn may be used to derive properties of the optimal set B for particular geometries such as symmetric domains or polygonal domains. More details may be found at the end of this section. Given an initial measurable set B 0 , let u B0 and λ(B 0 ) denote the first eigenvector and eigenvalue, respectively, for problem ( 1 . Also, M (B 0 , c) → 0 as c → 0 as it is known that the set of critical points for u B0 is of measure zero [START_REF] Lou | On singular sets of local solutions to p-laplace equations[END_REF]. The right continuity may be seen from the following

M (B 0 , c+) -M (B 0 , c) = lim cn c M (B 0 , c n ) -M (B 0 , c) = lim cn c |{x : c < |∇u B0 (x)| ≤ c n }| = | ∩ n {x : c < |∇u B0 (x)| ≤ c n }| = 0
as the latter intersection is empty.

On the other hand,

M (B 0 , c) -M (B 0 , c-) = lim cn c M (B 0 , c) -M (B 0 , c n ) = lim cn c |{x : c n < |∇u B0 (x)| ≤ c}| = | ∩ n {x : c n < |∇u B0 (x)| ≤ c}| = |{x : |∇u B0 (x)| = c}|,
which yields the assertion on left continuity.

Now define (42)

c 0 := inf{c : M (B 0 , c) ≥ m}.
As in the proof of Theorem 2, it may be shown that |{x :

|∇u B0 (x)| ≤ c 0 }| ≥ m and |{x : |∇u B0 (x)| < c 0 }| ≤ m. Let B 1 be any measurable subset of Ω which satisfies {x : |∇u B0 (x)| < c 0 } ⊂ B 1 ⊂ {x : |∇u B0 (x)| ≤ c 0 } and |B 1 | = m.
We have the following result Theorem 4. Given an initial measurable set B 0 ⊂ Ω with |B 0 | = m, let c 0 be as defined in (42) and let B 1 be a measurable set as above having measure m. Then we have λ(B 1 ) ≤ λ(B 0 ). Furthermore, if M (B 0 , c) is continuous, then equality holds if and only if B 1 = B 0 almost everywhere.

Proof. Consider the decompositions

B 0 = (B 0 ∩ B 1 ) ∪ (B 0 ∩ B c 1 ), B 1 = (B 0 ∩ B 1 ) ∪ (B c 0 ∩ B 1 ). Since |B 0 | = |B 1 | = m we have with the above decompositions |B 0 ∩ B c 1 | = |B c 0 ∩ B 1 |. Noticing that |∇u B0 | ≥ c 0 on B c 1 and |∇u B0 | ≤ c 0 on B 1 , we may write B0 |∇u B0 | 2 = B0∩B1 |∇u B0 | 2 + B0∩B c 1 |∇u B0 | 2 ≥ B0∩B1 |∇u B0 | 2 + c 2 0 |B 0 ∩ B c 1 | (43) = B0∩B1 |∇u B0 | 2 + c 2 0 |B c 0 ∩ B 1 | ≥ B0∩B1 |∇u B0 | 2 + B c 0 ∩B1 |∇u B0 | 2 = B1 |∇u B0 | 2 , (44) Therefore λ(B 0 ) = α Ω |∇u B0 | 2 + (β -α) B0 |∇u B0 | 2 ≥ α Ω |∇u B0 | 2 + (β -α) B1 |∇u B0 | 2 (45) ≥ min u∈H 1 0 (Ω),||u||2=1 α Ω |∇u| 2 + (β -α) B1 |∇u| 2 = λ(B 1 ) , ( 46 
)
and the inequality is proved. Now, let us assume that M (B 0 , c) is continuous. In view of Lemma 1, the continuity of M (B 0 , c) implies that the set {x : |∇u B0 (x)| = c 0 } has zero measure, so that B 1 can be taken to be {x : |∇u B0 (x)| ≤ c 0 }. The equality λ(B 1 ) = λ(B 0 ) holds if and only if equality holds in (45), (46). In particular, equality in (45) holds only if equality holds in (43) and (44). Thus, as |∇u B0 (x)| > c 0 on B c 1 , for equality to hold in (43) we need that |B 0 ∩ B c 1 | = 0. Consequently, we also have |B c 0 ∩ B 1 | = 0. Thus, we have shown that B 1 = B 0 except for a set of measure zero. Remark 3. Using Theorem 4, we may obtain a sequence of domains B n such that

λ(B n ) ≤ λ(B n-1 ).
However, it is not a priori guaranteed that B n converges to an admissible set B * in some topology for which the map B → λ(B) is lower semicontinuous. Even by supposing this, we cannot say that B * is a global optimum for the problem.

The following corollary derives immediately from Theorem 4.

