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A prismoid framework for languages with resources

Delia Kesnera, Fabien Renauda

aPPS, CNRS and Université Paris-Diderot, France.

Abstract

Inspired by the Multiplicative Exponential fragment of Linear Logic, we define
a framework called the prismoid of resources where each vertex is a lan-
guage which refines the λ-calculus by using a different choice to make explicit
or implicit (meta-level) the definition of the contraction, weakening, and sub-
stitution operations. For all the calculi in the prismoid we show simulation
of β-reduction, confluence, preservation of β-strong normalisation and strong
normalisation for typed terms. Full composition also holds for all the calculi
of the prismoid handling explicit substitutions. The whole development of the
prismoid is done by making the set of resources a parameter of the formalism,
so that all the properties for each vertex are obtained as a particular case of the
general abstract proofs.

1. Introduction

Linear Logic [Gir87] has significantly contributed in many fields of computer
science, particularly because it provides a logical tool to formalise the notion of
control of resources by means of weakening, contraction and dereliction. The
Multiplicative Exponential fragment of Linear Logic, called MELL, is able to
encode Intuitionistic as well as Classical Logic, either by means of sequent trees
or Proof-Nets [Gir87]. MELL Proof-Nets give a succinct representation of proofs
by eliminating irrelevant syntactical details appearing in sequent calculi. The
cut-elimination process of Proof-Nets has been widely studied by means of the
Geometry of Interaction, giving rise to optimal implementations of functional
programming [Lam90, GAL92, DR93, AG98].

Many different [vO01, DG01, DCKP03, KL07, Kes07, FMS05] cut elimina-
tion systems for λ-calculus, known as explicit substitution (ES) calculi, were
explained in terms of, or were inspired by, the fine notion of reduction asso-
ciated to MELL Proof-Nets. All of them integrate special operators for the
control of resources, thus allowing more refined cut-elimination procedures, but
not necessarily the same.
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In this paper we develop an homogeneous framework, called the prismoid
of resources, which provides eight languages – the vertexes of the prismoid –
dedicated to the control of resources for the λ-calculus, together with different
transformation functions – the arrows of the prismoid – between these languages.

More precisely, each vertex of the prismoid is a specialised λ-calculus de-
fined by a set of well-formed terms and a set of axioms and reduction rules as
well. Each calculus is parametrised by a set of sorts wich are of two kinds:
resources w (weakening) and c (contraction), and cut-elimination operation s

(substitution). If a sort in the set {c, s, w} belongs to a given calculus, then
the treatment of the corresponding operations to deal with this sort is com-
pletely explicit in this calculus, i.e. is given by syntax and rules belonging to
the language itself. The eight calculi of the prismoid correspond to 23 different
ways to combine the sorts {c, s, w} by means of explicit (Ex) or implicit (Im)
(meta-level) operations:

Resource c Resource s Resource w
λ∅ Im Im Im
λc Ex Im Im
λs Im Ex Im
λw Im Im Ex
λcs Ex Ex Im
λcw Ex Im Ex
λsw Im Ex Ex
λcsw Ex Ex Ex

Thus for example, the λcs-calculus has only explicit control of contraction
and substitution, the λ-calculus (called here λ∅-calculus), has no explicit control
at all, and the λcsw-calculus – a slight variation of λlxr [KL07] – has explicit
control of everything.

For every subset of sorts B ⊆ {c, s, w}, the corresponding B-calculus of the
prismoid implements λ-calculus in the sense that β-reduction can be simulated
by B-reduction. It is also possible to take off some explicit information from
a given B-calculus in order to project B-reduction into a less refined relation.
More precisely, for every A ⊆ {c, w}, A-reduction (resp. A ∪ s-reduction) is
projected into β-reduction (resp. s-reduction). This asymmetry between lan-
guages with and without sort s are reflected in the prismoid by means of two
conceptually different bases. The base BI contains all the calculi without ex-
plicit substitutions, namely {λ∅, λc, λw, λcw}, and the base BE only contains
those with explicit substitutions, i.e. {λs, λcs, λsw, λcsw}.
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For all the calculi of the prismoid we study a set of properties which guaran-
tee that they are well-behaved, namely, simulation of β-reduction, confluence,
preservation of β-strong normalisation (PSN) and strong normalisation (SN) for
simply typed terms. Thus in particular, none of the calculi suffers from Mellies’
counter-example [Mel95]. Full composition, stating that explicit substitution
is able to implement the underlying notion of higher-order substitution, is also
shown for all calculi with sort s, i.e. those included in the explicit substitution
base. Each property is stated and proved by making the set of sorts a parameter,
so that the properties for each vertex of the prismoid turn out to be a particular
case of some general abstract proof, which may hold for the whole prismoid or
just for only one base.

Related Work: Different calculi with explicit resources were inspired by
MELL Proof-Nets. The calculus in [Kes07] encodes MELL reductions by us-
ing explicit substitutions, while [FMS05] encodes only those that are closed
and uses also director strings technology. The calculus in [vO01] refines β-
reduction by adding only explicit control for weakening and contraction (but
not for linear substitution), while [DCKP03] encodes into MELL Proof-Nets
the λws-calculus [DG01] which refines β-reduction with explicit weakening and
substitution (but not with contraction). The λlxr-calculus [KL07] has explicit
control of everything and a slight variation of it is one of the languages of the
prismoid presented in this paper.

While explicit substitution is usually [ACCL91, KR95, BBLRD96] defined
by means of the propagation of an operator through the structure of terms, the
behaviour of calculi of the prismoid incorporates also a mechanism to decrease
the multiplicity of variables that are affected by substitutions. This notion
is close in spirit to MELL Proof-Nets, and shares common ideas with calculi
acting at a distance [Mil07, dB87, Ned92, SP94, KLN05, Ó Conchúir06, AK10].
However, none of the previous formalisms handles weakening and contraction
as explicit operators.

This paper is an extended and revised version of [KR09].
Road Map: Section 2 introduces syntax and operational semantics of the

prismoid. Section 3 explores how to enrich the λ-calculus by adding more ex-
plicit control of resources, while Section 4 deals with the dual operation which
forgets information given by explicit weakening and contraction. Section 5 is
devoted to PSN and confluence on untyped terms. Finally, typed terms are
introduced in Section 6 together with a SN proof for them. We conclude and
give future directions of work in Section 7.
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2. Terms and Rules of the Prismoid

2.1. Terms

We assume a denumerable set of variable symbols x, y, z, . . .. Lists and sets
of variables are denoted by capital Greek letters Γ,∆,Π, . . .. We write Γ; y for
Γ∪{y} when y /∈ Γ. We use Γ\∆ for set difference and Γ\\ ∆ for obligation
set difference which is equal to set difference when ∆ ⊆ Γ but undefined
otherwise.

Terms are given by the grammar:

t, u ::= x | λx.t | tu | t[x/u] | Wx(t) | C
y|z
x (t)

The terms x, λx.t, tu, t[x/u], Wx(t) and C
y|z
x (t) are respectively called term

variable, abstraction, application, closure, weakening and contraction.
The size of the term t is denoted by size(t). Free and bound variables

of t, respectively written fv(t) and bv(t), are defined as usual: λx.u and u[x/v]

bind x in u, C
y|z
x (u) binds y and z in u, x is free in C

y|z
x (u) and in Wx(t).

We use the following abbreviations: t1t2 . . . tn means ((t1t2) . . .)tn, t[x/v]
means t[x1/v1] . . . [xn/vn] when n is clear from the context. A closure t[x/u] has
independent substitutions [x/u] iff xi ∩ fv(uj) = ∅ for all i, j. For example
the substitutions are independent in x[x/y][x/z], but not in x[x/y][y/z].

Given three lists of distinct variables Γ = x1, . . . , xn, ∆ = y1, . . . , yn and

Π = z1, . . . , zn of the same length, the notations WΓ(t) and C
∆|Π
Γ (t) mean,

respectively, Wx1(. . .Wxn
(t)) and C

y1|z1
x1 (. . . C

yn|zn
xn (t)). These notations will ex-

tend naturally to sets of variables of same size thanks to the equivalence relation

in Figure 2. The particular cases C
∅|∅
∅ (t) and W∅(t) mean simply t.

Given lists Γ = x1, . . . , xn and ∆ = y1, . . . , yn of distinct variables, the
renaming of Γ by ∆ in t, written RΓ

∆(t), is the capture-avoiding simulta-
neous substitution of yi for every free occurrence of xi in t. For example

Rx1x2
y1y2

(C
y|z
x1 (x2yz)) = C

y|z
y1 (y2yz).

Alpha-conversion is the (standard) congruence generated by renaming of

bound variables. For example, λx1.x1C
y1|z1
x (y1z1) ≡α λx2.x2C

y2|z2
x (y2z2). All

the operations defined along the paper are considered modulo alpha-conversion
so that in particular capture of variables is not possible.

The set of positive free variables in a term t, written fv+(t), denotes the
free variables of t which represent a term variable at the end of some (possibly
empty) contraction chain. Formally,

fv+(y) := {y}
fv+(λy.u) := fv+(u) \ {y}
fv+(u v) := fv+(u) ∪ fv+(v)
fv+(Wy(u)) := fv+(u)
fv+(u[y/v]) := (fv+(u) \ {y}) ∪ fv+(v)

fv+(C
z|w
y (u)) := (fv+(u) \ {z, w}) ∪ {y} if z ∈ fv+(u) or w ∈ fv+(u)

fv+(C
z|w
y (u)) := fv+(u) otherwise
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For instance, x is a positive free variable in C
x1|x2
x (Wx1

(y) x2) because there

is a chain from the contraction C
x1|x2
x ( ) to the term variable x2. Moreover, x

is also positive in C
x1|x2
x (C

y|z
x1 (z)) because there is a chain from x to the term

variable z. However x is not positive in C
x1|x2
x (C

x3|x4
x1 (y)) because there is no

chain starting at x and ending on a term variable.
The number of occurrences of the free variable (resp. positive free vari-

able) x in the term t is written |t|x (resp. |t|+x ). We extend this definition to sets

by |t|+Γ = Σx∈Γ|t|
+
x . Thus for example, given t = Wx1

(xx) Wx(y) C
z1|z2
z (z2), we

have x, y, z ∈ fv+(t) with |t|+x = 2, |t|+y = |t|+z = 1 but x1 /∈ fv+(t).
Given a list of distinct variables x1 . . . xn, which are all fresh in t, we write

t[x:=x1...xn], for the capture-avoiding non-deterministic replacement of n ≥
1 positive occurrences of x in t by the variables x1 . . . xn. Thus for example,
(Wx(t) x x)[x:=y1y2] denotes Wx(t) y1 y2 or Wx(t) y2 y1. In the same way,
(Wx(t) x x)[x:=y] denotes either Wx(t) y x or Wx(t) x y, but neither Wy(t) x x
nor Wx(t) y y.

Now, let us consider a set of resources R = {c, w} and a set of sorts
S = R ∪ {s}. For every subset B ⊆ S, we define a calculus λB in the prismoid
of resources which is equipped with a set of well-formed terms, denoted TB
and defined in Section 2.2, together with a reduction relation, denoted →B

and defined in Section 2.3.
Each calculus λB belongs to a base : the explicit substitution baseBE which

contains all the calculi having at least sort s and the implicit substitution base
BI containing all the other calculi.

2.2. Well-Formed terms

A term t belongs to the set of well-formed terms TB iff ∃ Γ s.t. Γ B t is
derivable in the system given by the rules appearing in Figure 1. A term t ∈ TB
is also called a B-term. From now on we only consider well-formed terms.

x B x

Γ B u ∆ B v

Γ ⊎B ∆ B uv

Γ B u

Γ )B x B λx.u

Γ B u
(w ∈ B)

Γ;x B Wx(u)

Γ B v ∆ B u
(s ∈ B)

Γ ⊎B (∆ )B x) B u[x/v]

Γ B u
(c ∈ B)

x; (Γ )B {y, z}) B Cy|z
x (u)

Figure 1: Well-formed terms of the prismoid

In the previous rules, the symbol ; is used to denote disjoint union. Also, ⊎B

means standard union if c /∈ B and disjoint union if c ∈ B. Similarly, Γ )B ∆
is used for Γ \∆ if w /∈ B and for Γ \\ ∆ if w ∈ B.

Notice that variables, applications and abstractions belong to all calculi of
the prismoid while weakening, contraction and substitutions only appear in
calculi having the corresponding sort. If t is a B-term, then w ∈ B implies that
bound variables of t cannot be useless, and c ∈ B implies that no free variable
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of t has more than one free occurrence. Thus for example the term λz.x y
belongs to the calculus λB only if w /∈ B (thus it belongs to λ∅, λc, λs, λcs),
and (xz)[z/yx] belongs to λB only if s ∈ B and c /∈ B (thus it belongs to λs
and λsw). A useful property is that Γ B t implies Γ = fv(t).

