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Abstract. The ground-state properties of attractive bosons trapped in a ring lattice
including a single attractive potential well with an adjustable depth are investigated.
The energy spectrum is reconstructed both in the strong-interaction limit and in the
superfluid regime within the Bogoliubov picture. The analytical results thus obtained
are compared with those found numerically from the exact Hamiltonian, in order to
identify the regions in the parameter space where this picture is effective. The single
potential introduced is the simplest way to break the translational symmetry and
to observe, through a completely analytical approach, how the absence of symmetry
affects the properties of the low-excited eigenstates of the system. This model gives a
first insight into the properties of systems including more complex potentials.

1. Introduction

Attractive bosons trapped in a one-dimensional (1D) periodic lattice [1]-[5] or in

mesoscopic arrays [6]-[10] have recently received considerable attention because they

provide a natural framework where Schrödinger-cat states [11]-[13] are in principle

observable. Both the ground state and low-energy states of these systems, in fact,

have been shown to consist of superpositions of macroscopic spatially-localized quantum

states when the boson-boson interaction is sufficiently strong. Meanwhile, a stimulating

experimental work has made concrete the realizability of lattices with a ring geometry

[14] and the development of optical-trapping schemes for engineering mesoscopic arrays

[15], [16] in which Feshbach resonances [17] ensure a full control of boson-boson

interaction. N bosons in a 1D periodic M -site lattice are well described within the

Bose-Hubbard picture by model Hamiltonian [18], [19]

H =
U
2

∑

j

(n2
j − nj) − V − T

∑

j

(a+
j+1aj + aj+1a

+
j ) , (1)

where ni = a+
i ai (i = 1, ..., M), ai+M = ai and ai, a+

i obey the standard commutators

[am, a+
i ] = δmi. The boson tunneling among the lattice potential wells and boson-boson

interactions are described by means of the hopping amplitude T and parameter U < 0

(U > 0), respectively, in the attractive (repulsive) case. In addition, term V =
∑

i Vi ni
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includes local potentials with well depths Vi thus giving the possibility to represent

disordered lattices and/or trapping potentials.

If vi = 0 for each i, the resulting system is homogeneous and features translation

invariance. For U < 0, the relevant zero-temperature scenario has been investigated

in [2] and [5] showing how the resulting delocalized ground state exhibits three

characteristic regimes depending on the value of τ = T/(|U|N). In the strong-interaction

(SI) regime, where τ < τ1 ' 1/4, the ground state is a Schrödinger cat well represented

by a super-position of M coherent states of algebra su(M), each one describing the strong

localization of bosons around a given lattice site. The opposite weak-interaction regime

is the superfluid (SF) one, defined in the open interval τ > τ2 = 1/[2M sin2(π/M)].

Its ground state reduces to a single su(M) coherent state describing the uniform

distribution of bosons in the lattice and, thus, their complete delocalization. Last, for

τ1 < τ < τ2, the solitonlike regime features a ground state which again is a superposition

of M localized states. The latter, however, exhibit an intermediate character: their

localization peaks describe boson distributions involving a significant number of lattice

sites. Peaks become sharper and sharper when τ → τ1.

This almost ideal scenario, where translation invariance combined with the fact

that U < 0 enable Schrödinger-cat states to appear, breaks up as soon as V 6= 0.

In this paper we investigate the low-energy properties of model (1) and analyze, in

particular, the crucial role played by a localized perturbation, a single potential well, in

modifying the structure of low-energy states and the relevant spectrum. The interest

for this model is supported by various motivations. First, the introduction of a local

potential well is the simplest possible way to introduce a disturbance in a perfectly

symmetric ring lattice characterized by translation invariance. Potential V in H will

contribute with a single term at some site j and Vi = 0 for any i 6= j. Moreover,

this naive model preludes to a very realistic situation. In fact, the presence of lattice

defects –representable in terms of extremely weak local potentials– should be viewed as

an intrinsic, essentially uncontrollable, ingredient of the experimental setup. If U > 0,

their perturbative character does not affect large-scale phenomena such as the formation

of Mott and SF states and thus defects can be ignored. Conversely, for U < 0, a single,

even vanishingly small, defect is able to break the system symmetry therefore preventing

the formation of Schrödinger cats. Finally, the model with a single-site potential has the

non secondary advantage to allow one the implementation of standard approximation

schemes and a fully analytic study of the Hamiltonian and of its energy spectrum.