Corollary 3 (Necessary optimality condition). If a measurable set B * is optimal for the problem (4) -( 5) and if M (B * , c) is continuous at c * for c * defined analogously as in (42) with B * replacing B 0 , then up to a set of measure zero, B * is equal to the level set {x :

|∇u B * (x)| ≤ c * }.
Proof. It is enough to apply the previous theorem taking B * in place of B 0 , c * instead of c 0 and then to take

B 1 = {x : |∇u B * (x)| ≤ c * }, which is allowed due to the continuity of M (B * , •) at c * . Then, λ(B 1 ) ≤ λ(B *
) and B * is optimal, so we have the equality λ(B 1 ) = λ(B * ). The conclusion follows, as by Theorem 4, equality holds only if B 1 is almost everywhere equal to B * .

Assuming that the hypotheses of Corollary 3 are satisfied we obtain the following results for certain geometries.

The disk case. In the case Ω = B(0, R) the optimal set B * should include the origin. Indeed, in [START_REF] Conca | An extremal eigenvalue problem for a two-phase conductor in a ball[END_REF], it is shown that the optimal domain is radially symmetric. The regularity and the radial symmetry of the solution imply that the gradient of u vanishes at the origin 0 and therefore, by Corollary 3, it follows that 0 ∈ B * .

The ring or torus case. If one is able to show the radial symmetry of the solution as in the disk case, then due to the Dirichlet condition and the positivity of the solution, it is clear that the gradient of u vanishes at one point along a radius of the domain and by radial symmetry, the gradient of u vanishes on a whole circle whose center is the center of the ring or torus. Using Corollary 3 we obtain that this circle is in B * . This property may be observed for instance in Figure 5 for different ratios m/|Ω|. Domains with corners in two dimensions. In this case the optimal set B * contains a neighbourhood of the corners with angle smaller than π while its complement A * = Ω\B * contains a neighbourhood of the corners with angle greater than π. Indeed, let P ∈ ∂Ω be a conical (corner) point of Ω and denote ϑ the associated angle at this corner. The classical theory of solution of elliptic partial differential equations in non-smooth domains [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF][START_REF] Grisvard | Singularities in boundary value problems[END_REF][START_REF] Kondratiev | Boundary value problems for elliptic equations in domains with conical or angular points[END_REF] establishes that in view of the Dirichlet boundary conditions, u B * may be written as

u B * (x) = cr π/ϑ sin πθ ϑ + u s (x),
where c is the coefficient of the singularity which depends on the geometry of the domain, θ corresponds to polar coordinates with center P and θ = 0 or θ = ϑ on the tangents to ∂Ω at P , and u s ∈ H 2 (Ω) satisfies u s (x) = O(r π/ϑ+1 ) as x → P . Therefore Symmetrical domains. If the domain Ω has symmetries, then it is probably possible to show that the optimal domain has the same symmetries, as in [START_REF] Conca | An extremal eigenvalue problem for a two-phase conductor in a ball[END_REF]. Thus, if Ω ⊂ R d has d independent hyperplanes of symmetry, it is expected that the solution set B * includes the point which is the intersection of these hyperplanes. If Ω is a square for instance, as in Figure 2, the center of this square belongs to B * .

|∇u B * (x)| = O(r π/ϑ-1 ) as x → P and |∇u B * (x)| → 0 if ϑ < π, |∇u B * (x)| → ∞ if ϑ > π as x → P.
These properties are corroborated by numerical results shown in Section 4.1 for such domains in the case when α and β are close enough.

NUMERICAL RESULTS

The aims of this section are twofold. On the one hand we would like to obtain approximate numerical solutions of problem ( 4)-( 5) by applying Remark 1 and Theorem 2 in the case of nearly equal conductivities. On the other hand, in the general case, we would like to explore the numerical utility of the algorithm described in Section 3.

4.1.

In low contrast regime. In this section we compute numerical approximations of solutions of the optimization problem (4)-( 5) for general geometries Ω, under the assumption of low contrast regime, i.e. β = β ε = α + ε for small ε. Following Remark 1, the solution B * of the auxiliary problem corresponding to the minimization of λ 1 (•) (see Theorem 2) is then an approximate solution for (4)-( 6) for small ε. For the computation of B * , we compute the function f (c) defined in the proof of Theorem 2 and look for c * such that f (c * ) = m. Numerically, this may be achieved by simple dichotomy for instance.

In Figures 2 to 6, the nearly optimal distribution B * for various geometries Ω and values m are plotted. We also plot the isolines of |∇v 0 | 2 , where v 0 is the solution of ( 13)-( 14), i.e. v 0 is the first eigenvector with constant conductivity α. In all these examples, the features mentioned at the end of Section 3 are seen to hold. For domains with salient angles, such as in Figures 2 to 4, the set B * contains a neighbourhood of these corners. On the contrary, reentrant corners such as in Figure 4 are always in A * since the gradient is unbounded at these points. We also observe that the set B * always contains a point (or more in the case of radial symmetry as in Figure 5) inside the domain. This interior point corresponds to the place where the gradient of v 0 vanishes and thus is expected to be in B * according to Corollary 3. For domains without the optimal set may or may not touch the boundary as show Figures 5 and6.

