

Magnetic Linear Birefringence Measurements Using Pulsed Fields

Paul Berceau, Mathilde Hugbart, Rémy Battesti, Carlo Rizzo

▶ To cite this version:

Paul Berceau, Mathilde Hugbart, Rémy Battesti, Carlo Rizzo. Magnetic Linear Birefringence Measurements Using Pulsed Fields. 2011. hal-00625664v1

HAL Id: hal-00625664 https://hal.science/hal-00625664v1

Preprint submitted on 22 Sep 2011 (v1), last revised 28 Nov 2011 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Magnetic Linear Birefringence Measurements Using Pulsed Fields

P. Berceau¹, M. Fouché^{1,2,3}, R. Battesti¹, and C. Rizzo^{1*}

¹Laboratoire National des Champs Magnétiques Intenses,

(UPR 3228, CNRS-UPS-UJF-INSA),

31400 Toulouse, France.

²Université de Toulouse, UPS,

Laboratoire Collisions Agrégats Réactivité,

IRSAMC, F-31062 Toulouse, France.

³CNRS, UMR 5589, F-31062 Toulouse, France.

(Dated: September 22, 2011)

In this paper we present the accomplishment of the further step towards the vacuum magnetic birefringence measurement based on pulsed fields. After describing our BMV experiment, we report the calibration of our apparatus with nitrogen gas and we discuss the precision of our measurement giving a detailed error budget. Our best present vacuum sensitivity is $2.1 \times 10^{-19} \, \mathrm{T}^{-2}$ per 5 ms magnetic pulse. We finally discuss the perspectives to reach our final goal.

I. INTRODUCTION

Experiments on the propagation of light in a transverse magnetic field date from the beginning of the 20th century. In 1901 Kerr [1] and in 1902 Majorana [2] discovered that a linearly polarized light, propagating in a medium in the presence of a transverse magnetic field, acquires an ellipticity. In the following years, this linear magnetic birefringence has been studied in details by Cotton and Mouton [3] and it is known nowadays as the Cotton-Mouton effect. It corresponds to the polarization dependance of the velocity of light propagating in the presence of a transverse magnetic field B. The index of refraction n_{\parallel} for light polarized parallel to the magnetic field is different from the index of refraction n_{\perp} for light polarized perpendicular to the magnetic field. For symmetry reasons, the difference between n_{\parallel} and n_{\perp} is proportional to B^2 . Thus, an incident linearly polarized light exits from the magnetic field region elliptically polarized. For a uniform B over an optical path L, the ellipticity is given by:

$$\Psi = \pi \frac{L}{\lambda} \Delta n B^2 \sin 2\theta, \tag{1}$$

where λ is the wavelength of light in vacuum, Δn is the difference between n_{\parallel} and n_{\perp} at $B=1\,\mathrm{T}$ and θ is the angle between light polarization and magnetic field.

Cotton-Mouton effect exists in any medium and quantum electrodynamics predicts that magnetic linear bire-fringence exists also in vacuum. It has been shown around 1970 [7, 8] thanks to the effective Lagrangian established in 1935 and 1936 by Kochel, Euler and Heisenberg [4, 5]. At the lower orders in α , the fine structure constant, Δn can be written as:

$$\Delta n = \frac{2}{15} \frac{\alpha^2 \hbar^3}{m_{\rm e}^4 c^5 \mu_0} \left(1 + \frac{25}{4\pi} \alpha \right) [T^{-2}], \tag{2}$$

where \hbar is the Planck constant over 2π , $m_{\rm e}$ is the electron mass, c is the speed of light in vacuum, and μ_0 is the magnetic constant. The α^2 term is given in Ref. [7]. The α^3 term has been first reported in Ref. [9] and it corresponds to the lower order radiative correction to the main term. Its value is about 1.5% of the first order term. Using the 2010 CODATA recommended values for the fundamental constants [14], Eq. (2) gives $\Delta n = (4.031699 \pm 0.000002) \times 10^{-24} [{\rm T}^{-2}]$.

As we see, the error due to the knowledge of fundamental constants is negligible compared with the error coming from the fact that only first order QED radiative correction has been calculated. QED α^4 radiative correction should affect the fourth digit and the QED α^5 radiative correction the sixth digit. Thus, a measurement of Δn up to a precision of a few ppm remains a pure QED test.

Experimentally, measurement of Cotton-Mouton effect is usually very challenging especially in dilute matter, thus all the more in vacuum. Several groups attempted to observe and measure vacuum magnetic birefringence [12, 13], but this very fundamental prediction has not been experimentally confirmed yet.

Gas measurements date back to 1938 [6] and the first systematic work of Buckingham et al. was published in 1967 [10]. Investigations concerned benzene, hydrogen, nitrogen, nitrogen monoxide and oxygen at high pressures, and ethane. Since 1967, many more papers concerning the effect in gases have been published and Cotton-Mouton effect experiments have been employed as sensitive probes of the electromagnetic properties of molecules [6].

The measurement of Cotton-Mouton effect in gases is not only important to test the quantum chemistry predictions. It is a crucial test for any apparatus which are devoted to the search for vacuum magnetic birefringence. Gas measurement is a milestone in the search for improving the sensitivity of such an apparatus. Typically measurements of nitrogen gas linear magnetic birefringence are used to calibrate it [12, 13, 15].

In the following we present magnetic linear birefrin-

^{*}Electronic address: carlo.rizzo@lncmi.cnrs.fr

gence measurements performed in the framework of the BMV project. It is based on the use of strong pulsed magnetic fields, which is a novelty as far as linear magnetic birefringence is concerned, and on a very sharp Fabry-Perot cavity to increase the effect to be measured by trapping the light in the magnetic field region. The use of pulsed fields for such a kind of measurements has been first proposed in Ref. [11]. In principle, pulsed magnetic fields can be as high as several tens of Tesla, which increases the signal, and they are rapidly modulated which increases the signal to noise ratio. Both advantages are supposed to compensate the loss of duty cycle since only few pulses per hour are possible. A feasibility study, which discusses most of the technical issues related to the use of pulsed fields coupled to precision optics for magnetic linear birefringence measurements, can be found in Ref. [17].