We show that, in the SI regime and in the presence of a single potential well (placed,

for example, at j = 0) with depth V0 even arbitrarily small, the localization effect of

bosons enables us to operate a remarkable simplification of H. The latter reduces to a

pure-hopping model including a new effective local potential whose depth is proportional

to the total boson number (and therefore is much larger than V0). Such a new form is

particularly useful since, with essentially no analytic work, H can be separated in two

commuting sub-Hamiltonians one of which is intrinsically diagonal. The most interesting

feature, however, concerns the SP (single-particle) energy spectrum obtained from the
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complete diagonalization of H. Depending on the choice of parameters T , U and V0,

the spectrum exhibits a structure characterized either by well-visible energy doublets or

by an almost uniform distribution of SP energies. The notable exception in the latter

case is the lowest SP energy showing, for τ → 0, an unexpected diverging behavior to

arbitrarily large negative values. This feature has been already observed in the study

of the SP spectrum of bosonic comb lattices [20] and of their unusual zero-temperature

properties.

Then we investigate the SF regime by adopting the standard Bogoliubov picture

to recast our V 6= 0 model into a more convenient form. In this case, however,

a rather hard mathematical work is necessary to diagonalize H. To this end, after

recognizing that H can be expressed as a linear combination of the operators belonging

to M independent su(1,1)-like algebras, a remarkable help in the diagonalization process

comes from exploiting the transformation properties of such algebras. Also in this case,

the definition of two independent sets of new bosonic modes makes H separable into

two commuting sub-Hamiltonians one of which exhibits the characteristic SP energies

distinguishing the solution of SF models within the Bogoliubov diagonalization scheme.

The SP energies of the other sub-Hamiltonian (this is written in terms of V0-dependent

modes) are found to represent small deviations of Bogoliubov-like SP energies. The SP

spectrum is thus characterized by energy doublets. Both in the SI and in the SF case,

we determine the analytic form of weakly excited states.

Sections II and III are devoted to the study of the SI regime and the SF regime,

respectively. In both sections the validity of analytic results concerning the ground

state and the first few weakly-excited energy levels are compared with numerical results.

Section IV is devoted to final comments.

2. Low-energy states in the SI regime

Low-energy states of Hamiltonian (1) with V = 0 and U < 0 consist of a superposition

of su(M) coherent states, each one involving a boson distribution strongly localized

around a different site of the lattice. Such coherent states are defined by

|ξ〉 :=
1√
N !

(
M−1∑

i=0

ξia
+
i

)N

|0〉 , 〈η|ξ〉 =

(
M−1∑

m=0

η∗
mξm

)N

where N is the total boson number, state |0〉 is such that ai|0〉 = 0 for each i, and the

second equation defines the scalar product of two generic states. The normalization of

〈ξ|ξ〉 is thus ensured by
∑

m ξ∗mξm = 1. Based on the previuos definition, the explicit

form of low-energy states in terms of localized states |ξ(j)〉 was found to be [2]

|Ek〉 =

M−1∑

j=0

eik̃j

√
M

|ξ(j)〉 , |ξi(j)| << |ξj(j)| ' 1 (2)

in which index k̃ = 2πk/M with k ∈ [0, M−1] essentially represents the eigenvalue of the

quasi-momentum operator generating lattice translations. The ground state corresponds
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to the case k = 0. The localization of bosons at site j is embodied in inequality

|ξi(j)| << |ξj(j)| of formula (2), the quantity |ξ`(j)|2 representing the fraction of

population at site ` according to state |ξ(j)〉. This feature becomes evident by reminding

that 〈ξ(j)|a+
` a`|ξ(j)〉 = N |ξ`(j)|2 [21]. In addition, because states |ξ(j)〉 can be equipped

with the property 〈ξ(i)|ξ(m)〉 = δim, one can prove [21] that 〈Ek|a+
i ai|Ek〉 = N/M whose

site independence confirms that |Ek〉 are delocalized states. For τ < 1/4, states |Ek〉
have been shown [2] to provide a quite satisfactory approximation of the true energy

eigensates whose exact form can be found only numerically.