We introduce the following measure ox(t) which counts free occurrences of
x in t by taking care of duplications if the variable is contracted. The number
of contracted occurrences of the free variable x in the well-formed term t,
written ox(t), is defined modulo alpha-conversion so that bound variables of t
are assumed to be disjoint from x. Formally,

ox(x) := 1
ox(y) := 0
ox(λy.t) := ox(t)
ox(tu) := ox(t) + ox(u)
ox(t[y/u]) := ox(t) + ox(u)

ox(Wy(t)) :=

{

1
ox(t)

if x = y
if x 6= y

ox(C
y1|y2
y (t)) :=

{

1 + oy1
(t) + oy2

(t)
ox(t)

if x = y
if x 6= y

We extend this definition to sets by oΓ(t) :=
∑

x∈Γ ox(t).
Before introducing the notion of substitution, we need an extra function

which cleans-up useless resources. Indeed, given a B-term t and a set of variables
Γ, the deletion function delΓ(t) removes from t all the occurrences of variables
in Γ that are useless, i.e. that are free but not positive in t. This operation is
defined modulo alpha-conversion so that bound variables of t are always assumed
to be disjoint from Γ.

delΓ(y) := y
delΓ(u v) := delΓ(u) delΓ(v)
delΓ(λy.u) := λy.delΓ(u)
delΓ(u[y/v]) := delΓ(u)[y/delΓ(v)]

delΓ(Wx(u)) :=

{

u
Wx(delΓ(u))

if x ∈ Γ
if x /∈ Γ

delΓ(C
y|z
x (u)) :=

{

delΓ\x∪{y,z}(u)

C
y|z
x (delΓ(u))

if x ∈ Γ & x /∈ fv+(C
y|z
x (u))

otherwise

For example, delx(Wx(a) x) = a x and delx(C
x1|x2
x (y) x) = y x. This

operation does not increase the size of terms. Moreover, if x ∈ fv(t) \ fv+(t),
then size(delx(t)) < size(t). Also, delΓ(t) = t if fv(t) ∩ Γ = ∅.

Lemma 1 (Preservation of Well-Formed Terms by Deletion). If Γ B

t and ∆ ⊆ Γ then (Γ )B (∆ \ fv(del∆(t)))) B del∆(t), which simplifies to
Γ )B ∆ B del∆(t) if |t|

+
∆ = 0 .

Proof. By induction on size(t).
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For instance, cleaning-up useless x in the term x Wx(y) gives {x, y})w (x \
{x, y}) w delx(x Wx(y)) that is x, y w x y.

To introduce the reduction rules of the prismoid we need a meta-level notion
of substitution, defined on alpha-equivalence classes, which is at the same time
the one implemented by the explicit control of resources. A well-formed sub-
stitution is a pair of the form {x/u}, where the term u, called the body of the
substitution, is a well-formed term. More precisely, if u ∈ TB, the substitution
is also called a B-substitution.

The application of a B-substitution {x/u} to a B-term t (called the
target of the substitution), written t{x/u}, is defined as follows:

• If |t|+x = 0, then

– If |t|x = 0 or w /∈ B then t{x/u} := delx(t).

– Otherwise, t{x/u} := Wfv(u)\fv(t)(delx(t)).

• If |t|+x ≥ 2, then t{x/u} := t[x:=y]{y/u}{x/u}.

• If |t|+x = 1, t{x/u} := delx(t){{x/u}} where t{{x/u}} is defined by induc-
tion on t as follows:

x{{x/u}} := u
y{{x/u}} := y x 6= y
(s v){{x/u}} := s{{x/u}} v{{x/u}}
(λy.v){{x/u}} := λy.v{{x/u}} x 6= y & y /∈ fv(u)
s[y/v]{{x/u}} := s{{x/u}}[y/v{{x/u}}] x 6= y & y /∈ fv(u)
Wy(v){{x/u}} := Wy\fv(u)(v{{x/u}}) x 6= y

C
y1|y2
y (v){{x/u}} := C

y1|y2
y (v{{x/u}})

{

x 6= y
y1, y2, y /∈ fv(u)

C
x1|x2
x (v){{x/u}} := C

∆|Π
Γ (v{x1/R

Γ
∆(u)}{x2/R

Γ
Π(u)})

{

Γ := fv(u)
∆,Π are fresh

For instance, (Wx(a) Wx(b)){x/y} = Wy(a b) and (C
x1|x2
x (a) x){x/b} = a b.

This definition looks complex, this is because it is covering all the calculi
of the prismoid by a unique homogeneous specification. The restriction of this
operation to particular subsets of resources results in simplified notions of substi-
tutions. As a typical example, the previous definition can be shown to be equiv-
alent to the well-known notion of higher-order substitution on ∅-terms [Bar84]
given by:

x{x/u} := u
y{x/u} := y x 6= y
(λy.v){x/u} := λy.v{x/u} x 6= y & y /∈ fv(u)
(s v){x/u} := s{x/u} v{x/u}

Substitution definition also simplifies to the following one for c-terms:
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x{x/u} := u
y{x/u} := y x 6= y
(λy.v){x/u} := λy.v{x/u} x 6= y & y /∈ fv(u)
(s v){x/u} := s{x/u} v{x/u}

C
y1|y2
y (t){x/u} := C

y1|y2
y (t{x/u})

{

x 6= y
y, y1, y2 /∈ fv(u)

C
y1|y2
x (t){x/u} := C

∆|Π
Γ (t{y1/R

Γ
∆(u)}{y2/R

Γ
Π(u)})







x ∈ fv+(C
y1|y2
x (t))

Γ := fv(u)
∆,Π are fresh

C
y1|y2
x (t){x/u} := delx(C

y1|y2
x (t)) x /∈ fv+C

y1|y2
x (t)

Lemma 2. Definitions of t{x/u} and t{{x/u}} are well-founded.

Proof. By induction on 〈ox(t), size(t)〉.

Lemma 3. Let t ∈ TB s.t. |t|+x ≥ 1. Then substitution verifies the following
equalities:

x{x/u} = u
y{x/u} = y x 6= y
(λy.v){x/u} = λy.v{x/u} x 6= y
(s v){x/u} = s{x/u} v{x/u}
s[y/v]{x/u} = s{x/u}[y/v{x/u}] x 6= y
Wy(t){x/u} = Wy(t{x/u}) x 6= y & y /∈ fv(u)
Wy(t){x/u} = t{x/u} x 6= y & y ∈ fv(u)

C
y1|y2
y (t){x/u} = C

y1|y2
y (t{x/u}) x 6= y & y /∈ fv(u)

C
x1|x2
x (t){x/u} = C

∆|Π
Γ (t{x1/R

Γ
∆(u)}{x2/R

Γ
Π(u)})

{

Γ = fv(u)
∆,Π are fresh

Proof. By substitution definition.

Lemma 4. Let t ∈ TB. The function del() enjoys the following properties :

1. x /∈ fv(delx(t)) if x /∈ fv+(t).

2. delx(dely(t)) = dely(delx(t)).

3. delx(t{y/v}) = delx(t){y/v} if x /∈ fv(v).

4. delx(t{{y/v}}) = delx(t){{y/v}} if x /∈ fv(v).

5. delx(t){{x/v}} = delx(t) if x /∈ fv+(t).

6. delx(t) = t if |t|x = |t|+x .

7. t{x/u}{y/u} = delx,y(t){{x/u}}{{y/u}} if |t|+x ≥ 1 or |t|+y ≥ 1.

Proof. By induction on size(t).

For instance, delx(Wy(Wx(z)){y/w}) = delx(Ww(Wx(z))) = Ww(z) =
Wy(z){y/w} = delx(Wy(Wx(z))){y/w} illustrates the third case.
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2.3. Rewriting rules and equations

We now introduce the reduction system of the prismoid. In the last
column of Figure 2 we use the notation A+ (resp. A−) to specify that the
equation/rule belongs to the calculus λB iff A ⊆ B (resp. A∩B = ∅). Thus, each
calculus λB contains only a strict subset of the reduction rules and equations in
Figure 2.

All the equations and rules can be understood by means of MELL Proof-
Nets reduction (see for example [KL07]). The reduction rules can be split into
four groups: the first one fires implicit/explicit substitution, the second one
implements substitution by decrementing multiplicity of variables and/or per-
forming propagation, the third one pulls weakening operators as close to the top
as possible and the fourth one pushes contractions as deep as possible. Alpha-
conversion guarantees that no capture of variables occurs during reduction. The
use of positive conditions (conditions involving positive free variables) in some
of the rules will become clear when discussing projection at the end of Section 4.

The notations ⇒R, ≡E and →R∪E , mean, respectively, the rewriting (resp.
equivalence and rewriting modulo) relation generated by the rules R (resp.
equations E and rules R modulo equations E). Similarly, ⇒B, ≡B and →B

mean, respectively, the rewriting (resp. equivalence and rewriting modulo)
relation generated by the rules (resp. the equations and rules modulo equa-
tions) of the calculus λB. Thus for example the reduction relation →∅ is
only generated by the β-rule exactly as in λ-calculus. Another example is
→c which can be written →{β,CL,CAL,CAR,CGc}∪{CCA,CC,CCC}. Sometimes we mix
both notations to denote particular subrelations, thus for example →c\β means
→{CL,CAL,CAR,CGc}∪{CCA,CC,CCC}. We give in the appendix an independent specifica-
tion for each calculus of the prismoid.

Among the eight calculi of the prismoid we can distinguish the λ∅-calculus,
known as λ-calculus, which is defined by means of the →∅-reduction relation on
∅-terms. Another language of the prismoid is the λcsw-calculus, a variation of
λlxr [KL07], defined by means of the →{c,s,w}-reduction relation on {c, s, w}-
terms. A last example is the λw-calculus given by means of →w-reduction, that
is, →{β,LW,AWl,AWr}∪{WWC}.

A B-term t is in B-normal form is there is no u s.t. t →B u. A B-term t
is said to be B-strongly normalising, written t ∈ SNB, iff there is no infinite
B-reduction sequence starting at t.

In order to show that well-formed terms are stable by reduction we first need
the following property.

Lemma 5 (Preservation of Well-Formed Terms by Substitution). Let
Γ B t and ∆ B u and x /∈ ∆. If (x ∈ fv+(t) or w ∈ B) and (Γ )B x) ⊎B ∆
is defined, then (Γ )B x) ⊎B ∆ B t{x/u}. Otherwise, Γ )B x B t{x/u}.

Proof. By induction on 〈ox(t), size(t)〉.

• If |t|+x = 0 and (|t|x = 0 or w /∈ B) then we are done by Lemma 1.

9



Equations :

(CCA) C
x|z
w (C

y|p
x (t)) ≡ C

x|y
w (C

z|p
x (t)) c+

(CC) C
y|z
x (t) ≡ C

z|y
x (t) c+

(CCC) C
b|c
a (C

y|z
x (t)) ≡ C

y|z
x (C

b|c
a (t)) x 6= b, c & a 6= y, z c+

(WWC) Wx(Wy(t)) ≡ Wy(Wx(t)) w+

(SSC) t[x/u][y/v] ≡ t[y/v][x/u] y /∈ fv(u) & x /∈ fv(v) s+

Rules :
(β) (λx.t) u → t{x/u} s−

(B) (λx.t) u → t[x/u] s+

(V) x[x/u] → u s+

(SGc) t[x/u] → t x /∈ fv(t) s+& w−

(SDup) t[x/u] → t[x:=y][x/u][y/u] |t|+x > 1 & y fresh s+& c−

(SL) (λy.t)[x/u] → λy.t[x/u] s+

(SAL) (t v)[x/u] → t[x/u] v x /∈ fv(v) s+

(SAR) (t v)[x/u] → t v[x/u] x /∈ fv(t) s+

(SS) t[x/u][y/v] → t[x/u[y/v]] y ∈ fv+(u) \ fv(t) s+

(SW1) Wx(t)[x/u] → Wfv(u)\fv(t)(t) (sw)+

(SW2) Wy(t)[x/u] → Wy\fv(u)(t[x/u]) x 6= y (sw)+

(LW) λx.Wy(t) → Wy(λx.t) x 6= y w+

(AWl) Wy(u) v → Wy\fv(v)(u v) w+

(AWr) u Wy(v) → Wy\fv(u)(u v) w+

(SW) t[x/Wy(u)] → Wy\fv(t)(t[x/u]) (sw)+

(SCa) C
y|z
x (t)[x/u] → C

∆|Π
Γ (t[y/RΓ

∆(u)][z/R
Γ
Π(u)])







y, z ∈ fv+(t)
Γ := fv(u)
∆,Π are fresh

(cs)+

(CL) C
y|z
w (λx.t) → λx.C

y|z
w (t) c+

(CAL) C
y|z
w (t u) → C

y|z
w (t) u y, z /∈ fv(u) c+

(CAR) C
y|z
w (t u) → t C

y|z
w (u) y, z /∈ fv(t) c+

(CS) C
y|z
w (t[x/u]) → t[x/C

y|z
w (u)] y, z ∈ fv+(u) (cs)+

(SCb) C
y|z
w (t)[x/u] → C

y|z
w (t[x/u]) x 6= w & y, z /∈ fv(u) (cs)+

(CW1) C
y|z
w (Wy(t)) → Rz

w(t) (cw)+

(CW2) C
y|z
w (Wx(t)) → Wx(C

y|z
w (t)) x 6= y, z (cw)+

(CGc) C
y|z
w (t) → Rz

w(t) y /∈ fv(t) c+& w−

Figure 2: The reduction rules and equations of the prismoid

• If |t|+x = 0 and |t|x 6= 0 and w ∈ B then t{x/u} = Wfv(u)\fv(t)(delx(t)). By
hypothesis Γ B t and by Lemma 1, Γ )B x B delx(t). By definition,
Γ )B x; (∆ \ Γ) B Wfv(u)\fv(t)(delx(t)). If c ∈ B, then Γ ∩ ∆ = ∅
so that the left part of the last statement is exactly Γ )B x ⊎B ∆ and
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thus we are done. Otherwise c /∈ B, then we trivially conclude since
Γ )B x; (∆ \ Γ) = Γ )B x ⊎B ∆.

• If |t|+x = n+ 1 with n ≥ 1 then we have ⊎B = ∪ and :

[hyp]
·
·
·

Γ B t
x1 . . . xn fresh

Γ, x1, . . . , xn B t[x:=x1...xn]
i.h.