In this paper we present the accomplishment of the further step towards the vacuum magnetic birefringence measurement based on pulsed fields. After describing our BMV experiment, we report the calibration of our apparatus with nitrogen gas and we discuss the precision of our measurement giving a detailed error budget. Finally present vacuum sensitivity is reported and we discuss the perspectives to reach our final goal.

II. EXPERIMENTAL SETUP AND SIGNAL ANALYSIS

A. Apparatus

The BMV experiment is detailed in Ref. [17]. Briefly, as shown on Fig. 1, 30 mW of a linearly polarized Nd: Yag laser beam ($\lambda=1064\,\mathrm{nm}$) is injected into a Fabry-Perot cavity made of mirrors M_1 and M_2 . The laser frequency is locked to the cavity resonance frequency using the Pound-Drever-Hall method [18]. To this end, the laser is phase-modulated at 10 MHz with an electro-optic modulator (EOM). The beam reflected by the cavity is then analyzed on the photodiode Ph_r . This signal is used to drive the acousto-optic modulator (AOM) frequency for a fast control and the Peltier element of the laser for a slow control.

Our birefringence measurement is based on an ellipticity measurement. Light is polarized just before going into the cavity by the polarizer P. The beam transmitted by the cavity is then analyzed by the analyzer A crossed at maximum extinction and collected by a low noise photodiode Ph_e (intensity of the extraordinary beam I_e). The analyzer also has an escape window which allows us to extract the ordinary beam (intensity I_t) which corresponds to the polarization parallel to P. This beam is collected by the photodiode Ph_t .

All the optical components from the polarizer P to the analyzer A are placed in a ultra high vacuum chamber. In order to perform birefringence measurement on high purity gases, the vacuum chamber is connected to several

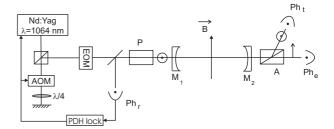


FIG. 1: Experimental setup. A Nd-YAG laser is frequency locked to the Fabry-Perot cavity made of mirrors M_1 and M_2 . The laser beam is linearly polarized by the polarizer P and analyzed with the polarizer A. This analyzer allows to extract the extraordinary beam sent on photodiode Ph_{e} as well as the ordinary beam sent on photodiode Ph_{t} . The beam reflected by the cavity analyzed on the photodiode Ph_{r} is used for the cavity locking. A transverse magnetic field B can be applied inside the cavity in order to study the magnetic birefringence of the medium. EOM = electro-optic modulator; AOM = acousto-optic modulator, PDH = Pound-Drever-Hall.

gas bottles through leak valves which allow to precisely control the amount of injected gas. Finally, since the goal of the experiment is to measure magnetic birefringence, magnets surround the vacuum pipe. The transverse magnetic field is created thanks to pulsed coils described in Ref. [16] and briefly detailed in the next section.

Both signals collected by the photodiodes outside the cavity are simultaneously used in the data analysis as following:

$$\frac{I_{\rm e}}{I_{\rm t}} = \sigma^2 + \Psi_{\rm tot}^2,\tag{3}$$

where $\Psi_{\rm tot}$ is the total ellipticity acquired by the beam going from P to A and σ^2 is the polarizer extinction ratio. Our polarizers are Glan Laser Prism which have an extinction ratio of 2×10^{-7} .

The origin of the total ellipticity cavity is firstly due to the intrinsic birefringence of optics placed between P and A, in other words of mirrors M_1 and M_2 . We define the ellipticity induced on the linearly polarized laser beam when light passes trough each mirror substrate as $\Gamma_{\rm s1,2}$, and the one induced by the Fabry-Perot cavity when light is reflected by the mirrors as $\Gamma_{\rm c}$ and which is due to the reflecting layers. A supplementary component Ψ of the total ellipticity appears when a magnetic birefringent measurement is performed. Since we use pulsed magnetic field, this ellipticity is a function of time.

Finally, if ellipticities are small compared with unity, one gets:

$$\frac{I_{\rm e}(t)}{I_{\rm t}(t)} = \sigma^2 + [\Gamma + \Psi(t)]^2, \tag{4}$$

where $\Gamma = \Gamma_{s1} + \Gamma_{s2} + \Gamma_c$ is the total static birefringence.

B. Magnetic field

It is clear from Eq. (1) that one of the critical parameter for experiments looking for magnetic birefringence is B^2L . Our choice has been to reach a B^2L as high as possible having a B as high as possible with a L such as to set-up a table-top low noise optical experiment. This is fulfilled using pulsed magnets that can provide fields of several tens of Tesla. Our apparatus consists of two magnets, called Xcoils, that have been designed at the LNCMI in Toulouse, which is a laboratory specialized in pulsed magnetic fields. The principle of these magnets and their properties are described in details in Refs. [16, 17].

The magnetic field profile along the longitudinal z-axis, which corresponds to the axis of propagation of the light beam has been measured with a calibrated pick-up coil. The normalized profile is shown on Fig. 2. The magnetic field is not uniform along z. We define $B_{\rm max}$ as the maximum field (at the center of the coil) and L_B as the equivalent length of a magnet producing a uniform magnetic field $B_{\rm max}$ such that:

$$\int_{-\infty}^{+\infty} B^2(z)dz = B_{\text{max}}^2 L_B. \tag{5}$$

 L_B is about the half of the X-coil's length. Xcoils currently used have reached more than 14 T over 0.13 m of effective length corresponding to 25 T²m. The total duration of a pulse is a few milliseconds. The magnetic field reaches its maximum value within 2 ms.

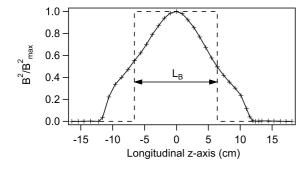


FIG. 2: Normalized profile of the square of the magnetic field along the longitudinal z-axis (solid line). This is compared to the equivalent uniform magnetic field (dashed line) over the effective magnetic length L_B (see text).

The pulsed coils are immersed in a liquid nitrogen cryostat to limit the consequences of heating. A delay between two pulses is necessary to let the magnet cool down to the equilibrium temperature which is monitored via the Xcoils' resistance. Therefore, the maximum repetition rate is set to 5 pulses per hour.

