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Propagation of acoustic waves in a one-dimensional array of noncohesive cylinders

Guillaume Huillard, Xavier Noblin, and Jean Rajchenbach
Laboratoire de Physique de la Matière Condensée, UMR 6622, CNRS,

Université de Nice Sophia- Antipolis, Parc Valrose 06108 Nice Cedex 2, France.

By means of a photoelastic method, we access the visualization of acoustic waves propagating in
a one dimensional array of noncohesive cylinders. As pointed by Nesterenko in the case of spherical
grains (V.F. Nesterenko, J. Appl. Mech. Tech. Phys. 24, p. 567 (1983)), the nonlinearity of the
contact law between the grains induces a dependence of the wave velocity both on its amplitude and
on the confinement force. Our experimental method allows one to access the evolution in time of the
internal state of stress of individual grains with an excellent accuracy. We show that the velocity of
the sound presents two regimes as a function of the confining force. For low forces, the dependence
is strongly nonlinear, while it weakens for higher forces. By means of the direct visualization of
the contact zone, we show that both micro- and macroscale imperfections of the surface of contact
explain the low forces behavior. We test the consistency of our experimental findings results with
both the theoretical expectations and with the experimental determination of the force-displacement
dependence. We show moreover that the main damping process originates in solid friction.

PACS numbers: 43.25.+y, 45.70.-n, 43.25.Ed, 46.40.Cd Published in Phys. Rev. E 84, 016602 (2011)

I. INTRODUCTION

The disorder in the grain positions, the noncohesive-
ness of the material, the nonlinearity of the contact law
between grains and the interferences between waves pass-
ing through different paths render arduous the theoreti-
cal treatment of the sound propagation in granular media
[1-7] Nevertheless, understanding the properties of prop-
agation of sound waves in granular media is of crucial
interest, e.g., in order to design new acoustic attenuators
or, for instance, to improve the interpretation of three-
dimensional (3D) acoustic tomographic data or seismic
recordings.

Since waves are transmitted from one grain to some
of its neighbors via the contact network, the nature of
the contact plays a crucial role. Due to the nonlinearity
of the contact law [8], the sound velocity depends on
the initial state of the (static) pre-stress of each contact.
Hence, both the force-displacement relationship between
grains in contact and the topography of the contact
network have to be accounted for. The second issue then
proceeds from the packing disorder. Even if the positions
of the grain centroids are ordered in a lattice, some
contacts can be open owing to a very small deviation
in the particle size or shape and the actual contact
network is thus disordered [9]. It is well known that an
applied external load induces a filamentary network of
stress (called force chains) in granular packings, where
a modest fraction of the total number of grains carries
the main part of the force [10]. Note moreover that
the passing of acoustic waves of large amplitude can in
turn modify the contact topography. Interestingly, data
obtained by Liu and Nagel [2] emphasized the role of
interference between acoustic waves following different
paths. The complex acoustic signal (the coda) obtained
in 3D geometries was interpreted as the signature of a
speckle phenomenology, which emphasized the high sen-
sitivity to geometrical rearrangements induced by, e.g.,

small temperature drift or by the wave propagation itself.

Due to the increase of the contact area with the nor-
mal load, the relation between the normal component
F0 of the contact force and the displacement δ0 between
the grain centroids is nonlinear. For spherical beads,
this relationship is known as Hertz’s law [8] and reads

F0 ∝ δ
3/2
0 . As a consequence, the wave velocity V in-

creases with the static confining force F0. Nesterenko
modeled the sound propagation in a one-dimensional
nonlinear array [1, 11], and he showed that various types
of sound waves can propagate through these media, ac-
cording to the wave amplitude:

(i) Provided that the amplitude of the sound wave is
very small compared to the static confining force F0, lin-
ear acoustic waves can propagate. Theory predicts that

the linear wave speed increases as V ∝ F β0 , with β = 1/6
for spherical beads. Experiments have been carried out in
1D, 2D and 3D for different packing geometries of spher-
ical beads [4, 12, 13].

(ii) At higher amplitudes, when both nonlinearity and
dispersion play a role, a cnöıdal wave or a Korteweg-
deVries type soliton can be encountered.

(iii) For excitation amplitudes even higher than
the confining force F0, a new type of excitation (the
Nesterenko’s solitary wave) is predicted [1]. The speed
of this solitary wave varies as the power 1/6 of its
amplitude. The existence of such a nonlinear excitations
has been recognized experimentally and numerically
[1, 3, 14, 15].