Γ, x2, . . . , xn ∪∆ B t[x:=x1...xn]{x1/u}
i.h.

...
i.h.

Γ ∪∆ ∪ . . . ∪∆ B t[x:=x1...xn]{x1/u}...{xn/u}
i.h.

(Γ ∪∆ ∪ . . . ∪∆) )B x ∪∆ B t[x:=x1...xn]{x1/u}...{xn/u}{x/u}

We conclude since the last set of variables is equal to (Γ )B x) ∪∆ with
Γ)Bx well defined since |t|+x = n+1. We can use the i.h. in the first three
cases since oxi

(t[x:=x1...xn]{x1/u}...{xi−1/u}) < ox(t) and in the last case
because ox(t[x:=x1...xn]{x1/u}...{xn/u}) < ox(t).

• Now we analyse all interesting cases where |t|+x = 1 :

– t = x, then Γ = x and t{x/u} = u so that ∆ B t{x/u} by hypoth-
esis.

– t = λy.t′, so that y 6= x by α-conversion. We have Γ = Γ′ )B y (so
that Γ′

B t′), thus (λy.t′){x/u} = λy.delx(t
′){{x/u}} = λy.t′{x/u}

and

[hyp]
·
·
·

Γ′
B t′

i.h. (ox(t
′) = ox(t) & size(t′) < size(t))

(Γ′ )B x) ⊎B ∆ B t′{x/u}

(Γ′ )B x ⊎B ∆) )B y B λy.t′{x/u}

We conclude since (Γ′ )B x ⊎B ∆) )B y = Γ )B x ⊎B ∆ as desired.

– t = v w. We have Γ = Γv ⊎B Γw , Γv B v and Γw B w. Suppose
|v|+x = 1 (the case where |w|+x = 1 is symmetric). Thus (v w){x/u} =
delx(v){{x/u}} delx(w){{x/u}} = v{x/u} w and :

[hyp]
·
·
·

Γv B v
i.h.

Γv )B x ⊎∆ B v{x/u}

[hyp]
·
·
·

Γw B w

(Γv )B x ⊎B Γw) ⊎B ∆ B v{x/u} w

11



We can conclude since Γv \ x ⊎B Γw = Γ \ x

– t = C
y|z
x (t′). By hypothesis we have x; Γ′ )B {y, z} B C

y|z
x (t′)

(so that Γ′
B t′) with Γ = x; Γ′ )B {y, z}. Definition of sub-

stitution gives t{x/u} = delx(C
y|z
x (t′)){{x/u}} = C

y|z
x (t′){{x/u}} =

C
∆′|∆′′

∆ (t′{y/u′}{z/u′′}), where ∆ = fv(u),

If oy(t
′) > 0 and oz(t

′) > 0

[hyp]
·
·
·

Γ′
B t′

i.h.
Γ′ )B y ⊎B ∆′

B t′{y/u′}
i.h.

Γ′ )B {y, z} ⊎B ∆′ ⊎B ∆′′
B t′{y/u′}{z/u′′}

Γ′ )B {y, z} ⊎B ∆ B C
∆′|∆′′

∆ (t′{y/u′}{z/u′′})

The first (resp. second) application of the i.h. is valid since oy(t
′) <

ox(t) (resp. oz(t
′{y/u′}) < ox(t)). We can conclude since Γ )B x =

Γ′ )B {y, z}.

Finally, suppose oy(t
′) = 0 and w /∈ B (otherwise, the proof is similar

to another detailed case). Then,

[hyp]
·
·
·

Γ′
B t′

i.h.
Γ′ )B y B t′{y/u′}

i.h.
Γ′ )B {y, z} ⊎B ∆′′

B t′{y/u′}{z/u′′}

(Γ′ )B {y, z} ⊎B ∆′) )B ∆′ )B ∆′′; ∆ B C
∆′|∆′′

∆ (t′{y/u′}{z/u′′})

We can conclude since (Γ′)B {y, z}⊎B∆′))B∆′)B∆′′; ∆ is exactly
Γ′ )B {y, z} ⊎B ∆ ()B = \ since w /∈ B and ;= ⊎B since c ∈ B.

– The case t = w[y/v] is similar to lambda and application together.

For instance, suppose x c C
x1|x2
x (x1 x2) and y c y. In this case, we

have )c = \ and ⊎B is the disjoint union. (x ) x) ⊎c y = y is defined and

C
x1|x2
x (x1 x2){x/y} = C

y1|y2
y (y1 y2) so that y c C

y1|y2
y (y1 y2).

As expected, substitution enjoys the following property.

Lemma 6 (Substitution Permutation). Let t, u, v ∈ TB s.t. x /∈ fv(v) and
y /∈ fv(u). Then:

1. t{x/u}{y/v} ≡B t{y/v}{x/u}
2. t{{x/u}}{{y/v}} ≡B t{{y/v}}{{x/u}}

Proof. We prove both statements simultaneously by induction on the tuple
〈o{x,y}(t), size(t)〉.

12



1. • First, we treat cases where |fv+(t)|x ≥ 2 or |fv+(t)|y ≥ 2. Let
us suppose |fv+(t)|x ≥ 2 and |fv+(t)|y ≥ 2, the other cases being
similar. Then |fv+(t)|x = n+ 1 and |fv+(t)|y = m+ 1 so that:

t{x/u}{y/v}

= t[x:=x1...xn]{xn/u}{x/u}[y:=y1...ym]
{y1/v}...{yn/v}{y/v}

where {xn/u} = {x1/u}...{xn/u}

= t[x:=x1...xn][y:=y1...ym]
{xn/u}{x/u}{y1/v}...{yn/v}{y/v}

≡B (i.h.) t[x:=x1...xn][y:=y1...ym]
{y1/v}...{yn/v}{y/v}{xn/u}{x/u}

= t{y/v}{x/u}

• If |t|+x = 0 and (|fv(t)|x = 0 or w /∈ B) then

t{x/u}{y/v} = delx(t){y/v} =L. 4:3 delx(t{y/v}) = t{y/v}{x/u}

• If |t|+x = 0 and |fv(t)|x 6= 0 and w ∈ B then

t{x/u}{y/v} = Wfv(u)\fv(t)(delx(t)){y/v}

There are two interesting cases :

– |t|+y = 0 and |fv(t)|y > 0

t{x/u}{y/v} =
= Wfv(v)\fv(u)\fv(t)(dely(Wfv(u)\fv(t)(delx(t))))
= Wfv(v)\fv(u)\fv(t)(Wfv(u)\fv(t)(dely(delx(t))))
=L. 4:2 Wfv(v)\fv(u)\fv(t)(Wfv(u)\fv(t)(delx(dely(t))))
= Wfv(u)\fv(v)\fv(t)(delx(Wfv(v)\fv(t)(dely(t))))
= Wfv(v)\fv(t)(dely(t)){x/u}
= t{y/v}{x/u}

– |t|+y = 1

t{x/u}{y/v}
= dely(Wfv(u)\fv(t)(delx(t))){{y/v}}
= Wfv(u)\fv(t)\fv(v)(dely(delx(t)){{y/v}})
=L. 4:2 Wfv(u)\fv(v)\fv(t)(delx(dely(t){{y/v}}))
= dely(t){{y/v}}{x/u}
= t{y/v}{x/u}

• We now consider the case where |t|+x = |t|+y = 1. We proceed by case
analysis on t.

– The case t = z is impossible by hypothesis.

– t = λw.t′.

13



(λw.t′){x/u}{y/v}
= delx(λw.t

′){{x/u}}{y/v}
= (λw.delx(t

′){{x/u}}){y/v}
=L. 4:4 λw.dely(delx(t

′)){{x/u}}{{y/v}}
≡B (i.h.) λw.dely(delx(t

′)){{y/v}}{{x/u}}
=L. 4:2 λw.delx(dely(t

′)){{y/v}}{{x/u}}
=L. 4:4 λw.delx(dely(t

′){{y/v}}){{x/u}}
= (λw.t′){y/v}{x/u}

– t = w w′.

t{x/u}{y/v}
= w{x/u}{y/v} w′{x/u}{y/v}
≡B (i.h.) w{y/v}{x/u} w′{y/v}{x/u}
= t{y/v}{x/u}

– The case t = s[z/w] is similar to the application case.

– The case t = Wx(t
′) is impossible by hypothesis.

– The case t = Wz(t
′) with z 6= x, y is straightforward by induc-

tion.

– t = C
b|c
a (t′). We only consider the case where a = x

t{x/u}{y/v}

= C
∆|Π
Γ (t′{b/RΓ

∆(u)}{c/R
Γ
Π(u)}){y/v}

= C
∆|Π
Γ (t′{b/RΓ

∆(u)}{c/R
Γ
Π(u)}{y/v})

≡B (i.h.) C
∆|Π
Γ (t′{y/v}{b/RΓ

∆(u)}{c/R
Γ
Π(u)})

= C
b|c
a (t′{y/v}){x/u}

= C
b|c
a (dely(t

′){{y/v}}){x/u}
= t{y/v}{x/u}

2. This statement can be proved in a similar way.

Lemma 7 (Preservation of Well-Formed Terms by Reduction).
If Γ B t and t →B u, then ∃ ∆ ⊆ Γ s.t. ∆ B u. Moreover if w ∈ B, ∆ = Γ.

Proof. By induction on size(t) using Lemma 5.

Lemma 8. Let t ∈ TB and Γ ⊆ fv(t) s.t. |t|+Γ = 0. Then t →∗
B

delΓ(t) if
w /∈ B, and t →∗

B
WΓ(delΓ(t)), if w ∈ B.

Proof. By induction on size(t).

For instance C
y|z
x (w) →CGc w = delx(C

y|z
x (w)) and Wy(z) Wz(a) →AWl→AWr

Wy(z Wz(a)) = Wy(dely(Wy(z) Wz(a))).
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Lemma 9 (Full Composition). Let t[y/v] ∈ TB be a term having indepen-
dent substitutions [y/v]. Then t[y/v] →∗

B
t{y/v}.

Proof. By induction on 〈oy(t), size(t)〉, where oy(t) = Σi∈{1...n}oyi
(t). Let

[y/v] = [x/u][x/u]. We first show t[x/u] →∗
B

t{x/u}, so that t{x/u}[x/u] →∗
B

t{x/u}{x/u} = t{y/v} by the i.h. since independence of [y/v] imply ox(t{x/u}) <
oy(t).

• If x /∈ fv(t), then t[x/u] →SGc t = t{x/u}.

• If |t|+x = n + 1 ≥ 2, then we can apply n times the rule SDup in such a
way that each reduction step only replaces one occurrence of the truly free
variable x of t. This gives the following, where we can apply the i.h. since
the substitutions are independent:

t[x/u] →SDup

t[x:=zn][x/u][zn/u] →SDup

...
t[x:=z1...zn][x/u][z1/u] . . . [zn/u] ≡SSC

t[x:=z1...zn][z1/u] . . . [zn/u][x/u] →∗
B
(i.h.)

t[x:=z1...zn]{z1/u} . . . {zn/u}{x/u} = t{x/u}

• If |t|+x = 0 and |fv(t)|x > 0, we consider the case where w ∈ B, as the one
where w /∈ B is similar to the case where x /∈ fv(t):

t[x/u] →∗
L. 8

Wx(delx(t))[x/u] →SW1

Wfv(u)\fv(delx(t))(delx(t)) =
Wfv(u)\(fv(t)\{x})(delx(t)) = (x /∈ fv(u))
Wfv(u)\fv(t)(delx(t)) = t{x/u}

• Now, consider the case where |t|+x = 1. We proceed by case analysis on t:

– t = x. Then x[x/u] →V u = t{x/u}.

– t = λy.t′. Then t[x/u] →SL λy.t
′[x/u] →∗

B
(i.h.)λy.t′{x/u} = t{x/u}.

– t = v w.

If x ∈ fv+(v) (so that x /∈ fv+(w)) and x ∈ fv(w):

(v w)[x/u] →∗
B

(L. 8)
(v Wx(delx(w)))[x/u] →AWr

(v delx(w))[x/u] →SAL

(v[x/u] delx(w)) →∗
B

(i.h.)
(v{x/u} delx(w)) =
(delx(v){{x/u}} delx(w)) =L. 4:5

delx(v){{x/u}} delx(w){{x/u}} = (v w){x/u}
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If x ∈ fv+(v) (so that x /∈ fv+(w)) and x /∈ fv(w):

(v w)[x/u] →SAL

v[x/u] w →∗
B

(i.h.)
v{x/u} w =
delx(v){{x/u}} w = (v w){x/u}

If x ∈ fv+(w), then the proof is similar but uses rules AWl and SAR.

– t = v[y/w]. Similar to the previous case using SW and SSC in the first
case; SW2 and SS in the second case.

– t = Wy(v).

The case y = x is impossible by hypothesis so that y 6= x and we
have:

Wy(v)[x/u] →SW2

Wy\fv(u)(v[x/u]) →∗
B

(i.h.)
Wy\fv(u)(v{x/u}) =
Wy(delx(v){{x/u}}) =
Wy(delx(v)){{x/u}} = Wy(v){x/u}

– t = C
y1|y2
y (v). We consider the case where y = x, the other one is

straightforward. Let Γ = fv(u). Then,

C
y1|y2
x (v)[x/u] →SCa

C
∆|Π
Γ (v[y1/R

Γ
∆(u)][y2/R

Γ
Π(u)]) →∗

B
(i.h.)