C. Fabry-Perot cavity

The other key point of our experiment is to accumulate the effect due to the magnetic field by trapping the light between two interferometric mirrors constituting a Fabry-Perot cavity. Its length has to be large enough to leave a wide space so as to insert our magnets. Its length is $L_{\rm c}=2.27\,\rm m$ corresponding to a free spectral range of $FSR=c/2nL_{\rm c}=66\,\rm MHz$ with n the index of refraction of the considered medium in which the cavity is immersed. This index of refraction can be considered equal to one. The total acquired ellipticity Ψ is linked to the ellipticity ψ acquired in the absence of cavity, and depends on the cavity finesse F as following [20]:

$$\Psi = \frac{2F}{\pi}\psi,\tag{6}$$

where F is given by:

$$F = \frac{\pi\sqrt{R_{\rm M}}}{1 - R_{\rm M}},\tag{7}$$

with $R_{\rm M}$ the intensity reflection coefficient supposed to be the same for both mirrors. In order to increase the induced signal, a finesse as high as possible is essential.

1. Cavity finesse and transmission

Experimentally, the finesse is inferred from a measurement of the photon lifetime τ inside the cavity as presented on Fig 3. For $t < t_0$, the laser is locked to the cavity. The laser intensity is then switched off at t_0 thanks to the AOM shown on Fig.1 and used as an ultrafast commutator. For $t > t_0$, one sees the typical exponential decay of the intensity of the transmitted ordinary beam [26]:

$$I_{\rm t}(t) = I_{\rm t}(t_0)e^{-(t-t_0)/\tau}.$$
 (8)

The photon lifetime is related to the finesse of the cavity through the relation:

$$\tau = \frac{nL_{\rm c}F}{\pi c},\tag{9}$$

By fitting our data with Eq. (8) we get $\tau = 1.16\,\mathrm{ms}$ corresponding to a finesse of $F = 481\,000$ and a cavity linewidth of $\Delta \nu = c/2nL_{\rm c}F = 137\,\mathrm{Hz}$.

We summarize in Table I the performances of the sharpest known cavities at $\lambda = 1064\,\mathrm{nm}$. As far as we know, nowadays our interferometer is the sharpest in the world.

The transmission of the cavity $T_{\rm c}$ is another important parameter. It corresponds to the intensity transmitted by the cavity divided by the intensity incident on the cavity when the laser frequency is locked. Indeed in order not to be limited by the noise of photodiodes ${\rm Ph_t}$ and ${\rm Ph_e}$,

Interferometer	Ref.	$L_{\rm c}({ m m})$	FSR(kHz)	F	$\tau(\mu s)$	$\Delta \nu({\rm Hz})$	\overline{Q}
VIRGO	[28]	3000	50	50	160	1000	2.8×10^{11}
TAMA300	[29]	300	500	500	160	1000	2.8×10^{11}
PVLAS	[13]	6.4	23 400	70000	475	335	8.4×10^{11}
LIGO	[27]	4000	37	230	975	163	17×10^{11}
BMV	this work	2.27	66 000	481000	1160	137	21×10^{11}

TABLE I: Performances summary of the sharpest infra-red interferometers around the world. L_c is the length of the Fabry-Perot cavity, FSR is its full spectral range, F is the cavity finesse, τ is the photon lifetime, $\Delta\nu$ is the frequency linewidth and $Q = \nu_{laser}/\Delta\nu$ is the quality factor of the interferometer, with ν_{laser} the laser frequency.

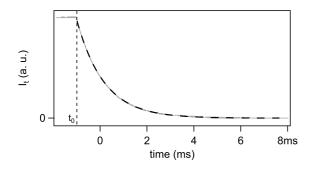


FIG. 3: Time evolution of the intensity of the ordinary beam (gray line). The laser is switched off at $t = t_0$. Experimental data are fitted by an exponential decay (black dashed line) giving a photon lifetime of $\tau = 1.16 \,\mathrm{ms}$, a finesse of $F\,=\,481\,000$ and a linewidth of $\Delta\nu\,=\,c/2nL_{\rm c}F=137\,{\rm Hz}.$

 $I_{\rm t}$ and $I_{\rm e}$ have to be sufficiently high. This point is particularly critical for $I_{\rm e}$ which corresponds to the intensity transmitted by the cavity multiplied by σ^2 . With a Ph_e noise equivalent power of $11 \, \text{fW} / \sqrt{\text{Hz}}$, we need an incident power greater than 0.2 nW so as not to be limited by electronic noise of Ph_e.

Our cavity transmission is 20 \%. The measurements of the finesse and the transmission allow to calculate mirrors properties such as their intensity transmission $T_{\rm M}$ and their losses $P_{\rm M}$ thanks to the following relations:

$$F = \frac{\pi}{T_{\rm M} + P_{\rm M}},\tag{10}$$

$$F = \frac{\pi}{T_{\rm M} + P_{\rm M}}, \qquad (10)$$

$$T_{\rm c} = \left(\frac{T_{\rm M}F}{\pi}\right)^2, \qquad (11)$$

supposing that both mirrors are identical. We found $T_{\rm M}=3\,{\rm ppm}$ and $P_{\rm M}=3.5\,{\rm ppm}$, which correspond to the specifications provided by the manufacturer.

To conclude, our high finesse cavity enhances the effect of a factor $2F/\pi=306\,000$, and its transmission allows measurements not limited by the noise of the detection photodiodes.

Cavity birefringence

The origin of the total static ellipticity is due to the mirror intrinsic phase retardation. Mirrors are similar to wave plates and for small birefringence, combination of both wave plates gives a single wave plate. The phase retardation and the axis orientation of this equivalent wave plate depend on the birefringence of each mirror and on their respective orientation [19, 20].

Attempt to measure weak quantity such as the vacuum magnetic birefringence implies that the mirror intrinsic phase retardation is a source of noise limiting the sensitivity of the apparatus. Moreover, since our signal detection corresponds to a homodyne technique, the static ellipticity Γ is used as a D.C. carrier. To reach a shot noise limited sensitivity, one needs Γ to be as small as possible [17], implying that the phase retardation axis of both mirrors have to be aligned. For magnetic birefringence measurements, both mirrors orientation is adjusted in order to have $10^{-3} < \Gamma < 3 \times 10^{-3}$ rad.

