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Abstract. We consider high-order harmonic generation from a single atom or
molecule and show that the generated harmonic field is proportional to the dipole
velocity. We derive this result by solving Maxwell’s wave equation for an infinitely thin
gas. Hence, the dipole velocity form is the one that relates directly to the harmonic
field, and it should be used as a reference if performing calculations with the dipole or
acceleration forms.
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1. Introduction

The full theory of high-order harmonic generation (HHG) is extremely complicated to

evaluate. Such a theory should account for the build-up of the HHG field starting

from zero photons, and accordingly it involves a quantum description of the emerging

and propagating electromagnetic field. A simpler version of the above involves the

propagation of Maxwell’s equations for a classical electromagnetic field through a

medium in combination with a quantum description of the polarization (see reference [1]

for a review). Even this description is computationally demanding, in particular if

the quantum mechanical input for the polarization is obtained by solving the time-

dependent Schrödinger equation (TDSE) [1] and even more so if the target gas consists

of molecules [2, 3], where lack of spherical symmetry impedes a reduction in the

dimensionality of the problem. Accordingly, to simplify the description, most theory

works, aiming at an evaluation of the HHG spectrum of specific atoms and molecules, are

concerned with the description of the response of a single quantum system to the external

driving field, and indeed this approach has over the years accounted for many important

features of the experimental data (see, for example [4, 5] and references therein).

A central question is then how the spectrum is related to the response from a single

atom or molecule. Does it relate directly to the dipole (Dz),

Sdip(ω) ∝
∣∣∣∣
∫ ∞

−∞
dt〈Ψ(t)|Dz|Ψ(t)〉eiωt

∣∣∣∣
2

, (1)

the dipole velocity (Ḋz)

S(ω) ∝
∣∣∣∣
∫ ∞

−∞
dt〈Ψ(t)|Ḋz|Ψ(t)〉eiωt

∣∣∣∣
2

, (2)

or the dipole acceleration (D̈z)

Sacc(ω) ∝
∣∣∣∣
∫ ∞

−∞
dt〈Ψ(t)|D̈z|Ψ(t)〉eiωt

∣∣∣∣
2

, (3)

for a pump linearly polarized along z and for a system described by |Ψ(t)〉? This

question was addressed in reference [6], where the HHG spectrum was related to the

norm squared of the Fourier transform of the dipole acceleration. Also references [7–9]

related the HHG spectrum to the dipole acceleration. In a more recent work [10],

however, a quantum-electrodynamical approach was taken and results corresponding

to the ones of reference [6] were obtained except that the spectrum was shown to

relate naturally to the dipole velocity. Currently, however, there is no consensus in

the literature of what quantity to calculate in order to predict the harmonic spectrum

generated by a single atom or molecule. For example in references [11–13] the harmonic

signal is calculated as the norm square of the Fourier transform of the time-dependent

dipole (equation (1)), while in references [14–18] the spectrum is calculated as the norm

squared of the Fourier transform of the time-dependent dipole acceleration (equation

(3)). But in fact, as discussed here, the correct approach in the single-system limit is
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to calculate the spectra using the dipole velocity form as a reference, and refer back

to the result using that form by accounting for appropriate factors of ω (see equations

(11)-(12) below), if the dipole or acceleration forms were used. In the following we shall

refer to the quantities Sdip and Sacc from equations (1) and (3) as the result of the dipole

and accelerations forms. The quantity S, based on the velocity form, will be shown to

give the harmonic signal.

The correct choice of reference form is important as illustrated by noting that if the

spectrum calculated is extended up to the 100th harmonic order, as is not uncommon,

the difference in the scaling with the frequency ω of the harmonic between dipole and

dipole acceleration forms can be as much as 8 orders of magnitude. Further, as some of

the interesting features in the harmonic spectra are quite shallow dips [19–21], the scaling

may push these dips to different positions and hence change the interpretation. Finally,

the establishment of a fixed reference form is important for quantitative comparisons of

theoretical calculations and with experiments. In the case of macroscopic propagation

such comparison is complicated by uncertainties in plasma frequencies, ionization rates

and free-electron densities. Note in passing that the solution of the TDSE may

be performed in any gauge and gauge invariant results will be obtained as long as

appropriate unitary gauge transformation factors are accounted for [22, 23].

2. Theory and discussion

In our analytical approach, we consider an incoming light pulse Ein(t−x/c) propagating

in the x direction and linearly polarized along the z direction. We place the atom or

molecule in the origin and the fundamental field will induce a dipole in the quantum

system and harmonics will be generated as described by an additional field Egen(t−x/c).