The present study is devoted to the propagation of a
linear compressive pulse along a 1D array of photoelastic
cylinders. Instead of measuring the flight time of the
pulse through the array, here we have direct access both
to spatial and temporal quantitative informations by
means of a photoelastic visualization, which is in real
time. The high photoelastic constant of the material
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allows for an accurate determination of the stress state
of each individual grain as a function of time, with a
sampling rate up to 10+5 s−1. Shukla et al. were the
first to use the photoelastic method to probe dynami-
cally wave phenomena, mostly in the non linear regime
[16, 18]. In a previous paper [19], we have presented
a simple quantitative way to measure forces using the
photoelastic technique. We focus here on the linear
waves speed, and their dissipation.

One of the goals of the present work is to highlight the
mechanism which governs the dependence of the wave
speed on the imposed static confining force. In some
cases, using various materials (steel, brass, glass and ny-
lon spheres), the Hertzian prediction with β = 1/6 has
been recovered in 1D arrays [12]. Nevertheless, devia-
tions from the above expected value has been reported
for low confining forces, with experimental determina-
tions of β giving a value close to 1/4, that both in 1D
[20], 2D [13], and 3D geometry [4, 21].

Two reasons have been invoked to explain this discrep-
ancy. The first one relies on the disorder of the packing:
some contacts, initially open, are progressively closed
when the static confining pressure is increased. There-
fore, the macroscopic compressibility of the sample is dif-
ferent at low or high pressure [22]. Another explanation
involve a local deviation to sphericity at a microscopic
level [23]. The discrimination between these two differ-
ent mechanisms has not been elucidated yet. To sum up,
the relation between the experimental value of β and the
nonlinearity in the contact law remained unclear.

In the present paper we show that the speed increases
as a power β ≈ 1/4 of the confining force F0, for the low
values of the latter. For larger values of F0, the exponent
β is significantly reduced. Our experiments reveal that
these deviations from the expected velocity dependence
on F0 originate in both micro and macroscale imperfec-
tions of the contact and subsequent unexpected varia-
tions of the surface contact areas with pressure.

Another aim of this work is to study the attenuation of
the pulse amplitude while propagating along the array,
and to propose a simple model accounting for it.

In the following, we describe first the photoelastic
method and the experimental setup (Sec. II A and II B).
We then present then experimental results concerning the
wave velocity as a function of the static confining force
(Sec. III A), the related variation of the mean contact
area (Sec. III C) and the force-displacement law (Sec.
III B). Next, results concerning the damping processes
are shown (Sec. III D). In the last section (Sec. IV), we
discuss and propose some elementary explanations capa-
ble of accounting for our experimental findings.

FIG. 1: Experimental setup showing 1D grain chains

II. EXPERIMENTAL SETUP AND METHOD

A. Setup

We use a photoelastic method to obtain quantitative
information on the stress state of individual grains in a
1D array. The experimental setup is sketched in Fig. 1.
The system that we studied consists of a linear array of 36
identical cylinders. Grains are prepared by cutting a 9.4
mm-thick polycarbonate plate and machining identical
cylinders with diameter d = 2R = 13 mm. The Young’s
modulus, the Poisson ratio and the mass per unit of vol-
ume of polycarbonate are respectively E = 2.76 GPa,
ν = 0.38 and ρ = 1, 2 g.cm−3. Most of the previous
studies dealt with spherical grains, while here we use
cylinders. Note moreover that the topological disorder
proper to 2D or 3D geometries does not intervene in the
1D geometry that we probe here , so that , the acoustic
behavior originates merely on the nature of the contacts.

The elastic grains are then packed into contact along
a common generatrix, and confined in a 470 mm long
duraluminium frame. To ensure the alignment of the
cylinders in the parallel direction of their axis, a groove
(0.2 mm deep and 10 mm wide) has been machined along
the bottom plate of the cell. Moreover, grains can simul-
taneously undergo an horizontal confining force F0 and a
vertical force F⊥. This last one is applied by loading the
top lid and prevents the natural buckling of the chain.
Both these forces can be varied and measured with pre-
cision.