Measurement of the total ellipticity as a function of mirror orientation allows to calculate the mirror intrinsic phase retardation per reflexion. The experimental procedure is presented in Ref. [25]. The deduced phase retardation for our mirrors is $\delta_{\rm M} = (7\pm6)\times10^{-7}\,{\rm rad}$. This value confirms that for interferential mirrors, phase retardation per reflection decreases when its reflectivity increases as stated in Ref. [25]. It is also in agreement with the theoretical trend given in Ref. [25], obtained supposing that only the layers close to the substrate are birefringent.

As said before, mirror birefringence has two contributions: one comes from the substrate while the other is due to the reflecting layers. Whereas previous measurement does not allow to distinguish between both contributions, we will see that it can be achieved with the measurement of $I_{\rm e}$ decay.

A typical time evolution of $I_{\rm e}$ when the incident beam locked to the cavity is switched off is shown on Fig.4. We see that this curve can not be fitted by an exponential decay. As explained in Ref. [24], one has to take into account the intrinsic birefringence of the cavity. Nevertheless, the expression derived in Ref. [24], which only takes into account the reflecting layers birefringence, does not fit always our data. The evolution of $I_{\rm e}$ presents sometimes an unexpected behavior: whereas no photon enters anymore into the cavity at $t = t_0$, the extraordinary intensity starts growing before decreasing. To reproduce this behavior, one has to take into account the substrate birefringence.

Lets calculate the transmitted intensity along the

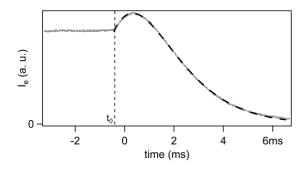


FIG. 4: Time evolution of the intensity of the extraordinary beam (gray line). The laser is switched off at $t = t_0$. Experimental data are perfectly fitted by Eq. (13) (black dashed line).

round-trip inside the cavity:

• For $t \leq t_0$, the laser is continuously locked to the cavity. According to Eq. (4), the intensities of the ordinary and the extraordinary beams are related by:

$$I_{\rm e}(t \le t_0) = [\sigma^2 + (\Gamma_{\rm s2} + \Gamma_{\rm s1} + \Gamma_{\rm c})^2]I_{\rm t}(t \le t_0).$$
 (12)

• At $t = t_0$, the laser beam is abruptly switched off, the cavity empties gradually. The ordinary and extraordinary beams are slightly transmitted at each reflection on the mirrors. But, because these mirrors are birefringent, some photons of the ordinary beam are converted into the extraordinary one. The reverse effect is neglected because $I_{\rm e} \ll I_{\rm t}$.

We then follow the same procedure as in Ref. [24] to calculate the time evolution of I_e . For $t > t_0$, one gets:

$$I_{e}(t) = I_{t}(t) \left(\sigma^{2} + \left[\Gamma_{s1} + \Gamma_{s2} + \Gamma_{c}\left(1 + \frac{t - t_{0}}{2\tau}\right)\right]^{2}\right)$$
(13)

The behavior shown on Fig. 4 is reproduced if $(\Gamma_{s1} + \Gamma_{s2}) \simeq -\Gamma_c$.

This expression is used to fit our experimental data plotted on Fig. 4. We find a photon lifetime of $\tau = 960\,\mu \mathrm{s}$ which is in good agreement when fitting $I_{\rm t}$ [21], $(\Gamma_{\rm s1} + \Gamma_{\rm s2}) = 2 \times 10^{-3}\,\mathrm{rad}$ and $\Gamma_{\rm c} = -7 \times 10^{-3}\,\mathrm{rad}$.

We have for the first time the evidence that the substrate is birefringent and that this birefringence contributes to the total ellipticity due to the cavity.

D. Signal analysis

The starting point of our analysis are the voltage signals $V_{\rm e}$ and $V_{\rm t}$ provided by Ph_e and Ph_t. Voltage signals

have to be converted into intensity signals by using the photodiode conversion factor $g_{\rm e}$ and $g_{\rm t}$:

$$I_{\rm e} = g_{\rm e}V_{\rm e},\tag{14}$$

$$I_{\rm t} = g_{\rm t} V_{\rm t}. \tag{15}$$

As demonstrated in Ref. [24], before analyzing raw signals one has to take into account the first order low pass filtering of the cavity. $I_{t,\text{filtered}}$ in the Fourier space is given by:

$$I_{\rm t,filtered}(\omega) = \frac{1}{1 + i\frac{\omega}{\omega_{\rm t}}} I_{\rm t}(\omega),$$
 (16)

where $\nu_c = \omega_c/2\pi = 1/4\pi\tau$ is the cavity cutoff frequency. Then, according to Eq. (4), the ellipticity $\Psi(t)$ to be measured can be written as:

$$\Psi(t) = -\Gamma + \sqrt{\frac{I_{\rm e}(t)}{I_{\rm t,filtered}(t)} - \sigma^2},$$
 (17)

The total static birefringence Γ is measured a few milliseconds just before the beginning of the magnetic pulse, thus when $\Psi(t) = 0$.

On the other hand, Ψ is proportional to the square of the magnetic field and thus can be written as:

$$\Psi(t) = \kappa B_{\text{filtered}}^2(t). \tag{18}$$

Since the photon lifetime is comparable with the rise time of the magnetic field, the first-order low pass filtering of the cavity has also to be taken into account on the quantity $B^2(t)$ as in Ref. [24]. To recover the value of the constant κ we calculate for each pulse the correlation between $\Psi(t)$ and $B^2_{\text{filtered}}(t)$:

$$\kappa = \frac{\int_0^{T_i} \Psi(t) B(t)_{\text{filtered}}^2 dt}{\int_0^{T_i} [B(t)_{\text{filtered}}^2]^2 dt},\tag{19}$$

where T_i is the integration time. A statistical analysis gives the mean value of κ and its uncertainty.

The magnetic birefringence Δn is finally given by:

$$\Delta n(T, P) = \frac{\kappa}{4\pi \tau FSR} \times \frac{\lambda}{L_B} \times \frac{1}{\sin 2\theta}.$$
 (20)

 Δn is thus expressed in T⁻². T and P correspond to gas temperature and pressure when measurements of magnetic birefringence on gases are performed. We define the normalized birefringence $\Delta n_{\rm u}$ as Δn for P=1 atm and B=1 T.