C
∆|Π
Γ (v{y1/R

Γ
∆(u)}{y2/R

Γ
Π(u)}) =

C
y1|y2
x (v){x/u}

For instance, if Γ = fv(u), Π,∆ are fresh, u1 = RΓ
∆(u) and u2 = RΓ

Π(u),
then

C
y1|y2
y (Wy1

(Wx(y2)))[x/v][y/u] ≡ SSC

C
y1|y2
y (Wy1

(Wx(y2)))[y/v][x/v] →SCa

C
∆|Π
Γ (Wy1

(Wx(y2))[y1/u1][y2/u2])[x/v] →SW1

C
∆|Π
Γ (Wfv(u1)(Wx(y2))[y2/u2])[x/v] →SW2

C
∆|Π
Γ (Wfv(u1)(Wx(y2)[y2/u2]))[x/v] →SW2

C
∆|Π
Γ (Wfv(u1)(Wx(y2[y2/u2])))[x/v] →V

C
∆|Π
Γ (Wfv(u1)(Wx(u2)))[x/v]

This is correct since:

C
y1|y2
y (Wy1

(Wx(y2)))[x/v]{y/u} =

C
y1|y2
y (Wy1

(Wx(y2)))[x/v]{{y/u}} =

C
∆|Π
Γ (Wy1

(Wx(y2)){y1/u1}{y2/u2})[x/v] =

C
∆|Π
Γ (Wfv(u1)(Wx(u2)))[x/v]
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3. Adding Resources

This section is devoted to the simulation of the λ∅-calculus into richer calculi
having more resources. We consider the function ARA( ) : T∅ 7→ TA for A ⊆ R

which enriches a λ∅-term in order to fulfill the constraints needed to be an
A-term. Adding is done not only on a static level (the terms) but also on a
dynamic level (the reduction).

ARA(x) := x
ARA(λx.t) := λx.Wx(ARA(t)) w ∈ A & x /∈ fv(t)
ARA(λx.t) := λx.ARA(t) otherwise

ARA(t u) := C
∆|Π
Γ (RΓ

∆(ARA(t))R
Γ
Π(ARA(u)))

{

c ∈ A & Γ := fv(t)∩fv(u)
∆,Π are fresh

ARA(t u) := ARA(t) ARA(u) otherwise

For example, adding resource c (resp. w) to t = λx.yy gives λx.C
y1|y2
y (y1y2)

(resp. λx.Wx(yy)), while adding both of them gives λx.Wx(C
y1|y2
y (y1y2)).

Lemma 10. Let t ∈ T∅, then we have

1. fv(t) = fv(ARA(t)) = fv+(ARA(t)).
2. delΓ(ARA(t)) = ARA(t).

Proof. By induction on size(t).

Point 1 says that ARA() only adds useful (i.e. positive) variables; thus delet-
ing any non positive free variable in ARA(t) will leave the term unchanged as
stated by Point 2.

We now establish the relation between ARA() and well-formed substitution;
this is a technical key lemma of the paper.

Lemma 11. Let t, u ∈ T∅ and A ⊆ R. Then

• If c /∈ A then ARA(t){x/ARA(u)} = ARA(t{x/u}).

• If c ∈ A then C
∆|Π
Γ (RΓ

∆(ARA(t)){x/R
Γ
Π(ARA(u))}) →

∗
A
ARA(t{x/u}) where

Γ = (fv(t) \ x) ∩ fv(u) and ∆,Π are fresh sets of variables.

Proof. By induction on size(t), using the simplified definition of substitution
for ∅-terms in Section 2.2. By Lemma 10:1, x cannot be a free variable of t which
is not positive so that we can use the simplification notion of substitution given
by Lemma 3. The case c /∈ A can be easily done by i.h. so we only consider
c ∈ A.

First suppose x /∈ fv(t). Then,

C
∆|Π
Γ (RΓ

∆(ARA(t)){x/R
Γ
Π(ARA(u))}) =

C
∆|Π
Γ (RΓ

∆(ARA(t))) →CGc

R∆
Γ (RΓ

∆(ARA(t))) =
ARA(t) =
ARA(t{x/u})
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Otherwise, x ∈ fv(t) (and in particular, x ∈ fv+(t) by Lemma 10:1). We
consider different cases.

• The case t = x is similar to the case where c /∈ A.

• t = λy.t′.

– y /∈ fv(t′) and w ∈ A.

C
∆|Π
Γ ((RΓ

∆(ARA(λy.t
′))){x/RΓ

Π(ARA(u))}) =

C
∆|Π
Γ ((λy.Wy(R

Γ
∆(ARA(t

′)))){x/RΓ
Π(ARA(u))}) =

C
∆|Π
Γ (λy.Wy(R

Γ
∆(ARA(t

′)){x/RΓ
Π(ARA(u))})) →CL

λy.C
∆|Π
Γ (Wy(R

Γ
∆(ARA(t

′)){x/RΓ
Π(ARA(u))})) →CW2

λy.Wy(C
∆|Π
Γ (RΓ

∆(ARA(t
′)){x/RΓ

Π(ARA(u))})) →∗
A
(i.h.)

λy.Wy(ARA(t
′{x/u})) =

ARA(λy.t
′{x/u}) =

ARA((λy.t
′){x/u})

– Otherwise

C
∆|Π
Γ ((RΓ

∆(ARA(λy.t
′))){x/RΓ

Π(ARA(u))}) =

C
∆|Π
Γ (λy.(RΓ

∆(ARA(t
′))){x/RΓ

Π(ARA(u))}) →CL

λy.C
∆|Π
Γ (RΓ

∆(ARA(t
′)){x/RΓ

Π(ARA(u))}) →∗
A
(i.h.)

λy.ARA(t{x/u}) =
ARA((λy.t

′){x/u})

• t = v w. Then by α-equivalence we can suppose x /∈ fv(u). Let us
consider the following names for the sets of free variables of the terms
under consideration.

Λ
Σ

Ξ

Ψ

Θ

fv(v) fv(w)

fv(u)

Note that Φ = fv(t) ∩ fv(u) is a permutation of Σ,Λ,Ψ.
Also note that fv(v) ∩ fv(w) is a permutation of Σ,Ξ and hence

ARA(t) ≡ C
Σ3,Ξ3|Σ4,Ξ4

Σ,Ξ (RΣ,Ξ
Σ3,Ξ3

(ARA(v))R
Σ,Ξ
Σ4,Ξ4

(ARA(w)))
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We then have:

C
Σ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (RΣ,Λ,Ψ
Σ1,Λ1,Ψ1

(ARA(t)){x/R
Σ,Λ,Ψ
Σ2,Λ2,Ψ2

(ARA(u))})

= C
Σ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (C
Σ3,Ξ3|Σ4,Ξ4

Σ1,Ξ
(v′w′){x/RΣ,Λ,Ψ

Σ2,Λ2,Ψ2
(ARA(u))})

= H

where v′ = RΛ,Σ,Ξ
Λ1,Σ3,Ξ3

(ARA(v)) and w′ = RΨ,Σ,Ξ
Ψ1,Σ4,Ξ4

(ARA(w)).

– If x ∈ fv(v) ∩ fv(w), then x is in Ξ (since x /∈ fv(u)), so Ξ is a

permutation of Ξ′;x for some list Ξ′. Hence C
Σ3,Ξ3|Σ4,Ξ4

Σ1,Ξ
() is equiv-

alent by CCC to C
Σ3,Ξ

′

3|Σ4,Ξ
′

4

Σ1,Ξ′ (C
x3|x4
x ()), where Ξ′

3;x3 and Ξ′
4;x4 are

the corresponding permutations of Ξ3 and Ξ4, respectively. Noticing
that fv(u) is a permutation of Θ,Σ,Λ,Ψ, so that

H ≡CCC C
Σ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (C
Σ3,Ξ

′

3|Σ4,Ξ
′

4

Σ1,Ξ′ (C
x3|x4
x (v′w′)){S})

where
S = x/RΣ,Λ,Ψ

Σ2,Λ2,Ψ2
(ARA(u))

Performing substitution S gives :

C
Σ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (C
Σ3,Ξ

′

3|Σ4,Ξ
′

4

Σ1,Ξ′ (C
Θ5,Σ5,Λ5,Ψ5|Θ6,Σ6,Λ6,Ψ6

Θ,Σ2,Λ2,Ψ2
(H1)))

where H1 is equal to:

(v′w′){x3/R
Θ,Σ,Λ,Ψ
Θ5,Σ5,Λ5,Ψ5

(ARA(u))}{x4/R
Θ,Σ,Λ,Ψ
Θ6,Σ6,Λ6,Ψ6

(ARA(u))}

= v′{x3/R
Θ,Σ,Λ,Ψ
Θ5,Σ5,Λ5,Ψ5

(ARA(u))} w′{x4/R
Θ,Σ,Λ,Ψ
Θ6,Σ6,Λ6,Ψ6

(ARA(u))}

Now we rearrange the contractions:

C
Σ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (C
Σ3,Ξ

′

3|Σ4,Ξ
′

4

Σ1,Ξ′ (H2))

where H2 := C
Θ5,Σ5,Λ5,Ψ5|Θ6,Σ6,Λ6,Ψ6

Θ,Σ2,Λ2,Ψ2
(H1)

≡CCC C
Θ5|Θ6

Θ (C
Ξ′

3|Ξ
′

4

Ξ′ (C
Λ1|Λ2

Λ (C
Λ5|Λ6

Λ2
(C

Ψ1|Ψ2

Ψ (C
Ψ5|Ψ6

Ψ2
(H3))))))

where H3 := C
Σ1|Σ2

Σ (C
Σ3|Σ4

Σ1
(C

Σ5|Σ6

Σ2
(H1)))

≡CCA C
Θ5|Θ6

Θ (C
Ξ′

3|Ξ
′

4

Ξ′ (C
Λ2|Λ6

Λ (C
Λ1|Λ5

Λ2
(C

Ψ5|Ψ2

Ψ (C
Ψ1|Ψ6

Ψ2
(H4))))))

where H4 := C
Σ1|Σ2

Σ (C
Σ3|Σ5

Σ1
(C

Σ4|Σ6

Σ2
(H1)))

≡CCC C
Θ5,Ξ

′

3,Λ2,Ψ5,Σ1|Θ6,Ξ
′

4,Λ6,Ψ2,Σ2

Θ,Ξ′,Λ,Ψ,Σ (C
Λ1,Σ3|Λ5,Σ5

Λ2,Σ1
(H5))

where H5 := C
Ψ1,Σ4|Ψ6,Σ6

Ψ2,Σ2
(H1)

This term can be reduced by CAL and then by CAR to

H ′ := C
Θ5,Ξ

′

3,Λ2,Ψ5,Σ1|Θ6,Ξ
′

4,Λ6,Ψ2,Σ2

Θ,Ξ′,Λ,Ψ,Σ (PQ)
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P := C
Λ1,Σ3|Λ5,Σ5

Λ2,Σ1
(v′{x3/R

Θ,Σ,Λ,Ψ
Θ5,Σ5,Λ5,Ψ5

(ARA(u))})

= RΘ,Ξ′,Λ,Ψ,Σ
Θ5,Ξ′

3,Λ2,Ψ5,Σ1
(C

Λ1,Σ3|Λ5,Σ5

Λ,Σ (RΛ,Σ
Λ1,Σ3

(Rx
x3
(ARA(v)))){SP })

and where
SP = x3/R

Σ,Λ
Σ5,Λ5

(ARA(u))

Q := C
Ψ1,Σ4|Ψ6,Σ6

Ψ2,Σ2
(w′{x4/R

Θ,Σ,Λ,Ψ
Θ6,Σ6,Λ6,Ψ6

(ARA(u))})

= RΘ,Ξ′,Λ,Ψ,Σ
Θ6,Ξ′

4,Λ6,Ψ2,Σ2
(C

Ψ1,Σ4|Ψ6,Σ6

Ψ,Σ (RΨ,Σ
Ψ1,Σ4

(Rx
x4
(ARA(w)))){SQ})

and where
SQ = x4/R

Σ,Ψ
Σ6,Ψ6

(ARA(u))

We can now apply the i.h. to both subterms and we get:

P →∗
A
P ′ = RΘ,Ξ′,Λ,Ψ,Σ

Θ5,Ξ′
3,Λ2,Ψ5,Σ1

(ARA(v{x/u}))

Q →∗
A
Q′ := RΘ,Ξ′,Λ,Ψ,Σ

Θ6,Ξ′
4,Λ6,Ψ2,Σ2

(ARA(w{x/u}))

So H ′ reduces to

C
Θ5,Ξ

′

3,Λ2,Ψ5,Σ1|Θ6,Ξ
′

4,Λ6,Ψ2,Σ2

Θ,Ξ′,Λ,Ψ,Σ (P ′Q′)

which is ARA(v{x/u}w{x/u}) = ARA((v w){x/u}).