A mechanical pulse generated by means of a tweeter
impacts the first grain of the array. A piezoelectric sen-
sor and a static force sensor are positioned after the last
grain of the array. They allow access to the static confin-
ing force F0 and the pulse amplitude. They are comple-
mentary to direct photoelastic measurements performed
in situ . In order to increase the resolution relative to the
position of the birefringence fringes, the light is filtered
by means of an interferential filter centered around 650
nm. The propagation of the acoustic pulse through the
array is then recorded by means of a high speed digital
camera (Phantom 7.3) with a resolution of 736 ∗ 32 pix-
els. Note that a cylinder diameter corresponds typically
to 30 pixels. The sequence of images is then processed
and analyzed by means of a program written in Matlab
language. The bases of the photoelastic method are dis-
cussed below.
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B. The photoelastic method

Consider a photoelastic cylinder positioned between a
couple of identical circular polarizers. Light propagates
through grains along the direction parallel to their axis
of symmetry. The emerging light intensity is a function
of the stress in the plane of the cylinder at each point
(x, y) and reads as:

I(x, y) = I0(x, y) cos2
[

2π

λ
Ce [σ1(x, y)− σ2(x, y)]

]
(1)

where I0 is the incident intensity, λ is the wavelength
of the light, C is the photoelastic constant of the sample,
e is the thickness of the sample and σ1, σ2 are the local
principal stresses at the point (x, y). This relation holds
everywhere in the material.

In order to access the state of stress of the individ-
ual grains, we compare the light intensity in the central
region of each grain with that obtained by means of a cal-
ibration procedure. This calibration consists of measur-
ing the transmitted light as a function of the amplitude
of an adjustable external uniaxial load F . The central
region of measurement is less than 1% of the surface of
a grain. The calibration curve is shown in Fig. 2. The
intensity measured at the center of the grain, Icenter, can
be expressed as:

Icenter = (Imax − Imin) cos2
[
π
F

∆F

]
+ Imin (2)

where F is the compressive force, and ∆F is the force
increment corresponding to the passing of a black fringe
to the following black fringe. Imax is the maximum trans-
mitted intensity and Imin is the residual illumination cor-
responding to the black fringe. In the following, we note:

ζ =
(Icenter − Imin)

(Imax − Imin)
(3)

ζ is the normalized intensity transmitted at the center
of the cylinder and takes value between 1 (white fringe)
and 0 (black fringe). We can therefore access to the force
F by computing:

F = ∆F

[
(n− 1) +

(−1)n−1

π
arccos(

√
ζ)

]
(4)

where n is the fringe order. We measure for our grains
∆F = 42 N. Note that this method is only applicable for
forces of the same order on both sides of a grain, with
the resulting measurement giving their average value.

FIG. 2: (Color online) Photoelastic calibration: we measure
the intensity Icenter transmitted through the central region of
one grain (white box in (a)) as a function of an applied exter-
nal uniaxial force F . We deduce from it the force increment
∆F corresponding to the passing of a black fringe to the fol-
lowing black fringe. For cylinders with 13mm diameter, we
measure ∆F = 42N . (a)-(d): Photoelastic images obtained
with the calibration for forces F equal to 0, 10, 20, 40N .

C. Procedures

The typical protocol used to conduct measurements
is the following. First, particles are positioned in the
groove. For a measurement corresponding to a given
static confining force F0, the vertical force F⊥ is adjusted
in order to ensure the vertical alignment of the array.
Then the closest static forces corresponding to black and



4

FIG. 3: Example of four successive photoelastic images show-
ing the acoustic pulse propagation. The time between each
images is 140 µs and the static confining force is F0 = 4.5N .
The maximum amplitude of the acoustic pulse is f1,max =
10N and the pulse durationis 100µs. Before the pulse is sent
(top image), grains are subjected to the static force F0, which
causes the slight fringes near each contact. Then, compressive
pulse arises and travels in the chain with a velocity V .

white fringes located in the grain centers are measured.
Hence the values of Imax and of Imin are deduced for
each particles. Note that the determination of Imax and
Imin are required to measure the transient force corre-
sponding to the passing of the pulse. Then a function
synthesizer generates a pulse to the tweeter (time-width
100µs) and a sequence of pictures is recorded with a
frame rate 89000 fps. After the tweeter has impacted
the first grain, an acoustic pulse propagates through the
chain. A sequence of pictures showing the propagation
of the pulse is showed in Fig. 3. Note that the spatial
extension of the wave is limited to a few grains. Our im-
age analysis program allows one to access the quantity ζ
and then the dynamical force Fn(t) = F0 +fn(t) for each
step of time and for each particle (where the index n is
relative to the grain position in the image. In most cases,
the first grain of the image corresponds to the third grain
of the chain). In the following, the maximal amplitude
of the pulse for the grain n is noted fn,max, i.e.:

fn,max = max [Fn(t)− F0] (5)