The resulting total electric field is denoted by E(t − x/c). At a fixed observation point

after the atom or molecule, the spectral distribution function S(ω) is given by (see, for

example,reference [24])

S(ω) = |E(ω)|2 =
1

4π2

∣∣∣∣
∫ ∞

−∞
E(t)eiωtdt

∣∣∣∣
2

. (4)

Hence, with the electric field at hand, the spectrum can easily be evaluated. To

determine the electromagnetic field we consider Maxwell’s wave equation in the

propagation direction with a particular simple choice of the source polarization term
(

∂2

∂x2
− 1

c2

∂2

∂t2

)
E(x, t) =

1

ε0c2

∂2

∂t2
〈Dz(t)〉δ(x), (5)

where, for the system in state |Ψ(t)〉, 〈Dz(t)〉 = 〈Ψ(t)|Dz|Ψ(t)〉 is the expectation

value of the z component of the atomic or molecular dipole, i.e. the z component

of ~D = e(
∑

i Zi
~Ri −

∑
j ~rj). The latter is assumed to be calculated in a quantum

mechanical model, i.e., from a numerical solution of the TDSE or from the Lewenstein

model [25]. As may be readily seen by insertion, the solution to equation (5) reads

E(x, t) = Ein(t − x/c) (6)
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− 1

2ε0c
[θ(x)〈Ḋz(t − x/c)〉 + θ(−x)〈Ḋz(t + x/c)〉],

where θ(±x) is the Heaviside step function with θ(x) = 1 for x ≥ 0 and zero elsewhere,

and 〈Ḋz(t ∓ x/c)〉 denotes the dipole velocity. In the second line of equation (6),

we see that after the encounter with the single atom or molecule, two propagating

waves are generated. One traveling in the propagation direction of the incoming pulse,

〈Ḋz(t− x/c)〉, and one traveling in the opposite direction 〈Ḋz(t + x/c)〉. The Heaviside

functions ensure that the generated light propagates from the source located at x = 0.

We imagine that the spectrum is measured at a fixed observation point in the

forward propagation direction. After having passed the single atom or molecule, the

solution of Maxwell’s wave equation follows from equation (6)

E(x, t) = Ein(t − x/c) − 1

2ε0c
〈Ḋz(t − x/c)〉, x > 0. (7)

The spectrum of the electric pulse can now be determined from equation (4), and we

obtain at the fixed observation point

S(ω) = |Ein(ω)|2 + |Egen(ω)|2 + 2Re(Ein(ω)?Egen(ω)), (8)

where Ein(ω) = 1/(2π)
∫ ∞
−∞ Ein(t)eiωtdt is the Fourier transform of the incoming driving

pulse and where

Egen(ω) = − 1

2ε0c

1

2π

∫ ∞

−∞
〈Ḋz(t)〉eiωt = − 1

2ε0c
Ḋz(ω) (9)

is the generated electric field in the frequency domain, and where we have introduced the

notation Ḋz(ω) = 1/(2π)
∫ ∞
−∞ 〈Ḋz(t)〉eiωt. Equation (9) expresses clearly the generated

field in terms of the dipole velocity. This result can also be derived from equation (58)

of [26] including phasematching effects, and by solving the Maxwell equation in the

slowly-varying amplitude approximation.

In typical HHG experiments, the incoming pump laser pulse does not have any

spectral density at the relatively high frequencies of interest in HHG and equation (8)

reduces to

S(ω) = |Egen(ω)|2 =
1

4ε2
0c

2
|Ḋz(ω)|2, (10)

and this result shows that equation (2) is the correct one to use. In case it is

important to include relaxation processes, for example related to the damping of the

induced dipole by radiative decay, the expectation value is most readily calculated by

〈Ḋz(t)〉 = tr(ρ(t)Ḋz), where ρ(t) is the density matrix of the system at time t. In

most TDSE calculations, however, only coherent evolution and a single initial state

is considered and the expectation value is determined from 〈Ḋz(t)〉 = 〈Ψ(t)|Ḋz|Ψ(t)〉,
where |Ψ(t)〉 is the time-evolved initial state. In the case of the single-active-electron

approximation, which is widely used in strong-field physics, the above dipole simplifies

to Ḋz = −eż, where the notation ż stresses that it is the kinematical momentum meż

that is involved in the generation of harmonics and not the canonical momentum. The
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Figure 1. High-order harmonic spectrum from hydrogen as a function of harmonic
order for a 3 cycle pulse at a wavelength of 800 nm and an intensity of 3×1013 Wcm−2.
The full curve shows log10(|(Ḋz(ω)|2), which is the signal up to trivial constants (see
equation (10)) based on the velocity dipole form and is taken from reference [23]. The
dashed curve shows log10(ω2|(Ḋz(ω)|2) which corresponds to the acceleration form,
equation (3) and finally the dotted curve shows log10(|(Ḋz(ω)|2/ω2), which corresponds
to the dipole form, equation (1). The curves have been scaled to the first peak in the
spectrum of the full curve.

formulation is accordingly suitable also in the velocity gauge where the kinematical and

canonical momenta differ by the vector potential, meż = pz + eA.