– If x ∈ fv(v) et x /∈ fv(w), the term H can be transformed to:

C
Σ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (C
Σ3,Ξ3|Σ4,Ξ4

Σ1,Ξ
((v′ w′){x/Sx}))

with Sx = RΣ,Λ,Ψ
Σ2,Λ2,Ψ2

(ARA(u))

= C
Σ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (C
Σ3,Ξ3|Σ4,Ξ4

Σ1,Ξ
(v′{x/Sx} w′))

≡CCA,CCC C
Σ1,Ψ2,Ξ3|Σ4,Ψ1,Ξ4

Σ,Ψ,Ξ (C
Σ3,Λ1|Σ2,Λ2

Σ1,Λ
(v′{x/Sx} w′))

→CAL C
Σ1,Ψ2,Ξ3|Σ4,Ψ1,Ξ4

Σ,Ψ,Ξ (C
Σ3,Λ1|Σ2,Λ2

Σ1,Λ
(v′{x/Sx}) w

′)

= C
Σ1,Ψ2,Ξ3|Σ4,Ψ1,Ξ4

Σ,Ψ,Ξ (RΣ,Ψ,Ξ
Σ1,Ψ2,Ξ3

(V ) RΣ,Ψ,Ξ
Σ4,Ψ1,Ξ4

(ARA(w)))

= H ′

where

V := C
Σ3,Λ1|Σ2,Λ2

Σ,Λ (RΛ,Σ
Λ1,Σ3

(ARA(v)){x/R
Σ,Λ
Σ2,Λ2

(ARA(u))})

which reduces by the i.h. to ARA(v{x/u}). Hence,

H ′ →∗
A C

Σ1,Ψ2,Ξ3|Σ4,Ψ1,Ξ4

Σ,Ψ,Ξ (RΣ,Ψ,Ξ
Σ1,Ψ2,Ξ3

(ARA(v{x/u}))R
Σ,Ψ,Ξ
Σ4,Ψ1,Ξ4

(ARA(w)))

which is exactly ARA(v{x/u}w) = ARA((vw){x/u}).
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– If x ∈ fv(v) et x /∈ fv(w) the proof is symmetric.

– The case x /∈ fv(v) and x /∈ fv(w) cannot happen since we assumed
x ∈ fv(t).

For instance if c ∈ A, t = (z x) z and u = z, then:

C
z3|z4
z (Rz

z3(ARA((z x) z)){x/z4}) =

C
z3|z4
z (C

z1|z2
z3 ((z1 x) z2){x/z4}) =

C
z3|z4
z (C

z1|z2
z3 ((z1 z4) z2)) ≡

C
z3|z2
z (C

z1|z4
z3 ((z1 z4) z2)) →CAL

C
z3|z2
z (C

z1|z4
z3 (z1 z4) z2) =

C
z3|z2
z (Rz

z3(ARA(z z)) z2) =
ARA((z z) z))

Theorem 1 (Simulation (i)). Let t ∈ T∅ such that t →∅ t′. Let A ⊆ R.

• If w ∈ A, then ARA(t) →
+
A
Wfv(t)\fv(t′)(ARA(t

′)).

• If w /∈ A, then ARA(t) →
+
A
ARA(t

′).

Proof. By induction on the reduction relation →β using Lemma 11.

• The root case t = (λx.t1) u →β t1{x/u} = t′ is done using Lemmas 10
and 11.

• If λx.u ⇒β λx.u′ with u ⇒β u′, then we only consider the case w ∈ A as
the other ones are straightforward.

– If x /∈ fv(u), then

ARA(λx.u) = λx.Wx(ARA(u))
→+

A (i.h.) λx.Wx(Wfv(u)\fv(u′)(ARA(u
′)))

= λx.Wx(Wfv(λx.u)\fv(λx.u′)(ARA(u
′)))

≡WWC λx.Wfv(λx.u)\fv(λx.u′)(Wx(ARA(u
′)))

→∗
LW Wfv(λx.u)\fv(λx.u′)(λx.Wx(ARA(u

′)))

– If x ∈ fv(u), then

ARA(λx.u) = λx.ARA(u)
→+

A (i.h.) λx.Wfv(u)\fv(u′)(ARA(u
′))

= λx.Wfv(λx.u)\fv(u′)(Wx\fv(u′)(ARA(u
′)))

= λx.Wfv(λx.u)\fv(λx.u′)(Wx\fv(u′)(ARA(u
′)))

→∗
LW Wfv(λx.u)\fv(λx.u′)(λx.Wx\fv(u′)(ARA(u

′)))

• If uv ⇒β u′v with u ⇒β u′, we only consider the case where c ∈ A as the
other is straightforward.
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Let consider the following names:

Σ = fv(u′) ∩ fv(v)
Λ = fv(u′) \ (fv(u′) ∩ fv(v))
Ψ = (fv(u) ∩ fv(v)) \ fv(u′)
Ξ = (fv(u) \ fv(u′)) \ fv(v)

Note in particular that fv(u) ∩ fv(v) is a permutation of Σ,Ψ. Corre-
spondingly, let Σl,Ψl and Σr,Ψr be fresh variables.

We have:

ARA(u v)

≡ C
Σl,Ψl|Σr,Ψr

Σ,Ψ (RΣ,Ψ
Σl,Ψl

(ARA(u)) R
Σ,Ψ
Σr,Ψr

(ARA(v)))

→+
A (i.h.) C

Σl,Ψl|Σr,Ψr

Σ,Ψ (RΣ,Ψ
Σl,Ψl

(Wfv(u)\fv(u′)(ARA(u
′))) RΣ,Ψ

Σr,Ψr
(ARA(v)))

≡WWC C
Σl,Ψl|Σr,Ψr

Σ,Ψ (RΣ,Ψ
Σl,Ψl

(WΞ,Ψ(ARA(u
′)))RΣ,Ψ

Σr,Ψr
(ARA(v)))

= C
Σl,Ψl|Σr,Ψr

Σ,Ψ (WΞ(WΨl
(RΣ

Σl
(ARA(u

′))))RΣ,Ψ
Σr,Ψr

(ARA(v)))

→∗
AWl

C
Σl,Ψl|Σr,Ψr

Σ,Ψ (WΞ\RΣ,Ψ
Σr,Ψr

(fv(v))(t
′))

where t′ = WΨl\R
Σ,Ψ
Σr,Ψr

(fv(v))(R
Σ
Σl
(ARA(u

′))RΣ,Ψ
Σr,Ψr

(ARA(v)))

= C
Σl,Ψl|Σr,Ψr

Σ,Ψ (WΞ(WΨl
(RΣ

Σl
(ARA(u

′))RΣ,Ψ
Σr,Ψr

(ARA(v)))))

→∗
CW2

WΞ(C
Σl,Ψl|Σr,Ψr

Σ,Ψ (WΨl
(RΣ

Σl
(ARA(u

′))RΣ,Ψ
Σr,Ψr

(ARA(v)))))

→∗
CW1

WΞ(C
Σl|Σr

Σ (RΨr

Ψ (RΣ
Σl
(ARA(u

′))RΣ,Ψ
Σr,Ψr

(ARA(v)))))

= WΞ(C
Σl|Σr

Σ (RΣ
Σl
(ARA(u

′))RΣ
Σr

(ARA(v))))

Then it suffices to notice that Ξ = fv(uv) \ fv(u′v).

• The case uv ⇒β uv′ is similar to the previous one.

For instance, if t = (λz.y) w →β y = t′ then ARA(t) = (λz.Wz(y)) w →β

Ww(y) = Wfv(t)\fv(t′)(ARA(t
′)).

Since meta-level substitution can also be simulated by the explicit one by
Lemma 9, then we obtain a more general simulation result.

Corollary 12 (Simulation (ii)). Let t ∈ T∅ such that t →∅ t′. Let B =
A ∪ {s}, where A ⊆ R.

• If w ∈ A, then ARA(t) →
+
B
Wfv(t)\fv(t′)(ARA(t

′)).

• If w /∈ A, then ARA(t) →
+
B
ARA(t

′).

For instance, if t = (λz.y) w →β y = t′ then ARw(t) = (λz.Wz(y)) w →sw
Ww(y) = Wfv(t)\fv(t′)(ARw(t

′)).
While Corollary 12 states that adding resources to the λ∅-calculus is well

behaved, this does not necessarily hold for any arbitrary calculus of the prismoid.
Thus for example, what happens when the λs-calculus is enriched with resource
w? Is it possible to simulate each s-reduction step by a sequence of sw-reduction
steps? Unfortunately the answer is no: suppose the function ARA( ) is extended
to s-terms in a natural way; then we have t1 = (x y)[z/v] →s x y[z/v] = t2 but
ARw(t1) = Wz(x y)[z/v] 6→sw x Wz(y)[z/v] = ARw(t2).
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4. Removing Resources

In this section we give a mechanism to remove resources, that is, to change
the status of weakening and/or contraction from explicit to implicit. This is
dual to the operation adding resources to terms presented in Section 3. Whereas
adding is only defined within the implicit base, removing is defined in both bases.
As adding, removing is not only done on a static level, but also on a dynamic
one. Thus for example, removing translates any csw-reduction sequence into a
B-reduction sequence, for any B ∈ {s, cs, sw}.

We first define the collapsing function SΓz ( ) of a well-formed term t without
contractions s.t. z /∈ fv(t) as follows:

SΓz (w) :=

{

w if w /∈ Γ
z if w ∈ Γ

SΓz (uv) := SΓz (u)S
Γ
z (v)

SΓz (λw.u) := λw.SΓz (u), if w /∈ Γ
SΓz (u[w/v]) := SΓz (u)[w/S

Γ
z (v)], if w /∈ Γ

SΓz (Ww(v)) :=

{

SΓz (v) SΓz (w) ∈ fv(SΓz (v))
WSΓz (w)(S

Γ
z (v)) otherwise

The collapsing function renames the variables of a term by removing also the
weakened ones that do not respect well-formedness. Indeed, if Wx(u) appears
in the image term, then x /∈ fv(u). Thus for example Sy,zx (Wy(Wz(x))) = x.

Lemma 13. Let c /∈ B and t ∈ TB. Then,

1. SΓz (t) = t if Γ ∩ fv(t) = ∅.

2. Sx,yz (t) = Rx
z (t) if y /∈ fv(t).

3. delx(S
x1,x2
x (t)) = Sx1,x2

x (delx1,x2
(t)).

4. Sx,x3
z (Sx1,x2

x (t)) = Sx1,x2,x3
z (t).

5. Sx3,x4
z (Sx1,x2

x (t)) = Sx1,x2
x (Sx3,x4

z (t)) if x 6= x3, x4.

6. SΓz (t)[x:=y] = SΓz (t[x:=y]) if x, y /∈ Γ, z.

Proof. All the statements are straightforward by induction on size(t).

A well-formed term t is said to bewell-signed iff for every variable x ∈ fv(t),
x ∈ fv+(t) implies |t|x = |t|+x . Thus for example, Wx(y)Wx(z) and x(yx) are
well-signed while Wx(y)x does not.

Lemma 14. Let c /∈ B. Suppose t, u ∈ TB are well-signed. Then,

1. delΓ(t) = t if x ∈ Γ implies x ∈ fv+(t).

2. SΓ,yz (t) = Ry
z(S

Γ
z (t)) if y ∈ fv+(t).

3. delx(S
Γ
z (t)) = SΓz (delx(t)) with x /∈ Γ and x 6= z.

4. Sy,zx (t){x/u} = t{{y/u}}{{z/u}} if (|t|+y ≥ 1 or |t|+z ≥ 1) and fv(t)∩fv(u) =
∅.

5. Sx,yz (t{w/u}) = Sx,yz (t){w/Sx,yz (u)} if fv(t)∩ fv(u) = ∅ and x, y cannot be
both in t or in u.
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6. If t →B t′, then SΓz (t) →B SΓz (t
′).

Proof. All the properties can be shown by induction on size(t), except the
last one which can be shown by induction on the reduction relation.

The function RRA( ) : TB 7→ TB\A removes A ⊆ R from a B-term.

RRA(x) := x
RRA(λx.t) := λx.RRA(t)
RRA(t u) := RRA(t) RRA(u)
RRA(t[x/u]) := RRA(t)[x/RRA(u)]

RRA(Wx(t)) :=

{

Wx(RRA(t))
RRA(t)

if w /∈ A

if w ∈ A

RRA(C
y|z
x (t)) :=







C
y|z
x (RRA(t))

Sy,zx (dely,z(RRA(t)))
Sy,zx (RRA(t))

if c /∈ A

if c ∈ A & x ∈ fv+(C
y|z
x (t))

if c ∈ A & x /∈ fv+(C
y|z
x (t))

It is worth noticing that RRA(t) is always a well-signed term when c ∈ A.

For example, RRc(C
x1|x2
x (C

y1|y2
y (Wy1

(Wy2
(x1)))[y/x2)) = Wy(x)[y/x] and

RRw(Wx(z1) Wy(z2)) = z1 z2. More interestingly, RRc(C
x1|x3
y2 (Wx1

(y1)x3)) is
y1y2 and not Wy2

(y1)y2. This is because when projecting contractions, we do
not want to leave negative variables whose positive occurrences come from the
image of the projection. This is particularly useful when projecting a SCa-
reduction step. Indeed, let us suppose

t0
=

C
y1|y2
x (C

x1|x3
y2 (Wx1(y1)x3))[x/z] →SCa C

z1|z2
z (C

x1|x3
y2 (Wx1(y1)x3)[y1/z1][y2/z2])

=
t1

Then, projecting contractions gives

RRc(t0) = (xx)[x/z] →SDup (y1y2)[y1/z][y2/z] = RRc(t1)

Remark that the removing function RRA( ) is the identity if the resources A
to be removed are not in the term, i.e. RRA(t) = t if t ∈ TB\A.

The operation RRA( ) enjoys the following properties:

Lemma 15. Let t ∈ TB. Then, for all A ⊆ R

1. RΓ
∆(RRA(t)) = RRA(R

Γ
∆(t)).

2. fv+(RRA(t)) = fv+(t).

3. fv(RRA(t)) = fv(t) if w ∈ B \A, fv(RRA(t)) ⊆ fv(t) otherwise.

4. RRA(t)[x:=y1...yn]
= RRA(t[x:=y1...yn]

) if c /∈ B.