III. EXPERIMENTAL RESULTS

A. Wave velocity in the linear regime

Fig. 4 shows the different curves of Fn(t) for the grains
numbered n = 8, 13, 18, 23 as a function of the time. Be-
fore the pulse emission, all the curves coincide and cor-
respond to the static force F0. The measurement of F0

proceeds from two independent determinations: first, F0

is measured by means of the photoelastic method, but,
we can also access the data issued from the static force
sensor. Nevertheless, note that a discrepancy can arise,
which originates in the solid friction with the confining
boundary walls. As a consequence, when this effect is
large, the photoelastic method is preferred. Then, for
a given grain, the pulse arises and the force reaches the
maximal value before decreasing and oscillating. Note

FIG. 4: (Color online) Top: Dynamical force Fn(t) vs time
for grains n = 8, 13, 18, 23 (from the left to the right) in the
linear regime. These curves are the result of the data analysis
of photoelastic images by computing Eq. 4 for each grain.
Before the pulse arises (f1,max = 1.3 N for the first grain),
each grain is submitted to the static force F0 = 10N , then
the pulse travels from one grain to another. The temporal
width is quite constant for each grain but the maximal ampli-
tude fn,max decreases. Bottom: image sequence from which
the curves have been determined. The grain used have been
marked, we have divided the image by the first one of the
movie, and used false colors.

that in this set of experiments, f1,max is always very
small compared to F0 which ensures the regime to be lin-
ear. We observe that the wave propagates through the
array, and that the spatial extent of the pulse remains
constant during its propagation (within our experimen-
tal precision). The spatial width of the pulse is typi-
cally 6− 7 grain sizes, so that dispersive effects intrinsic
to discrete lattices are negligible along the present chain
comprising 36 cylinders. Considering an underestimated
wavelength of seven grain sizes, we find that the speed
difference between the linear dispersion relation (Eq. 11)
and the actual sinusoidal one for the spring-mass chain
is about 3 %, which is small. Interestingly, we note that
the compressive pulse is followed by a tensile component
(the detailed analysis of this phenomenon is beyond the
scope of this paper). Finally we note that the amplitude
of the pulse decreases uniformly along the chain. The
origin of this attenuation will be discussed in-depth in
Sec. III D.

From the measurement of the time corresponding to
the mid-height pulse amplitude located at the grain of
index n, we deduce the distance covered by the pulse as
a function of the time (see Fig. 5). This dependence is
fairly linear, whatever the confining force. We can de-
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FIG. 5: (Color online) Distance covered as a function of the
time for the wave mid-height of the Fig. 4. The dashed line
is a linear fit giving the velocity V .

duce therefore the celerity of the wave as a function of
F0 (see Fig. 6). Clearly, two regimes have to be distin-
guished. For F0 < Fc ≈ 20N the wave speed increases
rapidly with the static force F0. Assuming a power law

dependence for the velocity as V ∝ F β0 , we determine an
exponent β ≈ 1/4. This is a clear signature of a highly
nonlinear contact law. On the other hand, Fig. 6 shows
a significant decrease of the exponent β (β ≈ 1/9) for a
larger confining force (F0 > Fc ≈ 20N). Actually this
regime seems more consistent with the theoretical pre-
diction suited for cylinders, for which the displacement-
force relationship is logarithmic (see Sec. IV). In Fig.
6, we have also traced the velocity-confining force curve
V ?(F0) calculated from V ? = λV with V given by Eq. 11
and k(F0) computed from the experimental static F0− δ
relation (see Fig. 8). We find good agreement and we
interpret the two regimes as a consequence of a change
in the contact law for increasing force due to roughness
of the contact at microscales and discrepancy with the
perfect cylindrical shape at macroscales. Nevertheless, a
numerical coefficient has to be used, with λ = 1.48 in-
stead of 1. This discrepancy may be due to the fact that
in our frequency range the dynamical stiffness is higher
than the static one.

To check the importance of the microscale rough-
ness effect, we have also performed measurement with
polished grains (see triangles, Fig. 7). Their micro-
scopic roughness (arithmetic mean value) is about Ra '
0.37µm as compared to the non-polished grains for which
Ra ' 0.75µm, the maximum crest to crest distance being
respectively 2µm and 4µm. The velocity curve presents
roughly the same aspect as for unpolished grains, with a
lower exponent at large forces. For low forces differences
are not significant due to the relative poor precision on
F0. For high forces, local exponent have been measured
as β ' 1/9 in the non-polished case and β ' 1/11 in
the polished case. The difference in roughness was not

FIG. 6: (Color online) Plot, in log-log scale, of the wave veloc-
ity V versus the static force F0. For F0 < Fc ≈ 20N, velocity
increases rapidly with the static force, we measure an expo-
nent near to 1/4. For F0 > Fc, the dependence of the speed
wave with F0 is weaker (exponent 1/9). The solid curve is the
theoretical prediction based on Eqs. 10 and 11. The dashed
lines are also deduced from Eq. 11 but using the stiffness de-
termined from the experimental force-displacement law (see
Fig. 8) and a numerical prefactor λ = 1.48.

significant enough to find strong differences in the force-
velocity relationship, however at high forces a difference
in the exponent could be highlighted, expressing the fact
that the theoretical behavior for a perfect cylinder was re-
covered for these grains. The logarithmic contact law for
cylinders gives locally an exponent close to 1/11, which
is in good agreement with the smooth surface grains that
present behavior close to those of the perfect cylinders.