In the ideal lattice (V = 0) the model features translation symmetry which is

responsible for the super-position of equal-weight localized states in state (2). In the

classical limit, this symmetry is broken: only one of components |ξ(j)〉 survives giving

rise to the exponential localization [22] that is known to distinguish the maximally

excited state of model (1) with U > 0. The presence of local potential V = V0n0

(V0 > 0) in our quantum model

H = −U

2

∑

i

ni(ni − 1) − V0n0 − T
∑

i

(a+
i+1ai + H.C.) (3)

with U = −U < 0 also breaks this symmetry suggesting that only one among the

M components of |E0〉 is expected to survive. If one assumes that the most part of

the population is placed at site j = 0 owing to the presence of the attractive well,

then Hamiltonian (3) can be taken into a new approximate form whose diagonalization

appears to be rather simple. The approximation we effect essentially coincides with the

Bogoliubov scheme. Observing that N =
∑

i ni ⇒ n0 = N − δN where δN =
∑

i 6=0ni

and ni << n0 ' N for i 6= 0, then
∑

i

n2
i =

∑

i

∗
n2

i + N2 + (δN)2 − 2N δN ' −N2 + 2N n0

in which terms ninm with i, m 6= 0 have been suppressed. Model (3) thus reduces to

H ' U

2
N(N + 1) − wn0 − T

∑
j
(a+

i+1ai + H.C.) (4)

in which the assumed localization at j = 0 has the dramatic effect to involve a much

deeper (effective) well with depth w = UN + V0 together with the disappearence of

nonlinear interaction terms ni(ni − 1). Therefore, even if the initial well is a simple

perturbation where V0 could be vanishingly small, the depth of the resulting effective

well can be really large since it depends on UN . The role of attractive interaction U =

−U < 0 is thus to reduce the initial model to a pure-hopping model with a deeper

effective well.

2.1. Diagonalization

After assuming Hamiltonian (4) as the reference model in the SI regime, its

diagonalization is performed by resorting to the momentum-mode picture

aj = M− 1
2

∑

k

bk eik̃j ⇔ bk = M− 1
2

∑

k

aj e−ik̃j , (5)
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with k̃ = 2πk/M and j, k ∈ [0, M − 1], where aj+M ≡ aj and bk ≡ bk+M owing to the

periodic boundary conditions of the lattice. This gives

Hw = CN − w a+
0 a0 − 2T

∑
k
ckb

+
k bk , (6)

where a0 =
∑

k bk/
√

M , CN = UN(N + 1)/2 and ck = cos(k̃). To achieve the diagonal

form of Hw it is particularly advantageous to define the new operators

fk = (bk − b−k)/
√

2 , Fk = (bk + b−k)/
√

2 , (7)

and F0 = b0, f0 = 0. In case M is even, the further operator FM/2 = bM/2 must be

included while fM/2 = 0. The range of index k is such that

1 ≤ k ≤ S = (M − 1)/2 , 1 ≤ k ≤ S = (M − 2)/2 , (8)

if M is odd or even, respectively. Note that such operators satisfy the usual bosonic

commutators [fn, f+
h ] = δnh = [Fn, F+

h ]. Then Hw becomes

Hw = CN − wa+
0 a0 − 2T

S∑

k=1

ckf
+
k fk − 2T

K∑

k=0

ckF
+
k Fk (9)

with

a0 =
∑

k
bk/

√
M =

∑K

k=0
rkFk/

√
M ,

r0 = rM/2 = 1, rk =
√

2, and the range of k given by

0 ≤ k ≤ K = (M − 1)/2 , 0 ≤ k ≤ K = M/2 , (10)

when M is odd or even, respectively. Hamiltonian (9) is thus formed by two commuting

parts one of which, Hf = U
2
N(N + 1) − 2T

∑S
k=1 ckf

+
k fk, is diagonal. The remaining

part,

HF = −w a+
0 a0 − 2T

K∑

k=0

ckF
+
k Fk = −

K∑

h,k=0

LkhF
+
k Fh ,

with Lkh = w rkrh/M+2Tckδkh, can be diagonalized in a rather direct way. In fact, since