5. delΓ(RRA(t)) = RRA(delΓ(t)).
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Proof. By induction on size(t).

Lemma 16. Let t, u ∈ TB and A ⊆ R. If t{x/u} ∈ TB, then RRA(t{x/u}) =
RRA(t){x/RRA(u)}.

Proof. If x /∈ fv(t) then the property is straightforward so that suppose x ∈
fv(t). We first prove RRA(t{x/u}) = RRA(t){x/RRA(u)} when |t|+x ≤ 1. Now,
to prove in the general case that RRA(t{x/u}) = RRA(t){x/RRA(u)} we proceed
by induction on |t|+x .

• If |t|+x = n+ 1 ≥ 2, then c /∈ B. We have

RRA(t{x/u}) =
RRA(t[x:=x1...xn]{x1/u} . . . {xn/u}{x/u}) =i.h.

RRA(t[x:=x1...xn]){x1/RRA(u)} . . . {xn/RRA(u)}{x/RRA(u)} =L. 15:4

RRA(t)[x:=x1...xn]{x1/RRA(u)} . . . {xn/RRA(u)}{x/RRA(u)} =
RRA(t){x/RRA(u)}

We now show RRA(t{x/u}) = RRA(t){x/RRA(u)} when |t|+x ≤ 1. We
proceed by induction on 〈ox(t), size(t)〉.

• If |t|+x = 0 we have three cases.

– If |fv(t)|x = 0 or w /∈ B then : RRA(t{x/u}) = RRA(delx(t)) =L. 15:5

delx(RRA(t)) = RRA(t){x/RRA(u)}.

– If |fv(t)|x > 0 and w ∈ B and w /∈ A then :

RRA(t{x/u}) =
RRA(Wfv(u)\fv(t)(delx(t))) =
Wfv(u)\fv(t)(RRA(delx(t))) =L. 15:5

Wfv(u)\fv(t)(delx(RRA(t))) =L. 15:3

Wfv(RRA(u))\fv(RRA(t))(delx(RRA(t))) = RRA(t){x/RRA(u)}

– If |fv(t)|x > 0 and w ∈ B and w ∈ A then :

RRA(t{x/u}) =
RRA(Wfv(u)\fv(t)(delx(t))) =
RRA(delx(t)) =L. 15:5

delx(RRA(t)) = RRA(t){x/RRA(u)}

• We now consider the case where |t|+x = 1

– If t = x then RRA(x){x/RRA(u)} = RRA(u) = RRA(x{x/u}).

– The case t = λy.v is straightforward by induction.

– Cases t = v w, t = v[y/w], t = Wy(v) are easily done by the i.h. and
Lemma 15.
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– t = C
y1|y2
y (v). Most of the cases are done using the i.h. and

Lemma 15 except the one where y = x & c ∈ A. We use the following
notations: Γ = fv(u), ∆,Π are sets of fresh variables, Γ1 = {x ∈
Γ||Γ|+x ≥ 1}, Γ0 = Γ \ Γ1, ∆1,Π1,∆0,Π0 are similarly defined.

RRc(C
y1|y2
x (v)){x/RRc(u)} =

Sy1,y2
x (dely1,y2

(RRc(v))){x/RRc(u)} =L. 14:4

dely1,y2
(RRc(v)){{y1/RRc(u)}}{{y2/RRc(u)}} =L. 4:7

RRc(v){y1/RRc(u)}{y2/RRc(u)} =
RRc(v){y1/R

∆
Γ (RΓ

∆(RRc(u)))}{y2/R
Π
Γ (R

Γ
Π(RRc(u)))} =L. 15:1

RRc(v){y1/R
∆
Γ (RRc(R

Γ
∆(u)))}{y2/R

Π
Γ (RRc(R

Γ
Π(u)))} =L. 13:2

RRc(v){y1/S
∆,Π
Γ (RRc(R

Γ
∆(u)))}{y2/S

∆,Π
Γ (RRc(R

Γ
Π(u)))} =L. 14:5 & L. 13:1

S
∆,Π
Γ (RRc(v){y1/RRc(R

Γ
∆(u))}{y2/RRc(R

Γ
Π(u))}) =i.h.

S
∆0,Π0

Γ0
(S∆1,Π1

Γ1
(RRc(v{y1/R

Γ
∆(u)}{y2/R

Γ
Π(u)}))) =L. 14:1

S
∆0,Π0

Γ0
(S∆1,Π1

Γ1
(del∆1,Π1

(RRc(v{y1/R
Γ
∆(u)}{y2/R

Γ
Π(u)})))) =

RRc(C
∆|Π
Γ (v{y1/R

Γ
∆(u)}{y2/R

Γ
Π(u)})) =

RRc(C
y1|y2
x (v){x/u})

To illustrate Lemma 16, let us consider the terms t = C
y|z
x (Wy(z)) and

u = Wa(λw.w). Then t{x/u} = C
a1|a2
a (Wa1

(Wa2
(λw.w))). We thus have:

RRc(t{x/u}) = Sa1,a2
a (Wa1

(Wa2
(λw.w))) = Wa(S

a1,a2
a (λw.w)) = Wa(λw.w)

and
RRc(t){x/RRc(u)} = x{x/Wa(λw.w)} = Wa(λw.w)

Calculi of the prismoid include rules/equations to handle substitution but
also other rules/equations to handle resources {c, w}. Moreover, implicit (resp.
explicit) substitution is managed by the β-rule (resp. the whole system s). We
can then split the reduction relation →B in two different parts: one for (implicit
or explicit) substitution, which can be strictly projected into itself, and another
one for weakening and contraction, which can be projected into a more subtle
way given by the following statement.

Theorem 2 (Projection). Let A ⊆ R such that A ⊆ B ⊆ S and let t ∈ TB.
If t ≡B u, then RRA(t) ≡B\A RRA(u). Otherwise:

• If s /∈ B:

– If t ⇒β u, then RRA(t) →
+
β RRA(u).

– If t ⇒B\β u, then RRA(t) →
∗
B\β\A RRA(u) and RRB(t) = RRB(u).

• Otherwise,

– If t ⇒s u, then RRA(t) →
+
s RRA(u).

– If t ⇒B\s u, then RRA(t) →
∗
B\s\A RRA(u).
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Proof. By induction on the reduction relation. For the points involving RRA( ),
one can first consider the case where A is a singleton. Then the general result
follows from two successive applications of the simpler property.

We only show here the following interesting case where c ∈ A.

Let t = C
y|z
x (t1)[x/u] →SCa C

∆|Π
Γ (t1[y/R

Γ
∆(u)][z/R

Γ
Π(u)]) = t′, with y, z ∈

fv+(t1), Γ = fv(u) and Π,∆ fresh. Then,

RRA(t) =
Sy,zx (dely,z(RRA(t1)))[x/RRA(u)] =L. 14:1

Sy,zx (RRA(t1))[x/RRA(u)] =L. 14:2

Rz
x(R

y
x(RRA(t1)))[x/RRA(u)] →SDup

RRA(t1)[y/RRA(u)][z/RRA(u)] =
RRA(t1)[y/R

∆
Γ (RΓ

∆(RRA(u)))][z/R
Π
Γ (R

Γ
Π(RRA(u)))] =L. 13:2

RRA(t1)[y/S
∆0

Γ0
(S∆1

Γ1
(RRA(R

Γ
∆(u))))][z/S

Π0

Γ0
(SΠ1

Γ1
(RRA(R

Γ
Π(u))))] =L. 13:1

S
∆0,Π0

Γ0
(S∆1,Π1

Γ1
(RRA(t1)[y/RRA(R

Γ
∆(u))][z/RRA(R

Γ
Π(u))])) =L. 14:1

S
∆0,Π0

Γ0
(S∆1,Π1

Γ1
(del∆1,Π1

(RRA(t1)[y/RRA(R
Γ
∆(u))][z/RRA(R

Γ
Π(u))]))) = RRA(t

′)

The other cases use Lemmas 13, 14, 15, and 16.

For instance, the reduction t = C
y|z
x (y z)[x/a] →SCa C

a1|a2
a ((y z)[y/a1][z/a2]) =

t′ is projected into RRc(t) = (x x)[x/a] →SDup (x y)[x/a][y/a] =α (y z)[y/a][z/a] =
RRc(t

′).
It is now time to discuss the need of positive conditions (conditions in-

volving positive free variables) in the specification of the reduction rules of the
prismoid. For that, let us consider a relaxed form of the SS1-rule: t[x/u][y/v] →
t[x/u[y/v]] if y ∈ fv(u) \ fv(t) (instead of y ∈ fv+(u) \ fv(t)).

The need for the condition y ∈ fv(u) is well-known [Blo97], otherwise
PSN does not hold. The need for the condition y /∈ fv(t) is also natural
if one wants to preserve well-formed terms. Now, the reduction step t1 =
x[x/Wy(z)][y/y

′] →SS1 x[x/Wy(z)[y/y
′]] = t2 in the calculus with sorts {s, w}

cannot be projected into RRw(t1) = x[x/z][y/y′] →SS1 x[x/z[y/y′]] = RRw(t2)
since y /∈ fv(z). Similar examples can be given to justify positive conditions in
rules SDup, SCa and CS.

Lemma 17. Let t ∈ T∅ and let A ⊆ R. Then RRA(ARA(t)) = t.

Proof. By induction on size(t).

The following property states that administration of weakening and/or con-
traction is terminating in any calculus.

Lemma 18. If s /∈ B, then the reduction relation →B\β is terminating. If
s ∈ B, then the reduction relation →B\s is terminating.

Proof. The reduction relation →B\β is contained in →B\s so it is sufficient
to show termination of the biggest relation. We show that w →B\s w′ im-
plies 〈S(w′), I(w′), L(w′)〉 <lex 〈S(w), I(w), L(w)〉 where S(t) , I(t) and L(t) are
defined by induction as follows :

27



S(x) := 1
S(λx.t) := S(t)
S(v w) := S(v) + S(w)
S(Wx(t)) := S(t)

S(C
y|z
x (t)) := S(t)

S(t[x/u]) := S(t) + Mx(t).S(u)

L(x) := 1
L(λx.t) := L(t)
L(t u) := L(t) + L(u)
L(Wx(t)) := L(t)

L(C
y|z
x (t)) := L(t) + 1

L(t[x/u]) := L(t).(L(u) + 1)

I(x) := 2
I(λx.t) := 2.I(t) + 2
I(t u) := 2.(I(t) + I(u)) + 2
I(Wx(t)) := I(t) + 1

I(C
y|z
x (t)) := 2.I(t)

I(t[x/u]) := I(t).(I(u) + 1)

with Mx(t) defined as follows :
If x /∈ fv(t) then Mx(t) := 1, otherwise :

Mx(x) := 1
Mx(λy.t) := Mx(t)

Mx(t u) :=







Mx(t)
Mx(u)
Mx(t) + Mx(u)

if x ∈ fv(t) \ fv(u)
if x ∈ fv(u) \ fv(t)
if x ∈ fv(t) ∩ fv(u)

Mx(Wy(t)) :=

{

1
Mx(t)

if x = y
if x 6= y

Mx(C
y1|y2
y (t)) :=

{

1 + My1(t) + My2(t)
Mx(t)

if x = y
if x 6= y

Mx(t[y/u]) :=







Mx(t) + My(t).(Mx(u) + 1)
My(t).(Mx(u) + 1)
Mx(t)

if x ∈ fv(u) ∩ fv(t)
if x ∈ fv(u) \ fv(t)
otherwise

We conclude this section by relating adding and removing resources :

Lemma 19. Let ∅ 6= A ⊆ R. If t ∈ TA is in A-normal form then w ∈ A implies
t ≡A Wfv(t)\fv(RRA(t))(ARA(RRA(t))) and w /∈ A implies t ≡A ARA(RRA(t)).

Proof. By induction on size(t).

• If t = x, then x = ARA(RRA(x)) and fv(t) \ fv(RRA(t)) = ∅

• If t = λx.u, then we reason by cases.

– w ∈ A. We know u ≡A Wfv(u)\fv(RRA(u))(ARA(RRA(u))) by the i.h.
But t is in A-normal form, so fv(u) \ fv(RRA(u)) ⊆ {x}, otherwise
it can be reduced by LW. Now, if fv(u) \ fv(RRA(u)) = ∅, then
also fv(t) \ fv(RRA(t)) = ∅ and the claim t ≡A ARA(RRA(λx.u))
immediately holds. Otherwise, fv(u) \ fv(RRA(u)) = {x} and t ≡A

λx.Wx(ARA(RRA(u))) = ARA(RRA(t)).
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– w /∈ A. Then λx.u ≡A (i.h.) λx.ARA(RRA(u)) = ARA(RRA(λx.u)).

• If t = u v, then we reason by cases.

– w ∈ A. Then,

t ≡A Wfv(u)\fv(RRA(u))(ARA(RRA(u))) Wfv(v)\fv(RRA(v))(ARA(RRA(v)))

by the i.h. But t is an A-normal form, thus fv(u) \ fv(RRA(u)) =
fv(v)\fv(RRA(v)) = ∅, (otherwise it could be reduced by AWl or AWr).
Hence, fv(t) = fv(RRA(t)) and t ≡A ARA(RRA(u))ARA(RRA(v)). If
c ∈ A then t ≡A ARA(RRA(t)) since RRA(u) and RRA(v) have no
variable in common. If c /∈ A then t ≡A ARA(RRA(t)) by definition
of the function ARA( ).

– w /∈ A. Then, t ≡A ARA(RRA(u)) ARA(RRA(v)) by i.h. We have t ≡A

ARA(RRA(t)) since RRA(u) and RRA(v) have no variable in common.