We have also performed measurements by cycling the
variation of the confining force: F0 was first increased
and then decreased in order to detect the possible occur-
rence of hysteretic effects, originating in plastic events
at contact. Actually, we did not observe any significant
change of velocity up to F0 ' 100 N.

B. Force-displacement relationship

To access the static force-displacement relation of the
array, we simply measured the total displacement of the
chain for various F0. Once again, precautions have to
be taken in order to avoid chain buckling. Therefore, a
vertical load is applied to the upper lid to prevent any
buckling. Note that the vertical load must be moder-
ate in order to avoid noticeable effects on solid friction.
Indeed, noticeable friction between the horizontal grain
array and the boundary walls would lead to an significant
effective decrease of the confining force along the array
(this phenomenon is discussed in depth in Sec. III D.
In Fig. 8, We have plotted the relation between the
force F0 and the displacement δ for one grain. One can
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FIG. 7: (Color online) Plot, in log-log scale, of the wave veloc-
ity V vs the static force F0 for two surface roughness (triangle:
smooth surface, circles: more rough surface). The behaviors
at low forces are not representative due to larger errors on F0

in this regime. For F0 > Fc ≈ 20N, the exponent β (V ∝ F β0 )
is equal to 1/9 for the rough surfaces and 1/11 for smoother
surfaces. Straight lines are power fits in the high forces region.

FIG. 8: (Color online) Static force-displacement relation be-
tween F0 (in N) and δ in (µm) for one contact between cylin-
drical grains. The solid curves are power fit F0 ∝ δα with
α = 1.78 for small displacements and α = 1.37 at higher
displacements.

clearly distinguish two different regimes, consistent with
the V − F0 curve. From these data, we can calculate an
effective stiffness, and then using an elementary spring-
mass model (see Section IV) it is then possible to predict
the V − F0 relationship in the studied system (see Fig.
6).

C. Surface of contact between cylinders

In order to have a better understanding of the cross-
over phenomenon exhibited by both the V −F0 and F0−δ
dependences, and to the static force-displacement curve,
we have performed a direct visualization of the contact
zone between two adjacent cylinders. We access the vari-
ation of the contact areas as the static confinement load is
increased by means of the following simple method. The
array of grains is diagonally lightened up by means of a
spotlight. The actual contact area appears as bright (be-
cause the light is scattered), while the unloaded regions
of the cylinder surface appear as dark (see experimental
setup in Fig. 9).

It is therefore straightforward to access the variation of
the contact area as the external load is increased. In Fig.
9 a sequence of pictures shows the variation of the light-
ened actual contact between two adjacent grains as the
static confining force is increased for two different fami-
lies of grains (polished or non-polished). First we notice
that a slight imperfection on the cylindrical shape of the
grains leads to an incomplete contact along the cylinder
generatrix. Second, as the force is increased, the micro-
scopic roughness induces a local increase of the contact
area. Using image analysis, we determine the variation
of the contact area with F0. Results are presented in the
Fig. 10. Clearly, for the collection of the polished grains,
the behavior expected for ideal cylinders is met as the
confining force F0 is larger than ≈ 20 N. For the case
of non-polished grains, the theoretical slope is recovered
roughly above 50 N. In both case, the cross over is indi-
cated by an arrow in Fig. 10, it also corresponds to the
velocity change as function of F0 (see Fig. 6). From both
micro- and macroscale defects of cylinder surfaces, it re-
sults, at low force, a more rapid increase of the contact
areas with F0, compared to the case of ideal cylinders in
contact along a common generatrix.

D. Dissipation

In the following, we address the issue of the dissipation
processes which governs the pulse damping during its
propagation. Figures 4 and 11 clearly show a fairly
linear decrease of the pulse amplitude with the covered
distance. Interestingly, in Fig. 11, the decay slope
does not appear to depend significantly on the initial
pulse amplitude f1,max. Let us define α as the slope
of the decay law of the pulse amplitude with distance
(expressed in cylinder diameter unit). Hence α (defined
in force unit) represents the decrement of the force
amplitude when the pulse is transmitted from one grain
to its following neighbor. Note that the slope α may
depends on the lateral confining static force F0 and
on the vertical load F⊥ applied on the top lid. These
features will be discussed in Sec. IV.