Lkh are elements of an M × M real and symmetric matrix, there exists an orthogonal

transformation of elements Bpk such that
∑

p BpkBph = δkh,
∑

k BpkBqk = δpq and, in

particular,
∑

kh
BpkLkhBqh = λpδpq . (11)

The latter entails Lkh =
∑

pq BpkBqhλpδpq. As a result, by introducing the new bosonic

creation and annihilation operators Dp =
∑

k BpkFk and D+
q =

∑
h BqhF

+
h , satisfying

standard bosonic commutators due to the orthogonality of Bpk, one gets the diagonal

form

HF = −
∑

q
λqD

+
q Dq .

By using the previous definition of Lkh together with the orthogonality relations for Bpk,

equation (11) becomes
∑

kh Bpk(wrkrh/M + 2Tckδkh)Bqh = λp

∑
k BpkBqk and thus

∑
kh

Bpk[w rkrh/M − (λp − 2T ck)δkh]Bqh = 0 . (12)
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In order to satisfy the latter equation, we define A(p) =
∑

h rhBph and impose

(λp − 2Tck) Bpk = wrk A(p)/M for each p obtaining

Bpk =
wrk

M

A(p)

λp − 2Tck

. (13)

This definition, inserted in the orthogonality relation
∑

k BqkBqk = 1, gives

|A(p)|2 =
M2

w2

[∑
k

r2
k

(λq − 2Tck)2

]−1

, (14)

which enables one to fix parameter A(p). By multiplying both sides of (13) times rk

and summing over k, one easily derives the crucial formula

1 =
w

M

∑K

k=0

r2
k

λp − 2Tck

, (15)

determining eigenvalues λp and thus the HF spectrum. To conclude, the total (diagonal)

Hamiltonian reads

Hw = CN − 2T
∑S

k=1
ckf

+
k fk −

∑K

q=0
λqD

+
q Dq . (16)

By observing that the vacuum state of operators fk and Dp =
∑

k Bpk Fk (these are

linear combinations of bk and b−k) coincides with that of modes bk defined by bk|0〉 = 0

for each k (|0〉 ≡ |0, 0, .. 0〉), the Fock states relevant to fk and Dp are found to be

|~̀, ~m〉 =

S∏

k=1

(f+
k )`k

√
`k!

K∏

p=0

(D+
p )mp

√
mp!

|0〉 (17)

satisfying D+
q Dq |~̀, ~m〉 = mq |~̀, ~m〉 and f+

k fk |~̀, ~m〉 = `k |~̀, ~m〉. The relevant eigenvalue

equation Hw |~̀, ~m〉 = E(~̀, ~m)|~̀, ~m〉 features energy eigenvalues

E(~̀, ~m) = CN − 2T
∑S

k=1
ck`k −

∑K

q=0
λqmq . (18)

In particular, the ground state, in which all bosons possess the lowest SP energy −λ0

and therefore `k = mq = 0, m0 = N (the assumption that λ0 > λp, 2Tck, ∀ p 6= 0 and

∀ k will be discussed in the next section), is given by

|GS〉 =
(D+

0 )N

√
N !

|0〉 =
1√
N !

(∑K

k=0
B0k F+

k

)N

|0〉 (19)

which exhibits the form of a su(M) coherent state. This feature pertains as well to

excited states such as (D+
p )N |0〉/

√
N ! and (f+

k )N/
√

N ! |0〉 characterized by the fact that

all bosons condensate in a specific single-particle energy −λp and −2Tck, respectively.

In the second case, however, bosons are distributed only between momentum states +k

and −k, and the total momentum turns out to be zero since 〈b+
k bk〉 = 〈b+

−kb−k〉 = N/2.