• If t = Wx(u), then t ≡A Wx(Wfv(u)\fv(RRA(u))(ARA(RRA(u)))) by the i.h.
This last term is equal to Wfv(t)\fv(RRA(t))(ARA(RRA(t))) since x ∈ fv(t)
but x /∈ fv(RRA(t)).

• If t = C
y|z
x (u), then t ≡A C

y|z
x (Wfv(u)\fv(RRA(u))(ARA(RRA(u)))) by the i.h.

We know also that y, z ∈ fv+(u) since otherwise t could be reduced by
CW2 or CW1. We now reason by cases.

– w ∈ A. Since t is in A-normal form, we have fv(u) \ fv(RRA(u)) = ∅,
otherwise t could be reduced by CW2 or CW1. Thus we get t ≡A

C
y|z
x (ARA(RRA(u))). But t is well-formed, so that y, z ∈ fv(u) and x /∈

fv(u). Since y, z ∈ fv+(u), then y, z ∈ fv+(RRA(u)) ⊆ fv(RRA(u))
and also x /∈ fv(RRA(u)).

Since c ∈ A, then by definition RRA(t) = Sy,zx (dely,z(RRA(u))), so
that x ∈ fv(RRA(t)) and we get fv(t) = fv(RRA(t)).

Notice that RRA(u) can be neither a variable (otherwise t would
not be well-formed) nor an abstraction (otherwise t could be re-
duced by CL), so that RRA(u) = w v, and thus ARA(RRA(u)) =

C
Υ|Ψ
Φ (RΦ

Υ(ARA(w)) RΦ
Ψ(ARA(v))) for Φ = fv(w) ∩ fv(v) and Υ and

Ψ fresh sets of variables.

Hence, t ≡A C
y|z
x (C

Υ|Ψ
Φ (RΦ

Υ(ARA(w)) R
Φ
Ψ(ARA(v)))).

Now it would suffice that y ∈ fv(w) \ fv(v) and z ∈ fv(v) \ fv(w)
(the symmetric case is similar) to prove that this term is in fact:

C
y|z
x (C

Υ|Ψ
Φ (RΦ

Υ(ARA(w)) R
Φ
Ψ(ARA(v)))) =

C
y|z
x (C

Υ|Ψ
Φ (ARA(R

Φ,x
Υ,y(R

y
x(w))) ARA(R

Φ,x
Ψ,z(R

z
x(v))))) =

C
y|z
x (C

Υ|Ψ
Φ (RΦ,x

Υ,y(ARA(R
y
x(w))) R

Φ,x
Ψ,z(ARA(R

z
x(v))))) =

ARA(R
y
x(w) R

z
x(v)) =L. 13:2

ARA(S
y,z
x (RRA(u))) =L. 14:1

ARA(S
y,z
x (dely,z(RRA(u)))) =

ARA(RRA(t))
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By well-formedness we know that y, z ∈ fv(w v).

Suppose that one of them, say y, is both in w and in v. Then y ∈ Φ,
so that

t ≡A Cy|z
x (C

(Υ′,y′)|(Ψ′,y′′)
Φ′,y (RΦ

Υ(ARA(w))) R
Φ
Ψ(ARA(v)))

which we can rearrange using ≡CCA into

t ≡A Cy|y′′

x (C
(Υ′,y′)|(Ψ′,z)
Φ′,y (RΦ

Υ(ARA(w)) R
Φ
Ψ(ARA(v))))

if z ∈ fv(w) \ fv(v), or into

t ≡A Cy|y′

x (C
(Υ′,z)|(Ψ′,y′′)
Φ′,y (RΦ

Υ(ARA(w)) R
Φ
Ψ(ARA(v))))

if z ∈ fv(v) \ fv(w), or into

t ≡A Cy|z
x (C

(Υ′′,y′,y′′)|(Ψ′′,z′,z′′)
Φ′′,y,z (RΦ

Υ(ARA(w)) R
Φ
Ψ(ARA(v))))

if z ∈ fv(v) ∩ fv(w).

In the first (resp. second and third) case, t can be CAL (resp. CAR

and (CAL or CAR))-reduced on C
y′|z
y () (resp. C

z|y′′

y () and (C
y′|z′

y () or

C
y′′|z′′

z ())). In both cases, it contradicts the fact that t is in A-normal
form. Hence, y /∈ Φ (and similarly z /∈ Φ).

Now suppose that both y and z are on the same side, say in w. Then

t can be CAL-reduced on C
y|z
x (). Similarly, they cannot be both in

v. Hence one of them is only in w, and the other is only in v, as
required.

– w /∈ A. Then, we have y, z ∈ fv(u), otherwise t could be reduced by
CGc. The reasoning is then similar to the previous case except that
here RRA(u) cannot be a variable otherwise it would be CGc-reducible;
and y, z ∈ RRA(u) by the i.h. and the fact that ARA() preserves free
variables.

To illustrate Lemma 19 let us consider the term t = Ww(λx.C
y|z
x (y z)). Then,

RR{c,w}(t) = λx.x x, AR{c,w}(RR{c,w}(t)) = λx.C
y|z
x (y z). We can conclude since

fv(t) \ fv(RR{c,w}(t)) = w.

Corollary 20. Let ∅ 6= A ⊆ R. Then, the unique A-normal form of t ∈ TA is
ARA(RRA(t)) if w /∈ A, and Wfv(t)\fv(RRA(t))(ARA(RRA(t))) if w ∈ A.

Proof. Suppose w ∈ A. Termination of →A (Lemma 18) implies that there
is t′ in A-normal form such that t →∗

A
t′. By Lemma 7, fv(t) = fv(t′) and

by Theorem 2, RRA(t) = RRA(t
′). Since t′ is in A-normal form, then t′ ≡A

Wfv(t′)\fv(RRA(t′))(ARA(RRA(t
′))) by Lemma 19 and thus we have that t′ ≡A

Wfv(t)\fv(RRA(t))(ARA(RRA(t))). To show uniqueness, let us consider two A-
normal forms t′1 and t′2 of t. By the previous remark, both t′1 and t′2 are congruent
to the term Wfv(t)\fv(RRA(t))(ARA(RRA(t))) which concludes the case. The case
w /∈ A is similar.
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5. Untyped Properties

We first show PSN for all the calculi of the prismoid. The proof will be split
in two different subcases, one for each base. This dissociation comes from the
fact that redexes are erased by β-reduction in base BI while they are erased by
SGc and/or SW1-reduction in base BE .

Theorem 3 (PSN). Let B ⊆ S and A = B \ {s}. If t ∈ T∅ & t ∈ SN ∅, then
ARA(t) ∈ SNB.

Proof. There are three cases, one for BI and two subcases for BE .

• Suppose s /∈ B. We first show that u ∈ TB & RRB(u) ∈ SN ∅ imply
u ∈ SNB. For that we apply Theorem 6 in the appendix with A1 =→β ,
A2 =→B\β , A =→β and R = RRB( ), using Theorem 2 and Lemma 18.
Take u = ARB(t). Then RRB(ARB(t)) =L.17 t ∈ SN ∅ by hypothesis. Thus,
ARB(t) ∈ SNB.

• Suppose B = {s}. The proof of ARs(t) = t ∈ SNs follows a modular
proof technique to show PSN of calculi with full composition which is
completely developed in [Kes08]. Details concerning the s-calculus can be
found in [Ren08].

• Suppose s ∈ B. Then B = {s} ∪ A. We show that u ∈ TB & RRA(u) ∈
SNs imply u ∈ SNB. For that we apply Theorem 6 in the appendix
with A1 =→s, A2 =→B\s, A =→s and R = RRA( ), using Theorem 2 and
Lemma 18.

Now, take u = ARA(t). We have RRA(ARA(t)) =L.17 t ∈ SN ∅ by hypothesis
and t ∈ SNs by the previous point. Thus, ARA(t) ∈ SNB.

Confluence of each calculus of the prismoid is based on that of the λ∅-
calculus [Bar84]. For any A ⊆ R, consider xc : T{s}∪A 7→ TA which replaces
explicit by implicit substitution.

xc(y) := y xc(Wy(t)) := Wy(xc(t))

xc(t u) := xc(t) xc(u) xc(C
y1|y2
y (t)) := C

y1|y2
y (xc(t))

xc(λy.t) := λy.xc(t) xc(t[y/u]) := xc(t){y/xc(u)}

Lemma 21. Let t ∈ TB. Then t →∗
B
xc(t).

Proof. By induction on size(t) using Lemma 9.

Lemma 22. Let t ∈ TB. Then RRB\s(xc(t)) = xc(RRB\s(t)).

Proof. By induction on size(t) using Lemma 16.

Lemma 23. Let t ∈ Ts. If t →s u, then xc(t) →∗
β xc(u).
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t

xc(RRA(t))

t1 xc(RRA(t1)) xc(RRA(t2)) t2

xc(t1) t3 xc(t2)

WΓ1(ARA(RRA(xc(t1)))) WΓ2(ARA(RRA(xc(t2))))

WΓ1∪∆1
(ARA(t3)) ≡B WΓ2∪∆2

(ARA(t3))

∗

β

∗

β

∗

β

∗

β

∗

B

∗

B

B ∗ ∗ B

A ∗ ∗ A

Figure 3: Confluence diagram

Proof. By induction on t →s u using the simplified (but equivalent) notion of
substitution on s-terms given in Section 2.

Theorem 4 (Confluence). Every calculus λB of the prismoid is confluent
modulo ≡B.

Proof. The proof is diagrammatically described in Figure 3.
Let t →∗

B
t1 and t →∗

B
t2. We remark that B = A or B = {s} ∪ A,

with A ⊆ R. We have RRA(t) →
∗
B\A RRA(ti) (i=1,2) by Theorem 2. Further-

more xc(RRA(t)) →
∗
β xc(RRA(ti)) (i=1,2) by Lemma 23 and xc(RRA(ti)) →

∗
β t3

(i=1,2) for some t3 ∈ T∅ by confluence of the λ-calculus [Bar84]. We also
have ARA(RRA(xc(ti))) =L. 22 ARA(xc(RRA(ti))) →

∗
A
W∆i

(ARA(t3)) for some ∆i

(i=1,2) by Theorem 1.
Lemmas 21 and Corollary 20 give ti →

∗
B
xc(ti) →

∗
A

WΓi
(ARA(RRA(xc(ti))))

for some Γi (i=1,2). Then we get WΓi
(ARA(RRA(xc(ti)))) →

∗
A
WΓi∪∆i

(ARA(t3))
(i=1,2). Now, →∗

A
⊆ →∗

B
so in order to close the diagram we reason as follows.

If w /∈ B, then Γ1∪∆1 = Γ2∪∆2 = ∅ and we are done. If w ∈ B, then→B pre-
serves free variables by Lemma 7 so that fv(t) = fv(ti) = fv(WΓi∪∆i

(ARA(t3)))
(i=1,2) which gives Γ1 ∪∆1 = Γ2 ∪∆2.

6. Typing

We now introduce simply typed terms for all the calculi of the prismoid,
and show that they all enjoy strong normalisation. Types are built over a
countable set of atomic symbols and the type constructor →.

An environment is a finite set of pairs of the form x : T . If Γ = {x1 :
T1, ..., xn : Tn} is an environment then the domain of Γ is dom(Γ) = {x1, ..., xn}.
The renaming of an environment is the renaming of its domain. Thus for
example Rx,y

x′,y′(x : A, y : B) = x′ : A, y′ : B. Two environments Γ and ∆ are
said to be compatible if x : T ∈ Γ and x : U ∈ ∆ imply T = U . Two
environments Γ and ∆ are said to be disjoint if there is no common variable
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x : T ⊢B x : T

Γ ⊢B t : U

Γ )B x : T ⊢B λx.t : T → U

Γ ⊢B u : U ∆ ⊢B t : T
(s ∈ B)

Γ ⊎B (∆ )B x : U) ⊢B t[x/u] : T

Γ ⊢B t : T → U ∆ ⊢B u : T

Γ ⊎B ∆ ⊢B tu : U

Γ ⊢B t : T
(w ∈ B)

Γ;x : U ⊢B Wx(t) : T

Γ ⊢B t : T
(c ∈ B)

x : U ; (Γ )B {y : U, z : U}) ⊢B Cy|z
x (t) : T

Figure 4: Typing rules

in their environments. Compatible union (resp. disjoint union) is defined
to be the union of compatible (resp. disjoint) environments.

Typing judgements have the form Γ ⊢ t : T for t a term, T a type and Γ
an environment. Typing rules described in Figure 6 extend the inductive rules
for well-formed terms (Section 2) with type annotations. Thus, typed terms are
necessarily well-formed and each set of sorts B has its own set of typing rules.

A term t ∈ TB has type T (written t ∈ T T
B
) iff there is Γ s.t. Γ ⊢B t : T . A

term t ∈ TB is said to be well-typed iff there is a type T s.t. t ∈ T T
B
.

Lemma 24. If Γ ⊢B t : T , then

1. fv(t) = dom(Γ),

2. Λ;R
dom(Π)
S (Π) ⊢B R

dom(Π)
S (t) : T , where Γ = Λ;Π and S is a fresh set of

variables.

3. RRA(t) ∈ T T
B\A, for every A ⊆ R.

Proof. By induction on Γ ⊢B t : T .

Theorem 5 (Subject Reduction). If t ∈ T T
B

& t →B u, then u ∈ T T
B
.

Proof. By induction on the reduction relation using Lemma 24. The proof is
very similar to that of Lemma 7.