An attenuation length La (expressed here in grain di-
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FIG. 9: (Color online) Top: Experimental setup to visual-
ize the contact area. When grains are in contact, they deform
themselves and the surface becomes locally plane. Thus, light
is transmitted without reflection and pixels are illuminated.
In the other case, because of the curvature of the surfaces,
light is reflected and pixels appear darker. Bottom : Images
of the contact between cylinders for different static forces F0.
(a)-(e) Contact surface between two polished cylinders for
F0 = 0, 3, 9, 22, 90N . (f) Surface contact at F0 = 90N for
non-polished cylinders. We see a clear difference in compari-
son with (e).

ameter units) can be defined as the distance for which
the pulse amplitude vanishes to zero. It is interesting
to examine the dependence of the attenuation length La
both on lateral confining force F0 and on the vertical load
F⊥ applied on the top lid.

In Fig. 12, the variation of the attenuation length La
is plotted as a function of the initial amplitude of the
pulse, that for various confining forces (F0 = 8, 14 or
26 N) and vertical loads (F⊥ = 0.15, 0.22 or 0.49 N per
grain). In all cases, the attenuation length La is seen to
depend linearly on the initial pulse amplitude f1,max.

This behavior is consistent with Eq. 13. Note that the

FIG. 10: (Color online) Contact area versus static force F0

for polished cylinders (©) and non- polished cylinders (4).

The dashed lines are a guide to the eyes, as power law F
1/2
0

which corresponds to the theoretical law for perfect, smooth
cylinders (see Eq. 6). The two arrows indicate the cross over
forces as discussed in the text.

experimental points (� and 5) obtained with the same
vertical load F⊥ (F⊥ = 0.15 N per grain) and two dif-
ferent values of the lateral confining force (F0 = 8 and
14 N) merge on the same line. That proves that the
damping effect does not vary significantly with the lat-
eral confining pressure F0. On the other hand, the set of
points displayed in Fig. 12 shows that the attenuation
length decreases as the vertical load F⊥ is increased. As
a consequence, α only depends on the vertical force F⊥.

Next, in Fig. 13, we plot the coefficient α as a function
of F⊥; it appears unambiguously that α increases linearly
with F⊥. This behavior is interpreted in the following
section.

IV. MODEL AND DISCUSSION

A. Model

Current models aimed at describing the propagation
of acoustic waves through a linear array of grains rely
on the analogy with a system of masses and springs
[11]. For a system of spheres in contact, springs must
be considered as nonlinear, to be consistent with Hertz’s
law, which expresses the relation F0 ∝ δ3/2 between the
compression force and the displacement δ between the
sphere centroids. This last relation [8] proceeds from
the exact equilibrium solution of the linear elasticity
equations, and the nonlinearity of the Hertz law results
merely from the increase of the area of contact with F0.
It is worth noting that the contact is unilateral, that is,
the contact force becomes zero as soon as the distance



8

FIG. 11: (Color online) Plot of the maximum amplitude
fn,max vs grain number n. The two sets of data points cor-
respond to different initial pulse amplitude: f1,max = 1.9N
(5) and f1,max = 4.1N (©) with same values of F0 = 8N and
F⊥ = 0.15N/grain. The amplitude decreases linearly along
the chain and the slope of the decrease does not depend on
f1,max.

between the sphere centroids is larger than the sum of
the sphere radii.

For spheres in contact, the contact area is obviously
a disk. Let us now consider equal cylinders of length L
and radii R. In the following we present the variations
of the surface area, displacement and wave velocity for
cylinders. Then we propose a simple model accounting
for the pulse damping.

1. Surface area

In the case of two long cylinders (i.e. L >> R) in
contact along a common generatrix, the contact area is a
rectangle. The surface area S varies with the compressive
force as [24]:

S =

√
16LR

E∗
F (6)

with E∗ = πE/(1− ν2).

2. Displacement

The theoretical relationship between F and δ, F =
g(δ), is more complex, and is given approximately, for
the displacement (see [24]) by:

FIG. 12: (Color online) Distance of attenuation of the pulse
given by Eq. (13) for different configurations: (�) F0 = 8N,
F⊥ = 0.15N/grain, (5) F0 = 14N, F⊥ = 0.15N/grain, (©)
F0 = 26N, F⊥ = 0.22N/grain, (/) F0 = 26N, and F⊥ =
0.49N/grain. As predicted by Eq. (13), La increases linearly
with f1,max. The slope is 1/α. It seems to not depend on F0

but decreases when F⊥ increases.