Any other excited state is represented by state (17).
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2.2. Spectrum of Hw

Exact SP energies −λp can be obtained numerically from formula (15). Nevertheless,

analytic approximate solutions of this equation can be found in two limiting cases which

give interesting information on the spectrum structure. In order to calculate eigenvalues

λp we rewrite formula (15) as

2TM

w
=
∑K

k=0

r2
k

µ − ck
≡
∑M−1

k=0

1

µ − ck
, (20)

where

µ = λ/(2T ) , ck = cos(2πk/M) ,

and one should remind that r2
0 = r2

M/2 = 1 while r2
k = 2, ∀k 6= 0, M/2. The number of

solutions depends on M : equation (20) gives M/2+1 solutions for M even and (M+1)/2

with M odd (see appendix Appendix A). Interestingly, series (20) can be written in

terms of either hyperbolic or trigonometric functions depending on the fact that |µ| > 1

or |µ| < 1, respectively (see, for example, [23]). Then, after introducing parametrizations

µ = chy and µ = cos y, involving identities (A.1) and (A.2), respectively, we obtain the

alternative forms of equation (20)

(2T/w) shy = cth(My/2) , (21)

(2T/w) sin y = −ctg(My/2) . (22)

Equation (21) is able to supply only one solution, as follows from the comparison

of functions z = 2T shy/w and z = cth(My/2) in the yz plane. In the two cases

T/w >> M/4 and T/w << M/4 the corresponding curves z(y) intersect at low and

large values, respectively, of y. In this limits, one easily finds that

y ' 1/
√

(TM/w) − M2/8 , y ' arcsh(w/2T ) ,

giving the SP energies

µ ' 1 +
w

2TM
, µ '

√
1 +

w2

4T 2
, (23)

for T/w >> M/4 and T/w << M/4, respectively. According to Hamiltonian (9) the

effective well depth is w = V0 + UN where, even if V0 is small, UN and thus w are

large. Since we are considering the SI regime in which T/UN < 1, the second case

where µ = λ/2T '
√

1 + w2/4T 2 is the interesting one.

Concerning equation (22), the two cases T/w >> M/4 and T/w << M/4 once

more allow one to distinguish the significant regimes of this equation and the ensuing

solutions. Approximate solutions of equation (22) are found by substituting in this

equation y = yk + εk with yk = 2πk/M if T/w >> M/4 and y = ȳk + εk with

ȳk = yk + π/M if T/w << M/4. Parameters εk are such that |εk| << |yk|, |ȳk|.
The latter assumption and the ensuing calculation are discussed in appendix Appendix

B. We obtain, for T/w >> M/4,

µk =
λk

2T
= cos(yk + εk) ' cos(yk) +

w

TM
, (24)
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v

Figure 1. In both panels U = 0.05 and M = N = 6. Left panel: distribution of µk

and ck = cos(yk) as functions of τ for V0 =0.4. Right panel: distribution of µk and ck

as functions of v for T =0.5. SP energies are given by −2µkT and −2Tck.

and, for T/w << M/4,

µk =
λk

2T
= cos(ȳk + εk) ' cos(ȳk) +

4T

wM
sin2(ȳk) . (25)

In both regimes, the set of SP energies −λk relevant to the D-mode component of

Hamiltonian (16) is completed by the energies −2T cos(yk) of the f -mode component.

The dependence of such energies from τ = T/UN and v = V0/UN is illustrated in

figure 1. The formation of energy doublets predicted by equation (24) is well visible in

the left panel for large τ : for each k, −λk/(2T ) and − cos(yk) are separated by a small

gap w/TM << 1 if w = V0 + UN is small enough. Furthermore, one easily recognizes

the solution described by formula (25) due to its diverging behavior µ '
√

1 + w2/4T 2

for τ → 0 and µ → 1 for large τ . In the right panel of figure 1 the µ values forming

doublets at v ' 0 tend to the more uniform distribution described by equation (25) as

v (and thus w) increases.