We now consider the relation of the spectrum to the formulation with the dipole and

the dipole acceleration forms. If we assume that at large negative and positive times,

that is long before and after the pulse, Dz(t) = 0 and Ḋz(t) = 0 (see references [9,23,27]

for more general cases) partial integration gives

Ḋz(ω) = −iωDz(ω) (11)

and

Ḋz(ω) =
i

ω
D̈(ω) (12)

and the corresponding spectra are obtained from equation (10), as

S(ω) =
ω2

4ε2
0c

2
|Dz(ω)|2, (13)

S(ω) =
1

4ε2
0c

2

1

ω2
|D̈z(ω)|2. (14)

Of particular interest here is the scaling with ω. Clearly if the dipole acceleration as in

equation (3) were taken as the fundamental form, one would obtain a different scaling

with harmonic frequency ω in equations (10), (13), and (14). In that case the dipole

velocity would be multiplied by ω2 and the dipole form by ω4, which was the underlying

assumption in early works [6–9]. In other words, the way the spectra decrease as a

function of ω depends on which form is taken as the fundamental reference from which

to derive the spectra based on the other forms.
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Figure 2. Smoothed high-order harmonic spectrum for the hydrogen molecular ion
for a 10 cycle pulse at 780 nm and peak intensity of 5 × 1014 Wcm−2. The dashed
curve is the acceleration form result log10(|(D̈z(ω)|2) taken from [19]. The full curve
is the result with the velocity dipole form, log10(|(Ḋz(ω)|2/ω2), and the dotted curve
is the result of the dipole form, log10(|(Dz(ω)|2/ω4). The arrow indicates the position
of the minimum at the 43rd harmonic as predicted by the acceleration form.

Figure 1 illustrates this point. In the figure, the HHG spectrum for hydrogen

is considered as a function of harmonic order for a 3 cycle pulse with a sine-squared

envelope for the vector potential and of 800 nm and a peak intensity of 3×1013 Wcm−2.

The full curve, taken from reference [23], shows log10(|(Ḋz(ω)|2), which is the signal

up to trivial constants (see equation (10)) based on the velocity dipole form, and as

shown above this is the form that relates directly to the field generated from a single

atom or molecule. If erroneously the acceleration form of equation (3) were taken as the

fundamental reference form, equation (12) would predict the result log10(ω
2|(Ḋz(ω)|2)

shown by the dashed curve, and finally if - again by error - the dipole form of equation (1)

were taken as the reference, equation (11) would predict the result log10(|(Ḋz(ω)|2/ω2)

shown by the dotted curve in figure 1. As seen from the figure the dashed and the dotted

curves generally differ from the correct full curve and in particular they, respectively,

over and under estimate the signal at high order. Another consequence of the different

scaling of the three forms is a change in minima positions and structures in the HHG

spectra from molecules. Such minima may result from a destructive interference when

the electron after its excursion in the continuum recombines under the influence of

different atomic centers, and the position of minima reflects the atomic positions at the

instant of recombination as predicted [19] and observed [20,21]. In figure 2 we illustrate

the behaviour of the minimum in different forms. While the minimum is present in the

case of the acceleration (dashed curve) and the velocity (full curve) form, the minimum

has almost disappeared in the case of the dipole length form (dotted curve).

It is important to note that our aim here is to describe the single system response

and to set a standard for the choice of reference form when presenting theoretical

HHG spectra. As discussed in the introduction, many calculations of high-order
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harmonic spectra are indeed carried out for single systems and the results of many

HHG experiments are interpreted in terms of the single system response. This approach

is clearly an approximation since the full description of HHG requires inclusion of

propagation through the medium, phase-matching effects, and absorption [1]. Other

works have focused on these aspects and propagation effects may be very important,

depending on the experimental conditions. For example substantial efforts have been

put into the calculation of macroscopic effects on the HHG spectrum [5, 26, 28, 29], the

influence on the generation of attosecond pulses [30,31] and also to investigate the effects

of propagation on more delicate structures such as the Cooper minimum in argon [32].

In view these works it is clear that no spectrum obtained by considering a single system

can capture the full macroscopic response.

3. Conclusion

In conclusion, we have derived the harmonic field generated by the response of a single

atom or molecule to the fundamental pump field. We did so by solving Maxwell’s wave

equation analytically for an atom or molecule placed at the origin. The result shows that

the spectrum of HHG directly relates to the Fourier transform of the expectation value

of the time-dependent dipole velocity, in agreement with recent results derived using

quantum electrodynamics [10]. While the source term entering the right-hand side of

Maxwell’s wave equation (5) is the dipole acceleration, the term entering the resulting

electric field is the dipole velocity. The significance of using the correct form for a

fixed reference was illustrated by considering HHG from hydrogen, and the hydrogen

molecular ion and it was illustrated how using the wrong form could artificially enhance

or weaken the high-energy part of the spectrum. Other characteristics of the spectra are

also modified. In particular the minima in the spectrum shifts. Such modifications may

be of importance when using HHG as a spectroscopic tool for the retrieval of atomic

positions or orbitals [33]. The present work shows that the velocity form should be

used as the standard reference, a fact that will ease the comparison between different

theoretical calculations in the future.
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