III. EXPERIMENTAL PARAMETERS AND ERROR BUDGET

In the following, to evaluate the precision of our apparatus in the present version, we list the uncertainties at 1σ on the measurement of the parameters of Eq. (20) as

recommended in Ref. [22]. The uncertainty on the birefringence has two origins. The evaluation of the uncertainty by a statistical analysis of series of observations is termed a type A evaluation and mainly concerns the measurement of τ and κ . An evaluation by means other than the statistical analysis of series of observations, calibrations for instance, is termed a type B evaluation and especially affects the parameters B, FSR, L_B , λ and θ .

A. Photon lifetime in the Fabry-Perot Cavity

The photon lifetime τ is measured before each data acquisition by analyzing the exponential decay of the intensity of the transmitted light. The uncertainty on the value of τ comes from the fact that mirrors can slightly move because of thermal fluctuations and acoustic vibrations. A statistical study leads to a relative variation of τ that does not exceed 2%. We also checked that a magnetic field pulse does not change the value of τ more than this statistical error.

B. Correlation factor

The correlation factor κ is given by Eq. (19). The Atype uncertainty on κ is given by the statistical analysis of the correlation factor obtained with several pulses of magnetic field in similar experimental conditions. This uncertainty depends on the measurement of Ψ and thus on the experimental parameters given in Eq. (17).

B-type uncertainties depends on those of the square of the magnetic field, the photodiode conversion factors, and the filter function applied on the field.

To measure the magnetic field during operation, we measure the current which is injected in our X-coil. As mentioned in Ref. [16], the form factor B/I has been determined experimentally during test phase by varying the current inside the X-coil (modulated at room temperature or pulsed at liquid nitrogen temperature), and by measuring the magnetic field induced on a calibrated pick-up coil. These measurements have led to a relative B-type uncertainty of $\delta B/B = 0.7\%$ for the magnetic field corresponding to a systematic uncertainty on κ of 1.4%.

The ratio $g_{\rm e}/g_{\rm t}$ is experimentally measured time to time by sending the same light intensities on each photodiode. The relative uncertainty on this parameter is 1.5% corresponding to the same amount relative uncertainty on κ .

 $I_{\rm t}({\rm t})$ and $B^2({\rm t})$ are also filtered by a function that involves the parameter τ . We have empirically determined that a τ -variation of 2% led to a κ -variation of 0.8%.

We can finally add quadratically the errors above, and deduce that a B-type uncertainty of 2.2% must be taken into account on every measurement of the correlation factor κ .

C. Frequency splitting between perpendicular polarizations

In this section we evaluate the attenuation of the extraordinary beam transmitted by our sharp resonant Fabry-Perot cavity on which the laser's ordinary beam is frequency-locked. Lets suppose that the ordinary (resp. extraordinary) beam resonates in the interferometer at the frequency $\nu_{\rm t}$ (resp. $\nu_{\rm e}$). The laser is locked to the cavity thanks to the ordinary beam. Thus $\nu_{\rm t}$ corresponds to the top of the transmission Airy function A of the Fabry-Perot cavity which is given by:

$$A(\nu) = \frac{T_{\rm c}}{1 + \frac{4F^2}{\pi^2} \sin^2\left(\frac{2\pi n L_{\rm c}}{c}\nu\right)}.$$
 (21)

The frequency $\nu_{\rm e}$ is shifted from $\nu_{\rm t}$ by a quantity $\delta\nu$ as it is shown on Fig. 5.

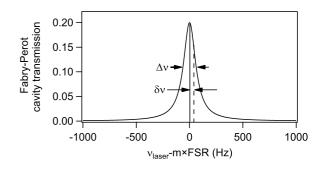


FIG. 5: Airy function of our Fabry-Perot cavity (linewidth $\Delta\nu=137$ Hz and transmission $T_{\rm c}=20\,\%$). The frequency of the ordinary beam is assumed to be locked at the top of the transmission function (solid line) while he frequency $\nu_{\rm e}$ of the extraordinary beam is shifted from $\nu_{\rm t}$ of a quantity $\delta\nu$ (dashed line).

The frequency splitting $\delta \nu = \nu_t - \nu_e$ can be expressed as a function of the phase retardation δ acquired along a round-trip between the ordinary and the extraordinary beams:

$$\delta\nu = \frac{c}{2\pi n L_{c}} \delta,$$

$$= \frac{F\Delta\nu}{\pi} \delta.$$
 (22)

This formula indicates that in order to have a splitting very small compared to the cavity linewidth ($\delta\nu\ll\Delta\nu$), the phase retardation δ must satisfy the following condition:

$$\delta \ll \frac{\pi}{F},\tag{23}$$

which is equivalent to the condition on the acquired total ellipticity Ψ :

$$\Psi \ll 1. \tag{24}$$

By combining Eqs. (21) and (22), we obtain the factor of attenuation a of the transmitted extraordinary beam's intensity given by:

$$a = \frac{A(\nu_{e})}{A(\nu_{t})},$$

$$= \frac{1}{1 + \frac{4F^{2}}{\pi^{2}}\sin^{2}\left(\frac{2\pi nL_{c}}{c}\delta\nu\right)},$$

$$= \frac{1}{1 + \frac{4F^{2}}{\pi^{2}}\sin^{2}\left(\delta\right)}.$$
(25)

The attenuation factor a is plotted as a function of δ on Fig. 6 for a finesse $F=481\,000$. The real intensity $I_{\rm e}$ of the extraordinary beam transmitted by the cavity is obtained from the corrected measured intensity $I_{\rm e}^{\rm meas}$ as $I_{\rm e}=I_{\rm e}^{\rm meas}/a$.

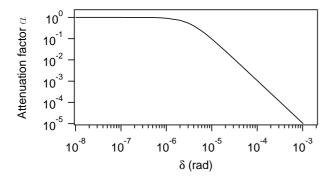


FIG. 6: Attenuation factor a as a function of the phase retardation δ between both polarizations.