In the non interacting limit U = 0 Hamiltonian (4) reduces to H = CN − V0 n0 −
T
∑

i(a
+
i ai+1 + a+

i+1ai) with w = V0 and the doublet structure becomes the distinctive

feature of SP energies provided w = V0 is small enough. This case is only apparently

correct in that the procedure whereby model (4) (and Hw) is attained is not justified:

a weak U does not support the boson localization at j = 0. Then the case when U , V0

(and thus w = V0 + UN) are weak is not acceptable even if w/TM << 1 is still valid.

The SI regime, where U is large and T/w << M/4, features SP energies −λk that

are small deviations from −2T cos(ȳk) “far” from −2T cos(yk). In this case no doublet

structure is found (see the left panel of figure 1 for small τ) labels yk, ȳk of SP energies

being uniformly distributed in interval y ∈ [0, π]. This case includes the situation where

U is weak or zero but well depth V0 is large enough to sustain the boson localization on

which our approximation relies.

In figure 2, the ground-state energy Egs obtained from equation (18) is compared

with the exact ground-state energy E0, evaluated numerically, through the relative error

|Egs − E0|/E0. In both panels, extended regions of plane (τ, v) appear to involve an
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Figure 2. Relative error |E0−Egs|/E0 given in terms of the approximate ground-state
energy Egs and of its exact value E0 for M = N = 6. The grey scale describes the
relative error whose maximum is 1 % (5 %) in the left (right) panel.

almost negligible relative error. In the right panel, the straight line v = 2τ − 1/2

roughly separates the region where the approximation of E0 through Egs is extremely

good from the one where it becomes unsatisfactory. Such a separatrix can be obtained

with a simple semiclassical argument: assume that operators ai and a+
i in Hamiltonian

(3) are replaced by complex variables zi and z∗i . Its semiclassical counterpart thus reads

H = −
∑

i U |zi|4/2−V0|z0|2−T
∑

i(z
∗
i zi+1 +ziz

∗
i+1). The latter, depending on the value

of τ and v, exhibits two possible ground-state configurations: z0 =
√

N , zi ' 0 for i 6= 0

(solitonlike state) and zi '
√

N/M (uniform state) giving

E ′
0 = −N2U

(
1

2
+ v

)
, E ′′

0 = −N2U

(
1

2M
+

v

M
+ 2τ

)
,

respectively. The situation where E ′
0 > E ′′

0 and hence the ground state is uniform (SF

regime) entails the inequality v < 2τ − 1/2. Then the region where the approximation

E0 ' Egs is no longer satisfactory essentially identifies with the SF regime. Figure 3

describes the first five energy eigenvalues in the range v ∈ [0, 2] for τ = 1/6. Eigenvalues

(18) well approximate qualitatively exact eigenvalues obtained numerically for v > 0.3,

consistent with figure 2. In particular, E0 is almost indistiguishable from Egs.

To test our approximation scheme we further calculate the boson distribution in

the ambient space corresponding to the ground state by exploiting the properties of

SU(M) coherent states [21]. To this end we reformulate operator D+
0 in |GS〉 in terms

of space modes. This procedure, developed in appendix Appendix C, gives

nj = 〈GS|a+
j aj|GS〉 = N |ξj|2 = N

2 ch2[(M/2 − j)y]

M + sh(My) cothy

obeying the normalization condition
∑

i |ξj|2 = 1, together with the boson distribution

mk = 〈GS|b+
k bk|GS〉 = N |xk|2 among momentum modes where

|xk|2 =
2 sh2(My/2) sh2y

M + sh(My) cothy

1

(chy − ck)2
.
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−40
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Figure 3. Dependence on v = V0/UN of the first five energy eigenvalues for τ = 1/6,
M = N = 6. Continuous lines describe exact eigenvalues obtained numerically, while
dashed lines are obtained from formula (18).
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Figure 4. Space distribution nj = 〈a+
j aj〉 (left panel) and momentum distribution

mk = 〈b+
k bk〉 (right panel) of bosons in the ground state for T =0.5, V0 =0.1, U =1,

M =7, N =8. Symbols © and • describe the mode occupation relevant to the exact
ground state and to its approximated form (19), respectively, showing an excellent
agreement.