In general the optimal set B * seem to have a complex structure and a certain regularity, except for some particular values of m as in Figure 2(c). 4.2. The disk case for general β. We shall apply the algorithm of Section 3 to get an idea of the optimal solution in the case of a disk for any value of β. As was commented in Remark 3, the convergence of the sequence B n is not guaranteed and even if the domains B n do converge to a domain B * , this domain is not necessarily optimal for problem (4)- [START_REF] Dambrine | On the shape sensitivity of the first Dirichlet eigenvalue for two-phase problems[END_REF]. So as to make the algorithm more effective, we include a second step, wherein we make local perturbations to the B * in some descent directions with the aid of the shape derivative obtained in [START_REF] Conca | Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball[END_REF] (cf. the same for more details). By repeating these two steps, successively, it is plausible that these iterations lead to a global optimum.

One of the main difficulty when solving the discrete version of ( 4)-( 5) comes from the volume constraint |B| = m. Indeed from a numerical point of view it is not possible to satisfy the volume constraint exactly due to the discretization. Given an initial set B 0 , the new set B 1 is numerically determined by dichotomy using the gradient of the solution u B0 according to (42). The new set B 1 does not satisfy exactly the constraint |B 1 | = m, but we may compute an intermediate point I lying between grid points, and such that the constraint |B 1 | = m is satisfied. The numerical scheme is modified accordingly using interpolation.

We present results in dimension d = 2. For the numerical tests we take α = 1, Ω = B(0, 1). The initial domain is B 0 = B(0, 0.75) (cf. Figure 7) and we test different values of β > α.

In Figure 8, the optimal sets B * with conductivity β are depicted in black. These results show that the algorithm is able to perform topological changes, since the initial set B 0 has only one connected component, while the optimal domain B * , 1 = α < 1.01 < β ≤ 1.15, has two connected components (Type II). For β = 1.16 and higher initial values β, we observe an optimal set B * of Type I mentioned in Proposition 4. This leads us to think that, for β ≥ 1.16, the proportion of the material β may need to be higher in order to produce solutions of Type II. 
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 2 Next, we show that (23) |λ ε (B) -λ 0 | ≤ C ε .

Theorem 2 .

 2 There exists c * ≥ 0 such that whenever B is a measurable subset of Ω satisfying {x : |∇v 0 (x)| < c * } ⊂ B ⊂ {x : |∇v 0 (x)| ≤ c * } and |B| = m, then B is an optimal solution for the problem of minimizing λ 1 (B) over B ∈ B. Proof. Let f (c) := |{x ∈ Ω : |∇v 0 (x)| ≤ c}|, f is clearly an increasing function with 0 ≤ f (c) ≤ |Ω|. Let c * := inf{c : f (c) ≥ m}. We have f (c * ) ≥ m, indeed, let c k > c * be a decreasing sequence such that c k → c * . On one hand f (c k ) ≥ m and lim k→∞ f (c k ) ≥ m. On the other hand
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 1 FIGURE 1. Functions w 0 (r) (plain), and w 1 (r) = -w 0 (r) (dashed) in dimensions d = 2 (left) and d = 3 (right). r 1 d is such that w 1 is increasing on [0, r 1 d ] and decreasing on [r 1 d , 1], and r 0 d is such that w 1 (r 0 d ) = w 1 (1).

Proposition 3 .

 3 For Ω = B(0, 1), the level set {|∇v 0 | = c} has zero measure for each c ≥ 0.Proof. Since v 0 (x) = w 0 (|x|), we have ∇v 0 (x) = w 0 (|x|)x |x| and consequently we have|∇v 0 |(x) = -w 0 (|x|) .Thus, the measure of the set {|∇v 0 |(x) = c} is positive if and only if the measure of one of the sets {x : w 0 (|x|) = c} or {x : w 0 (|x|) = -c} is positive. Thus, if {x : w 0 (|x|) = -c} has positive measure, this is the same as saying S := {x : ∇v 0 (x) = -c x |x| } has positive measure. That is, the set {x : ∇ (v 0 (x) + c|x|) = 0} has positive measure. By a classical result due to Morrey[START_REF] Morrey | Existence and differentiability theorems for the solutions of variational problems for multiple integrals[END_REF], if ψ ∈ W 1,1 loc , then ∇ψ = 0 almost everywhere on the set {ψ = 0}. Applying this result to the function ∇ (v 0 + c|x|), we get∇ 2 (v 0 + c|x|) = 0almost everywhere on the set of positive measure S defined above. So, now taking the trace we obtain-∆v 0 (x) = c(d -1) |x|on a set of positive measure. Then, by equation[START_REF] Krein | Linear operators leaving invariant a cone in a banach space[END_REF], this means that we havew 0 (r) = αc(d -1) λ 0 ron a set of positive measure which is clearly in violation of the behaviour of the Bessel function J 0 or j 0 . This concludes our proof. Let ω d denote the volume of the unit ball, i.e. we have ω d = π for d = 2 and ω d = 4π/3 for d = 3 and let r 0 d and r 1 d be the constants mentioned in the caption of Figure 1.