The frequency splitting can first be due to our bire-fringent cavity. As in Ref. [20], lets consider both cavity mirrors equivalent to a single wave-plate with phase retardation $\delta_{\rm w}=\delta$ between both polarizations. The total phase retardation $\delta_{\rm w}$ is linked to the cavity mirrors' M_1 and M_2 own phase retardation δ_1 and δ_2 as [20]:

$$\delta_{\rm w} = \sqrt{(\delta_1 - \delta_2)^2 + 4\delta_1 \delta_2 \cos^2(\theta_{\rm m})}.$$
 (26)

To set a $\delta_{\rm w}$ as small as possible so as to minimize the correction to $I_{\rm e}^{\rm meas}$, one needs to adjust the angle $\theta_{\rm m}$ between the neutral axes of both mirrors. This way, we set a $\delta_{\rm w}$ of the order of a few 10^{-8} rad, corresponding to a correction smaller than $0.001\,\%$ on $I_{\rm e}^{\rm meas}$.

Secondly, the frequency splitting between both polarizations can be due to the induced magnetic birefringence of the medium inside the chamber. As seen above, the induced ellipticity given by Eq. (24) must be well below 1 rad. This condition is always satisfied in the range of pressure and field we are working. The induced ellipticity does not exceed 10^{-2} rad. This corresponds at worst to a phase retardation of $\delta = 10^{-7}$ rad. The attenuation factor $I_{\rm e}^{\rm meas}$ is thus smaller than 0.1 %.

In principle, this attenuation generates an error that has to be taken into account on the measured ratio $I_{\rm e}/I_{\rm t,filtered}$ of Eq. (17), which implies an error on the

value of κ . At present, since the attenuation is smaller than 0.1%, this error can be neglected compared to the others uncertainties on κ .

D. Cavity free spectral range

The dedicated experimental setup for the measurement of the cavity free spectral range $FSR = c/2nL_c$ is shown on Fig. 7. The principle is to inject into the cavity two laser beams shifted one compared with the other by a given frequency. This frequency is then adjusted to coincide with the free spectral range.

Experimentally, the main beam is divided into two parts thanks to a polarizing beamsplitting cube. The first part is directly injected into the cavity while the other one is frequency shifted by the acousto-optic modulator AOM2 with a double-pass configuration before injection. The main beam is frequency modulated with a voltage ramp applied on a piezzo element mounted on the crystal resonator of the laser.

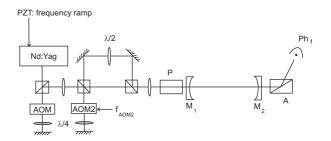


FIG. 7: Experimental setup for the cavity length measurement. Two laser beams frequency shifted one compared with the other by AOM2 are injected into the cavity. The frequency of the laser is frequency modulated with a voltage ramp applied on a piezzo element mounted on the crystal resonator of the laser. Photodiode Ph_t allows to observe the typical Fabry-Perot peaks from which the FSR measurement is performed.

The intensity transmitted by the cavity is observed on Ph_t as shown on Fig. 8. The solid line corresponds to the intensity of the first beam. We observe typical Fabry-Perot peaks whose frequency gap corresponds to FSR. Peaks due to the second beam (dashed line) are frequency shifted by $2f_{AOM2}$. We finally adjust f_{AOM2} in order to superimpose both series of peaks. The precise knowledge of the driven frequency f_{AOM2} enables us to determine with the same precision the value of the free spectral range, and thus the cavity length.

A typical value is $FSR = (65.996 \pm 0.017) \,\text{MHz}$. This corresponds to a cavity length of $L_c = (2.2713 \pm 0.0006) \,\text{m}$. Since this length can be prone to variation, the FSR value is regularly checked and updated.

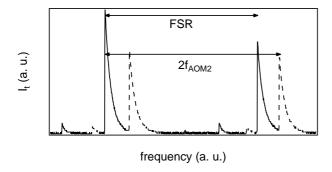


FIG. 8: Transmission peaks of the Fabry-Perot cavity as a function of the laser frequency. Two beams are sent to the interferometer: the second beam (dashed line) is frequency shifted by $2f_{\text{AOM2}}$ compared to the first beam (solid line). The adjustment of f_{AOM2} in order to superimpose both series of peaks allows to precisely measure the free spectral range FSR of the cavity.

E. Effective magnetic length

Following Eq. (5), the effective magnetic length L_B has been calculated by numerically integrating the field measured with a calibrated pick-up coil. Taking into account the experimental errors, we got: $L_B = (0.137 \pm 0.003) \,\mathrm{m}$, corresponding to a relative systematic uncertainty on L_B of 2.2%.

F. Laser wavelength

As mentioned above, infra-red light enters the cavity. The wavelength of the Nd:YAG laser is $1064 \,\mathrm{nm}$, and its uncertainty is given by the width of the laser transition. In order to be conservative, we use $\lambda = (1064.0 \pm 0.5) \,\mathrm{nm}$.

G. Angle between the incident polarization and the magnetic field direction

The angle between the incident light polarization and the magnetic field direction is adjusted to 45° thanks to magnetic birefringence measurements as a function of the polarizer direction $\theta_{\rm P}$. In order to be more sensitive, this is performed close to the position where the magnetic field is parallel to the polarizer P ($\theta = 0^{\circ}$).

Measurements are realized with about 7×10^{-3} atm of air. The analyzer direction is crossed at maximum extinction each time the polarizer is turned. Fig.9 represents the evolution of the correlation factor κ as a function of θ_P . Data are fitted by a sinusoidal trend $\kappa(\theta_P) = \kappa_0 \sin\left[2(\theta_P - \theta_0)\right]$ giving $\theta_0 = (2.6 \pm 0.2)^\circ$. This measurement allows to set θ to $(45.0 \pm 1.2)^\circ$. The uncertainty is mainly due to the mechanical system which holds and turns the polarizer.

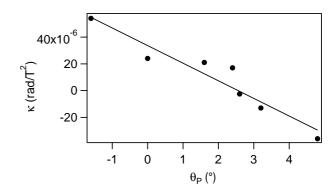


FIG. 9: Correlation factor κ between the square of the magnetic field and the ellipticity as a function of the angle $\theta_{\rm P}$ of the incident polarization.