We consider the case where C
y|z
x (s)[x/v] →SCa C

∆|Π
Γ (s[y/RΓ

∆(v)][z/R
Γ
Π(v)]),

with Γ = fv(u) & ∆,Π fresh. Since c ∈ B we know that ⊎B is disjoint union
so that the type derivation of t looks like:

Γ ⊢ v : C

Λ ⊢ s : T

x : C; Λ )B {y : C, z : C} ⊢ Cy|z
x (s) : T

Γ; (Λ )B {y : C, z : C}) ⊢ Cy|z
x (s)[x/v] : T
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We then construct the following type derivation:

Γ ⊢ v : C

Π ⊢ RΓ
Π(v) : C

Γ ⊢ v : C

∆ ⊢ RΓ
∆(v) : C Λ ⊢ s : T

∆; (Λ )B y : C) ⊢ s[y/RΓ
∆(v)] : T

Π;∆; ((Λ )B y : C) )B z : C) ⊢ s[y/RΓ
∆(v)][z/R

Γ
Π(v)] : T

=============================================
Γ; (Λ )B y : C )B z : C) ⊢ C

∆|Π
Γ (s[y/RΓ

∆(v)][z/R
Γ
Π(v)]) : T

We conclude since Λ )B {y : C, z : C} = Λ )B y : C )B z : C.

Corollary 25 (Strong Normalisation). Let t ∈ T T
B
, then t ∈ SNB.

Proof. Let A ⊆ R so that B = A or B = A ∪ {s}. It is well-known that
(simply) typed λ∅-calculus is strongly normalising (see for example [Bar84]).
It is also straightforward to show that PSN for the λs-calculus implies strong
normalisation for well-typed s-terms (see for example [Kes07]). By Theorem 2
any infinite B-reduction sequence starting at t can be projected into an infinite
(B \ A)-reduction sequence starting at RRA(t). By Lemma 24 RRA(t) is a well-
typed (B \ A)-term, that is, a well-typed term in λ∅ or λs. This leads to a
contradiction.

7. Conclusion and Future Work

The prismoid of resources is an homogeneous framework to define λ-calculi
being able to control weakening, contraction and linear substitution. The for-
malism is based on MELL Proof-Nets so that the computational behaviour of
substitution is not only based on the propagation of substitution through terms
but also on the decreasingness of the multiplicity of variables that are affected
by substitutions. All calculi of the prismoid enjoy sanity properties such as sim-
ulation of β-reduction, confluence, preservation of β-strong normalisation and
strong normalisation for typed terms.

The technology used in the prismoid could also be applied to implement
higher-order rewriting systems. Indeed, it seems possible to extend these ideas
to different frameworks such as CRSs [Klo80], ERSs [Kha90] or HRSs [Nip91].

Another open problem concerns meta-confluence, that is, confluence for
terms with meta-variables. This could be useful in the framework of Proof
Assistants.

Finally, a more technical question is related to the operational semantics of
the calculi of the prismoid. It seems possible to extend the ideas in [AG09] to our
framework in order to identify those reduction rules of the prismoid that could
be transformed into equations. Equivalence classes will be bigger, but reduction
rules will coincide exactly with those of the graphical formalism in [AG09].
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A. Appendix

Theorem 6. Let A1 and A2 (resp. E) be two reduction (resp. equivalence)
relations on s. Let A be a reduction relation on S and let consider a relation
R ⊆ s× S. Suppose that for all u, v, U

(P0) u R U & u E v imply ∃V s.t. v R V & U = V .

(P1) u R U & u A1 v imply ∃V s.t. v R V & U A∗ V .

(P2) u R U & u A2 v imply ∃V s.t. v R V & U A+ V .

(P3) The relation A1 modulo E is well-founded.

Then, t R T & T ∈ SN A imply t ∈ SN (A1∪A2)/E .

Proof. A proof by contradiction can be easily done as follows. Suppose t /∈
SN (A1∪A2)/E . Then, there is an infinite (A1 ∪ A2)/E -reduction sequence starting
at t, and since A1/E is a well-founded relation by P3, this reduction sequence
has necessarily the form

t(A1/E)
∗t1(A2/E)

+t2(A1/E)
∗t3(A2/E)

+ . . .∞

and can be projected by P0, P1 and P2 into an infinite A-reduction sequence as
follows:

t1 (A1/E)
∗ t2 (A2/E)

+ t3 (A1/E)
∗ . . . ∞

T1 A∗ T2 A+ T3 A∗ . . . ∞

We thus get a contradiction with the fact the T ∈ SN A.

B. The lambda-calculus

Rules :
(β) (λx.t) u → t{x/u}
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C. The lambda c-calculus

Equations :

(CCA) C
x|z
w (C

y|p
x (t)) ≡ C

x|y
w (C

z|p
x (t))

(CC) C
y|z
x (t) ≡ C

z|y
x (t)

(CCC) C
y′|z′

x′ (C
y|z
x (t)) ≡ C

y|z
x (C

y′|z′

x′ (t)) x 6= y′, z′ & x′ 6= y, z

Rules :
(β) (λx.t) u → t{x/u}

(CL) C
y|z
w (λx.t) → λx.C

y|z
w (t)

(CAL) C
y|z
w (t u) → C

y|z
w (t) u y, z /∈ fv(u)

(CAR) C
y|z
w (t u) → t C

y|z
w (u) y, z /∈ fv(t)

(CGc) C
y|z
w (t) → Rz

w(t) y /∈ fv(t)

D. The lambda s-calculus

Equations :
(SSC) t[x/u][y/v] ≡ t[y/v][x/u] y /∈ fv(u) & x /∈ fv(v)

Rules :
(B) (λx.t) u → t[x/u]
(V) x[x/u] → u
(SGc) t[x/u] → t x /∈ fv(t)
(SDup) t[x/u] → t[y]x [x/u][y/u] |t|x > 1 & y fresh
(SL) (λy.t)[x/u] → λy.t[x/u]
(SAL) (t v)[x/u] → t[x/u] v x /∈ fv(v)
(SAR) (t v)[x/u] → t v[x/u] x /∈ fv(t)
(SS) t[y/v][x/u] → t[y/v[x/u]] x /∈ fv(t) & x ∈ fv(v)

E. The lambda w-calculus

Equations :
(WWC) Wx(Wy(t)) ≡ Wy(Wx(t))

Rules :
(β) (λx.t) u → t{x/u}
(LW) λx.Wy(t) → Wy(λx.t) x 6= y
(AWl) Wy(u)v → Wy\fv(v)(uv)
(AWr) uWy(v) → Wy\fv(u)(uv)
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F. The lambda cs-calculus

Equations :

(CCA) C
x|z
w (C

y|p
x (t)) ≡ C

x|y
w (C

z|p
x (t))

(CC) C
y|z
x (t) ≡ C

z|y
x (t)

(CCC) C
y′|z′

x′ (C
y|z
x (t)) ≡ C

y|z
x (C

y′|z′

x′ (t)) x 6= y′, z′ & x′ 6= y, z
(SSC) t[x/u][y/v] ≡ t[y/v][x/u] y /∈ fv(u) & x /∈ fv(v)

Rules :
(B) (λx.t) u → t[x/u]

(CL) C
y|z
w (λx.t) → λx.C

y|z
w (t)

(CAL) C
y|z
w (tu) → C

y|z
w (t)u y, z /∈ fv(u)

(CAR) C
y|z
w (tu) → tC

y|z
w (u) y, z /∈ fv(t)

(CGc) C
y|z
w (t) → Rz

w(t) y /∈ fv(t)
(V) x[x/u] → u
(SGc) t[x/u] → t x /∈ fv(t)
(SL) (λy.t)[x/u] → λy.t[x/u]
(SAL) (tv)[x/u] → t[x/u]v x /∈ fv(v)
(SAR) (tv)[x/u] → tv[x/u] x /∈ fv(t)
(SS) t[x/u][y/v] → t[x/u[y/v]] y /∈ fv(t) & y ∈ fv+(u)

(SCa) C
y|z
x (t)[x/u] → C

∆|Π
Γ (t[y/RΓ

∆(u)][z/R
Γ
Π(u)])







y, z ∈ fv+(t)
Γ = fv(u)
∆,Π fresh

(CS) C
y|z
w (t[x/u]) → t[x/C

y|z
w (u)] y, z ∈ fv+(u)

(SCb) C
y|z
w (t)[x/u] → C

y|z
w (t[x/u]) x 6= w & y, z /∈ fv(u)
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G. The lambda cw-calculus

Equations :

(CCA) C
x|z
w (C

y|p
x (t)) ≡ C

x|y
w (C

z|p
x (t))

(CC) C
y|z
x (t) ≡ C

z|y
x (t)

(CCC) C
y′|z′

x′ (C
y|z
x (t)) ≡ C

y|z
x (C

y′|z′

x′ (t)) x 6= y′, z′ & x′ 6= y, z
(WWC) Wx(Wy(t)) ≡ Wy(Wx(t))

Rules :
(β) (λx.t) u → t{x/u}
(LW) λx.Wy(t) → Wy(λx.t) x 6= y
(AWl) Wy(u)v → Wy\fv(v)(uv)
(AWr) uWy(v) → Wy\fv(u)(uv)

(CL) C
y|z
w (λx.t) → λx.C

y|z
w (t)

(CAL) C
y|z
w (tu) → C

y|z
w (t)u y, z /∈ fv(u)

(CAR) C
y|z
w (tu) → tC

y|z
w (u) y, z /∈ fv(t)

(CW1) C
y|z
w (Wy(t)) → Rz

w(t)

(CW2) C
y|z
w (Wx(t)) → Wx(C

y|z
w (t)) x 6= y, z

(CGc) C
y|z
w (t) → Rz

w(t) y /∈ fv(t)

H. The lambda sw-calculus

Equations :
(WWC) Wx(Wy(t)) ≡ Wy(Wx(t))
(SSC) t[x/u][y/v] ≡ t[y/v][x/u] y /∈ fv(u) & x /∈ fv(v)

Rules :
(B) (λx.t) u → t[x/u]
(LW) λx.Wy(t) → Wy(λx.t) x 6= y
(AWl) Wy(u)v → Wy\fv(v)(uv)
(AWr) uWy(v) → Wy\fv(u)(uv)
(V) x[x/u] → u
(SGc) t[x/u] → t x /∈ fv(t)
(SDup) t[x/u] → t[y]x [x/u][y/u] |t|+x > 1 & y fresh
(SL) (λy.t)[x/u] → λy.t[x/u]
(SAL) (t v)[x/u] → t[x/u] v x /∈ fv(v)
(SAR) (t v)[x/u] → t v[x/u] x /∈ fv(t)
(SS) t[y/v][x/u] → t[y/v[x/u]] x /∈ fv(t) & x ∈ fv(v)
(SW1) Wx(t)[x/u] → Wfv(u)\fv(t)(t)
(SW2) Wy(t)[x/u] → Wy\fv(u)(t[x/u]) x 6= y
(SW) t[x/Wy(u)] → Wy\fv(t)(t[x/u])
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I. The lambda csw-calculus

Equations :

(CCA) C
x|z
w (C

y|p
x (t)) ≡ C

x|y
w (C

z|p
x (t))

(CC) C
y|z
x (t) ≡ C

z|y
x (t)

(CCC) C
y′|z′

x′ (C
y|z
x (t)) ≡ C

y|z
x (C

y′|z′

x′ (t)) x 6= y′, z′ & x′ 6= y, z
(WWC) Wx(Wy(t)) ≡ Wy(Wx(t))
(SSC) t[x/u][y/v] ≡ t[y/v][x/u] y /∈ fv(u) & x /∈ fv(v)

Rules :
(B) (λx.t) u → t[x/u]
(V) x[x/u] → u
(SDup) t[x/u] → t[y]x [x/u][y/u] |t|+x > 1 & y fresh
(SL) (λy.t)[x/u] → λy.t[x/u]
(SAL) (tv)[x/u] → t[x/u]v x /∈ fv(v)
(SAR) (tv)[x/u] → tv[x/u] x /∈ fv(t)
(SS) t[x/u][y/v] → t[x/u[y/v]] y /∈ fv(t) & y ∈ fv+(u)
(SW1) Wx(t)[x/u] → Wfv(u)\fv(t)(t)
(SW2) Wy(t)[x/u] → Wy\fv(u)(t[x/u]) x 6= y
(LW) λx.Wy(t) → Wy(λx.t) x 6= y
(AWl) Wy(u)v → Wy\fv(v)(uv)
(AWr) uWy(v) → Wy\fv(u)(uv)
(SW) t[x/Wy(u)] → Wy\fv(t)(t[x/u])

(SCa) C
y|z
x (t)[x/u] → C

∆|Π
Γ (t[y/RΓ

∆(u)][z/R
Γ
Π(u)])







y, z ∈ fv+(t)
Γ = fv(u)
∆,Π fresh

(CL) C
y|z
w (λx.t) → λx.C

y|z
w (t)

(CAL) C
y|z
w (tu) → C

y|z
w (t)u y, z /∈ fv(u)

(CAR) C
y|z
w (tu) → tC

y|z
w (u) y, z /∈ fv(t)

(CS) C
y|z
w (t[x/u]) → t[x/C

y|z
w (u)] y, z ∈ fv+(u)

(SCb) C
y|z
w (t)[x/u] → C

y|z
w (t[x/u]) x 6= w & y, z /∈ fv(u)

(CW1) C
y|z
w (Wy(t)) → Rz

w(t)

(CW2) C
y|z
w (Wx(t)) → Wx(C

y|z
w (t)) x 6= y, z
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