Proposition 4 .

 4 When Ω is a ball, in two or three dimensional space, the unique symmetrical optimal domain B * which is solution of the minimization problem for λ 1 (B) over B ∈ B is of two possible types• Type I: If m ≤ ω d (r 0 d ) d then B * = B(0, (m/ω d ) 1/d ) or, • Type II: If m > ω d (r 0 d ) d then there exists ξ 0 and ξ 1 with (m/ω d ) 1/d < ξ 0 < ξ 1 < 1 and B * = B(0, ξ 0 ) ∪ B(0, 1) \ B(0, ξ 1 ) .Proof.Inview of Theorem 2, Proposition 3 and Remark 2, a solution to the problem of minimization of λ 1 (•) over B is the set B * = {x ∈ Ω : |∇v 0 (x)| ≤ c * } where c * is as in Theorem 2. Moreover, it is the unique solution (up to a set of measure zero). We may also write it as B * = {x ∈ Ω : w 1 (|x|) ≤ c * }. Whenever m ≤ ω d (r 0 d ) d , the equation w 1 (r) = c * has exactly one solution ξ in (0, 1). In this case the solution to our minimization problem is B * = B(0, ξ) consisting of a single component in the center. The constraint |B * | = m implies ξ = (m/ω d ) 1/d .

1 .

 1 )-(2). Introduce the quantity (41) M (B 0 , c) = |{x : |∇u B0 (x)| ≤ c}| Lemma The function M (B 0 , c) is non-decreasing with respect to c and is such that M (B 0 , c) → 0 as c → 0 and M (B 0 , c) → |Ω| as c → ∞. Furthermore, it is a rightcontinuous function. It is also left continuous at any c if and only if the Lebesgue measure of {x : |∇u B0 (x)| = c} is zero. Proof. The function M (B 0 , c) is monotone non-decreasing due to the set inclusion {x : |∇u B0 (x)| ≤ c} ⊂ {x : |∇u B0 (x)| ≤ c } whenever c ≤ c . Due to the integrability of |∇u B0 |, we have |{x : |∇u B0 (x)| > c}| → 0 as c → ∞ and therefore, we can conclude that M (B 0 , c) → |Ω| as c → ∞

Therefore, in view of Corollary 3 ,

 3 when ϑ < π, B * contains a neighbourhood of P since |∇u B * (x)| → 0 as x → P and we may find a small enough neighbourhood of P that will be included in {x : |∇u B * (x)| ≤ c * }. When ϑ > π then A * = Ω \ B * contains a neighbourhood of P since |∇u B * (x)| → ∞ as x → P . These properties may be observed in theFigures 2, 3 and 4. 

2 FIGURE 2 . 2 FIGURE 3 .

 2223 FIGURE 2. Nearly optimal distribution B in the square case. The dark region corresponds to B and the material β, the white region to A and material α. As predicted by Corollary 3, the optimal domain B contains the corners of the square, as well as the center since the gradient of the eigenfunction vanishes at that point.

  (a) m/|Ω| = 0.3370 (b) m/|Ω| = 0.5673 (c) m/|Ω| = 0.7546 (d) m/|Ω| = 0.8424 (e) isolines of |∇v 0 | 2
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 425 FIGURE 4. Nearly optimal distributions B in the polygon case for different values of m. The dark region corresponds to B and the material β, the white region to A and material α. As predicted by Corollary 3, the approximately optimal domain B contains the corners of the polygon with angle less than π and a point in the center where the gradient of the eigenfunction vanishes. Note that A * = Ω \ B * contains a neighbourhood of the point with the reentrant corner, i.e. the corner with angle greater than π. Indeed, in this corner the gradient is unbounded.
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 267 FIGURE 6. Nearly optimal distributions B in the case of an ellipse with two holes for different values of m. The dark region corresponds to B and the material β, the bright region to A and material α. In this case we observe that the approximately optimal set B * has several connected components, except maybe for large m, and touches the boundary. The set B * always has a connected component in the center of the domain. This corresponds to a point where the gradient of the eigenfunction vanishes.

FIGURE 8 .

 8 FIGURE 8. Optimal sets A * and B * for different values of β close to α. The set B * is represented in black, the set A * in white. The optimal region B * is of type II for 1 = α < 1.01 < β ≤ 1.15 and of type I for β = 1.16.
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