Parameter	Typical value	Relative B-type uncertainty
κ	$10^{-5} \mathrm{rad} \mathrm{T}^{-2}$	2.2×10^{-2}
FSR	$65.996\mathrm{MHz}$	3×10^{-4}
L_B	$0.137\mathrm{m}$	2.2×10^{-2}
λ	$1064.0\mathrm{nm}$	5×10^{-4}
$\sin 2\theta$	1.0000	9×10^{-4}
	total	3.1×10^{-2}

TABLE II: Parameters that have to be measured to infer the value of the birefringence Δn and their respective relative B-type uncertainty at 1σ .

H. Error budget

We summarize in the Table II the typical values of the experimental parameters that have to be measured and their B-type associated uncertainty. These uncertainties are quadratically added to give a B-type relative uncertainty on the birefringence Δn of 3.1%.

I. Temperature and pressure of gases

Gas magnetic birefringence measurements are performed at room temperature $T=293\,\mathrm{K}$. The experimental room is air-conditioned. A flow of compressed air between the outer wall of the vacuum pipe and the liquid nitrogen cryostat containing the magnet keeps the room temperature in the vacuum chamber.

A temperature profile has been realized on the length of the vacuum pipe, and is plotted on Fig.10. The temperature variation does not exceed 1 K inside the tube that passes through the magnetic field. Concerning gases, we consider that our birefringence measurements are given at $(293\pm1)\,\mathrm{K}$.

The pressure of the gas inside the chamber is measured at each side of the vacuum pipe getting into magnets with Ceravac 0-100 Torr Capacitance Diaphragm Gauge transmitter. The relative error provided by the manufac-

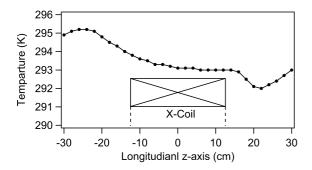


FIG. 10: Profile of the temperature inside the vacuum pipe along the longitudinal z-axis. The X-coil is also schematized at the center. The temperature variation does not exceed 1 K inside the tube that runs through it.

turer is 0.2%.

IV. MAGNETIC BIREFRINGENCE MEASUREMENTS

A. Raw signals

Fig. 11 presents signals obtained with 32.1×10^{-3} atm of molecular nitrogen. The intensity of the ordinary beam $I_{\rm t}$ (top) remains constant while the intensity of the extraordinary beam $I_{\rm e}$ (middle) varies when the magnetic field (bottom) is applied. The magnetic field reaches its maximum of 5.2 T within less than 2 ms. The laser beam remains locked to the Fabry-Perot cavity, despite of the acoustic and mechanical vibrations caused by the shot of magnetic field. We see that the minimum of $I_{\rm e}$ does not coincide with the maximum of B^2 . This phenomenon is due to the cavity filtering as explained in details in Ref. [24].

On Fig. 12, we plot the square of the magnetic field filtered by the cavity and the ellipticity calculated with Eq. (17) as a function of time. We note that both quantities reach their extremum at the same time and their variation can be perfectly superimposed, providing a very precise measurement of magnetic linear birefringence of nitrogen gas.

B. Apparatus calibration

In order to calibrate our apparatus and to evaluate its present sensitivity we have measured the magnetic birefringence of molecular nitrogen. These measurements have been performed at different pressure from 21×10^{-3} to 32.1×10^{-3} atm. In this range, nitrogen can be considered as an ideal gas and the pressure dependence of its birefringence is thus linear:

$$\Delta n(\mathbf{T}^{-2}) = \Delta n_{\mathbf{u}}(\mathbf{atm}^{-1}\mathbf{T}^{-2}) \times P(\mathbf{atm}), \qquad (27)$$

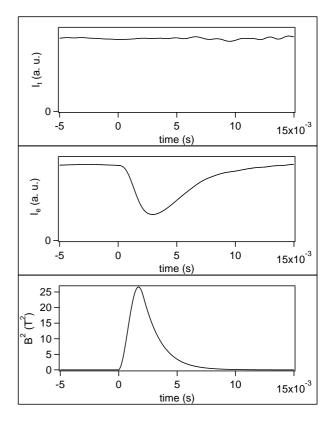


FIG. 11: Cotton-Mouton effect measurement on 32.1×10^{-3} atm of molecular nitrogen. (top) Intensity of the ordinary beam as a function of time. (middle) Intensity of the extraordinary beam as a function of time. (bottom) Square of the magnetic field as a function of time.

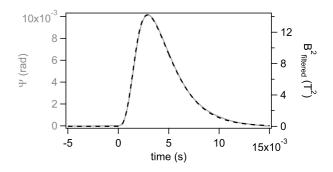


FIG. 12: Cotton-Mouton effect measurement on 32.1×10^{-3} atm of molecular nitrogen. Gray line: Total ellipticity as a function of time. Dashed line: Square of the magnetic field filtered by a first-order low pass filter corresponding to the cavity filtering.

We have checked that our data are correctly fitted by a linear equation. Its Δn axis-intercept is consistent with zero within the errors. Its slope gives the normalized magnetic birefringence at $B=1\,\mathrm{T}$ and $P=1\,\mathrm{atm}$ which can be given as:

$$\Delta n_{\rm u} = (-2.00 \pm 0.08 \pm 0.06) \times 10^{-13} \, {\rm atm}^{-1} {\rm T}^{-2},$$

where 0.08 (resp. 0.06)× 10^{-13} atm⁻¹T⁻² represents the A-type (resp. B-type) uncertainty at 1σ .

Our value of the normalized birefringence is compared on Table. III to other experimental published values at $\lambda = 1064\,\mathrm{nm}$ [30, 31]. This shows that our value agrees perfectly well with other existing measurements, and it is at least twice more precise. It therefore provides a successful calibration of the whole apparatus.

Ref.	$\Delta n_{\rm u} \times 10^{-13}$
	(at $P = 1$ atm and $B = 1$ T)
[30]	-2.17 ± 0.21
[31]	$-2.02 \pm 0.16 \pm 0.08$
This work	$-2.00 \pm 0.08 \pm 0.06$

TABLE III: Comparison between our value of the nitrogen normalized magnetic birefringence and other experimental published values at $\lambda = 1064\,\mathrm{nm}$.