FIG. 13: (Color online) Plot of α as a function of F⊥. We
deduce from these experiments that: α = µF⊥, which is ana-
log to the Coulomb law of solid friction. The fit (dashed line)
gives µ = 0.28.

δ =
2F

LE∗

[
ln(

4RLE∗

F
)− 1

]
= g−1(F ) (7)

Of course, this law holds for ideal cylinders.
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3. Wave velocity

Thus, the system of cylinders maintained into contact
by a static compressive load can be viewed as chain of
masses M = ρπR2L and nonlinear springs obeying Eq.
7. We note un the displacement of the mass n compared
to its equilibrium position. The dynamics of this system
is then described by the set of equations:

Mün = g(δ0 − un + un−1)− g(δ0 − un+1 + un) (8)

δ0 is the displacement of the centroid due to the static
force F0 and depends on F0 according to Eq. 7 (with
δ = δ0 and F = F0).

In the linear regime |un−un−1| � δ0, the system (Eq.
8) can be linearized and reads therefore as:

Mün = k (un+1 + un−1 − 2un) (9)

where k represent the stiffness of each contact:

k−1(F0) =
2

LE∗

[
ln

(
4RLE∗

F0

)
− 2

]
. (10)

The wave equation is linear in this regime but leads
to a wave velocity V which depends nonlinearly on the
confining force and which reads as:

V = 2R

√
k(F0)

M
(11)

Note moreover that both the Hertz law and Eq. 7
proceed from the equilibrium solutions of the elasticity
equations. Therefore, the analogy with mass and spring
systems (as exemplified in Eq. 8 or in Ref. [1]) relies im-
plicitly on the hypothesis that the sound celerity through
the material constituting the spheres or the cylinders is
very large compared to the pulse velocity through the
array.

4. Dissipation

The linear decay shown in Fig. 11 is consistent with
the following equation:

fn,max = −α(F0,F⊥)(n− 1) + f1,max (12)

We attribute this linear decay of the pulse amplitude
with distance to the solid friction with the cell walls.

From Eq. 12, we deduce the attenuation length La
(expressed in grain diameter unit):

La =
f1,max
α(F0,F⊥)

(13)

On the other hand, it can be deduced from our mea-
surements (see Fig. 13) that

α = µF⊥. (14)

This relation corresponds to the law of Coulomb for
the dry friction. A linear fit gives µ = 0.28. This value
compares well to the measured coefficient of friction
obtained from the onset of sliding of a grain deposited
on an inclined plane made of the confining cell material.
Thus, we conclude that the main process of dissipation
originates in the friction between the cylinders and the
slot frame. Such a dissipation mechanism has been
highlighted for high amplitude wave propagation in a
1D bead chain by Job et al [25]. In that case the normal
force was constant and only due to the grain weight.

Nevertheless, it is worth noting that the attenuation
length La does not exactly tends to zero as the pulse
amplitude f1,max tends to zero (see Fig. 12). It means
that there are another sources of damping acting in par-
allel, but less efficient than the dry friction. This second
source of dissipation likely originates from the polymer
viscoelestic properties.

B. Discussion

The experimental data displayed in Fig. 6 show that
the wave velocity V exhibits two different regimes as the
static confining force F0 is varied. These two different

regime can be fitted with a power law: V ∝ F β0 , with

β ≈
{

1/4 if F0 < Fc
1/9 if F0 > Fc.

The cross-over between these two regimes is found
for Fc ≈ 20 N. In the case of smoother surfaces, the
exponent above the critical force is close to 1/11 instead
of 1/9, which is closer to the expected theory for ideal
cylinders.

For F0 > Fc, the experimental result closely meets the
prediction expected from the spring-mass model, with
a stiffness consistent with the logarithmic contact law
suited for cylinders (Eq. 10).

On the other hand, for F0 < Fc, the dependence of the
velocity with the static force is significantly larger than
expected from Eq. 7. It results from the fact that, due
to micro- and macroscale surface defects, the effective
area of contact varies more strongly than expected with
the compressive force. Interestingly, we notice a value
for the exponent β ≈ 1/4 which compares well with that
reported for 1D, 2D and 3D packings of spheres ([4], [13],
[20], [21]). The exponent seems to be non-significantly
sensitive to the packing dimensionality and to the shape
of bodies in contact.
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In the case of spheres packings, several hypotheses
have been advanced to explain the deviation to the
V ∝ F 1/6 behavior expected from the Hertz law. Never-
theless, for the linear array studied here, the possibility
of contact recruitment (which is a 2D or 3D effect)
[26] must certainly be discarded. On the other hand,
the hypothesis raised by Goddard [23] which involves
the possible role played by the microscopical surface
roughness must certainly be retained. For sufficiently
low static force, the contact stiffness is prominently
governed by the deformation of asperities, and, e.g.,
conical asperities would precisely lead to an exponent
β = 1/4.