C. Sensitivity on vacuum magnetic birefringence measurements

Once the calibration performed we have evaluated our sensitivity in vacuum which is crucial for us since the goal of our experiment is to measure for the first time the vacuum magnetic birefringence. The best sensitivity reached on Δn with a 5 ms-duration pulse is $2.1 \times 10^{-19}\,\mathrm{T}^{-2}$ per pulse.

V. CONCLUSION

The successful calibration we report in this paper is a crucial step towards the measurement of the vacuum

magnetic birefringence, and it shows our capability to couple intense magnetic fields with one of the sharpest Fabry-Perot cavity in the world. The sensitivity per pulse we got both in gases and in vacuum is the best ever reached for this kind of measurement. For sake of comparison, vacuum birefringence reported in Ref. [13], $\Delta n \leq 2.1 \times 10^{-20}$ has been obtained with an integration time of 65 200 s, corresponding to a sensitivity on Δn of 7.6×10^{-17} in 5 ms of integration. This proves that pulsed fields are a powerful tool for magnetic birefringence measurements. Long terms perspectives depend on the possibility to have higher magnetic fields. We have designed a new pulsed coil, called XXL-coil, which has already reached a field higher than 30 T when a current higher than 27000 A is injected. This corresponds to more than $300 \,\mathrm{T^2m}$ [32]. In the near future, the apparatus will be modified in order to host these XXL-coils and therefore the final version of the experiment will be ready for operation.

Acknowledgments

We thank all the members of the BMV collaboration, and in particular J. Béard, J. Billette, P. Frings, J. Mauchain, M. Nardone, L. Recoules and G. Rikken for strong support. We are also indebted to the whole technical staff of LNCMI. We acknowledge the support of the Fondation pour la recherche IXCORE and of the ANR-Programme non thématique (ANR-BLAN06-3-139634).

- [1] J. Kerr, Br. Assoc. rep. 568 (1901).
- [2] Q. Majorana, Rendic. Accad. Lincei 11, 374 (1902); Q. Majorana, Ct. r. hebd. Séanc. Acad. Sci. Paris 135, 159 (1902).
- [3] A. Cotton and H. Mouton, Ct. r. hebd. Séanc. Acad. Sci. Paris 141, 317 (1905); A. Cotton and H. Mouton, Ct. r. hebd. Séanc. Acad. Sci. Paris 142, 203 (1906); A. Cotton and H. Mouton, Ct. r. hebd. Séanc. Acad. Sci. Paris 145, 229 (1907); A. Cotton and H. Mouton, Ann. Chem. Phys. 11, 145 (1907).
- [4] H. Euler and B. Kochel, Naturwiss 23, 246 (1935).
- [5] W. Heisenberg and H. Euler, Z. Phys. 38, 714 (1936).
- [6] C. Rizzo, A. Rizzo and D. M. Bishop, Int. Rev. Phys. Chem. 16, 81 (1997).
- [7] Z. Bialynicka-Birula and I. Bialynicki-Birula, Phys. Rev. D 2, 2341 (1970).
- [8] S. L. Adler, Ann. Phys. (N.Y.) 67, 599 (1971).
- [9] V. I. Ritus, Sov. Phys. JETP **42**, 774 (1975).
- [10] A. D. Buckingham, W. H. Prichard and D. H. Whiffen, Trans. Faraday Soc. 63, 1057 (1967).

- [11] C. Rizzo, Eur. Phys. Lett. **41**, 483 (1998).
- [12] S.-J. Chen, H.-H. Mei and W.-T. Ni, Mod. Phys. Lett. A 22, 2815 (2007).
- [13] E. Zavattini, G. Zavattini, G. Ruoso, G. Raiteri, E. Polacco, E. Milotti, V. Lozza, M. Karuza, U. Gastaldi, G. Di Domenico, F. Della Valle, R. Cimino, S. Carusotto, G. Cantatore and M. Bregant, Phys. Rev. D 77, 032006 (2008).
- [14] http://www.codata.org
- [15] R. Cameron, G. Cantatore, A.C. Melissinos, G. Ruoso, Y. Semertzidis, H.J. Halama, D.M. Lazarus, A.G. Prodell, F. Nezrick, C. Rizzo and E. Zavattini, Phys. Rev. D 47, 3707 (1993).
- [16] S. Batut et al., IEEE Trans. Applied Superconductivity 18, 600 (2008).
- [17] R. Battesti et al., Eur. Phys. J. D 46, 323 (2008).
- [18] R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, Appl. Phys. B 31, 97 (1983).
- [19] D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch and M.

- Oger, Opt. Lett. 20, 671 (1995).
- [20] F. Brandi, F. Della Valle, A.M. De Riva, P. Micossi, F. Perrone, C. Rizzo, G.Ruoso and G. Zavattini, Appl. Phys. B 65, 351 (1997).
- [21] Fig. 4 and Fig. 3 do not correspond to the same run of data and thus can't be directly compared.
- [22] P.J. Mohr and B.N. Taylor, J. Phys. Chem. Ref. Data 28, 1713 (1999).
- [23] A. C. Newell and R. C. Baird, J. Appl. Phys. 36, 3751 (1965).
- [24] P. Berceau, M. Fouché, R. Battesti, F. Bielsa, J. Mauchain and C. Rizzo, Appl. Phys. B 100, 803 (2010).
- [25] F. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard and C. Rizzo, Appl. Phys. B 97, 457 (2009).
- [26] O. Svelto, Principles of lasers (Springer, 4th edition,

- 1998), pp. 167-168
- [27] M. Rakhmanov et al, Class. Quantum Grav. 21, S487 (2004).
- [28] The Virgo Collaboration, Appl. Opt. 46, 3466 (2007).
- [29] G. Heinzel on behalf of the TAMA team, Class. Quantum Grav. 18, 4113 (2001).
- [30] M. Bregant, G. Cantatore, S. Carusotto, R. Cimino, F. Della Valle, G. Di Domenico, U. Gastaldi, M. Karuza, E. Milotti, E. Polacco, G. Ruoso, E. Zavattini, G. Zavattini, Chem. Phys. Lett. 392, 276 (2004).
- [31] H.-H. Mei, W.-T. Ni, S.-J. Chen and S.-S. Pan, Chem. Phys. Lett. 471, 216 (2009).
- [32] http://www.toulouse.lncmi.cnrs.fr/spip.php?rubrique32