In order to investigate the origin of the exponent β

in the law V ∝ F β0 , we have conducted measurements
with two families of cylinders, with two different qualities
of surface polishing. These measurements led to close
results, except at high forces where an exponent β = 1/9
is found for rough surfaces, and β = 1/11 for smoother
surfaces. The last value corresponds very closely to that
expected for an array of ideal cylinders.

As shown in Fig. 9, the area of contact between two
neighboring cylinders (shown as bright areas in the pic-
ture), is not always a rectangle, depending on the quality
of the grain surfaces. A explanation for this feature can
be that ylinders are compressed along their revolution
axis while machined — so that, once freed of the ma-
chine, they dilate along the symmetry axis and, in turn,
the radius at mid-height undergoes a contraction. This
mechanism would thus implies a varying radius along the
revolution axis. It might also be envisaged that the axes
of the cylinders in contact are not perfectly parallel, but
images of the contacts show that this is not the case.
We observe that when the confining force F0 is increased
up to Fc ≈ 20 N, the contact areas become closer to
rectangles and that, in parallel, the theoretical behavior
expected for a perfectly- aligned array of ideal cylinders
is recovered . Our main conclusion is that imperfection in
the perfect cylinder contact, both at micro- and macro-
scales leads to an exponent β = 1/4 at low forces, and
the ideal cylinder case is recovered for high forces.

V. CONCLUSION

We have studied the elastic wave propagation in a 1D-
chain of polymeric cylinders. By means of photoelasticity
and ultra-high speed visualization, we succeeded in hav-

ing a real time access to the local state of stress of indi-
vidual grains during the passing of an acoustic pulse. We
have measured in parallel the variation in the geometry
of the contact between neighboring grains as the static
confining force F0 is varied. In the linear regime of prop-
agation, and for pulse widths of the order of six or seven
grain sizes, we determined that the pulse velocity varies

approximatively as a power law V ∝ F β0 (with β = 1/4)
of the static confining force F0, provided that the static
force F0 is smaller than Fc ≈ 20 N. Surprisingly, the
exponent β = 1/4 compares with that found for pack-
ings of spherical grains, and deviates from the theoreti-
cal prediction suited for perfect arrays of equal cylinders.
Experiments conducted with polished cylinders, or with
cylinders of various roughness, lead to small changes at
intermediate forces.

In the limit of the large confining forces (F0 >> Fc),
the relation between the pulse velocity and the confining
force meets the theoretical prediction. A close look at
the contact scale shows that the rectangular geometry of
the contact, predicted for perfect cylinders, is recovered
in this limit. On the other hand, the geometry of the
contact area can deviates significantly from a rectangle
for small confining forces.

The effects of a double power law for the contact on
nonlinear waves propagation have been studied in [28]
and [29]. In these references, the two behaviors come
from the special geometry of the objects placed in the
chain. In our study we also have a double power law, but
due to a multiscale roughness. Another difference is the
fact that the nonlinearity decreases with the force.

We have also studied the damping of the compressive
pulse as it propagates through the array. We have first
shown that the maximum amplitude fn,max decreases lin-
early with the covered distance. We have also shown that
the damping distance is a linear function of the normal
load. These two features prove that the main source of
dissipation originates in the solid friction with the cell
walls. The experimental value of the friction coefficient
corresponding to the wave damping matches well with
that determined by measuring the onset of sliding of a
grain deposited on an inclined wall surface.

Acknowledgments

We would like to thank the referees for their fruitful
comments and suggestions on this paper.

[1] V.F. Nesterenko, J. Appl. Mech. Tech. Phys. 24, pp. 567-
575 (1983)

[2] C.H. Liu and S.R. Nagel, Phys. Rev. Lett. 68, pp. 2301-
2304 (1992)

[3] C. Coste, E. Falcon and S. Fauve, Phys. Rev. E 56, pp.
6104- 6117 (1997).

[4] X. Jia, C. Caroli and B. Velicky, Phys. Rev. Lett., 82,
pp. 1863-1866 (1999)

[5] X. Jia, Phys. Rev. Lett. 93, pp. 154303 (2004)
[6] V. Tournat, V.E. Gusev, and B. Castagnède, Phys. Rev.
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