In these two equations ey = (w/2T +
√

1 + w2/4T 2)/2 if T/w << M/4, as stated

by the second equation in formula (23). In the SI regime, where UN >> T , one has

ey = w/2T >> 1 so that nj = N |ξj|2 ' N exp( |2j − M |y − My). Note that index j

ranges in [0, M − 1] since j = M is equivalent to j = 0 in the ring geometry. Then

the maximum occupation in the lattice is reached at j = 0, where the boson-population

peak is expected, while the minimum occupation is found at j = M/2. Figure 4 shows

how nj is in an excellent agreement with the boson space distribution supplied by the

exact (numeric) calculation of the ground state in regime T/w << M/4. Figure 4 (right

panel) confirms as well the validity of momentum-mode distribution 〈mk〉 in the same

regime.
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3. Spectrum of the SF regime

To determine the spectrum of model (3) within the SF regime we implement the

standard Bogoliubov scheme involving the formulation of H within momentum-mode

picture. The full diagonal form of H is achieved by means of a three-step procedure

the first step of which consists in replacing aj with aj =
∑

k bk eik̃j/
√

M and b+
0 b0 with

b+
0 b0 = N −

∑
k 6=0 b+

k bk. Hamiltonian (3) becomes

H ' H2 − V0

√
n(B+ + B) − Λ (26)

where n = N/M , the quadratic part of H reads

H2 '
∑

k 6=0

[
gkb

+
k bk −

Un

2

(
b+
−kb

+
k + bkb−k

)]
− V0B

+B

with gk = V0/M + ek − Un, ek = 2T [1 − cos(k̃)], and

Λ =
U

2M
N(N − 1) + 2TN + nV0 , B =

∑

k 6=0

bk√
M

.

The presence of the quadratic term H2 in H suggests that linear term V0

√
n(B+ + B)

can be eliminated through the combined action of k-dependent displacement operators

Tk = ezkb+k −z∗kbk , TkbkT
+
k = bk − zk .

As shown in appendix Appendix D, after implementing the unitary transformation

H → H = R+HR with R =
∏

k 6=0 Tk, choice (D.3) of undetermined parameters ηk

provides

H = H2 − C (see formula (D.4))

with C = Λ + Φ and Φ = nV0/(1 + S). The nice property of H is that it can be taken

into a diagonal form by means of relatively simple calculations. Appendix Appendix

D illustrates the second step of our procedure which consists in separating HR in two

independent parts by exploiting again operators fk = (bk−b−k)/
√

2, Fk = (bk +b−k)/
√

2

given in formula (7). One finds H = Hf + HF where

Hf = −C +
S∑

k=1

[
gkf

+
k fk +

Un

2

(
(f+

k )2 + f 2
k

)]
,

HF =

K∑

k=1

[
gkF

+
k Fk −

Un

2

(
(F+

k )2 + F 2
k

)]
− V0B

+B ,

where B =
∑K

k=1 rkFk/
√

M , rk is defined after equation (7), and parameters S and

K have been defined in formulas (8) and (10). Hamiltonian Hf is easily diagonalized

through the procedure described in [24], [25]. Since

Jz
k =

2f+
k fk + 1

4
, Jx

k =
(f+

k )2 + f 2
k

4
, Jy

k =
(f+

k )2 − f 2
k

4i
,
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are, for each k, the generators of an algebra su(1,1) obeying commutators [Jx
k , Jy

k ] =

−2iJz
k , [Jy

k , Jz
k ] = 2iJx

k and [Jz
k , Jx

k ] = 2iJy
k , then the unitary transformation

DkJ
z
kD+

k = Jz
kchαk + Jx

k shαk , Dk = e−iαkJy
k ,

allows one to diagonalize Hf . We then rewrite Hf as

Hf =
∑S

k=1

[
gk(2J

z
k − 1/2) + 2UnJx

k

]
− C .

whose diagonal form Hf is achieved by means of transformation D = ΠkDk

DHfD
+ = D

[∑S

k=1
(2νkJ

z
k − gk/2) − C

]
D+ = Hf ,

if conditions gk = νkchαk and Un = νkshαk are imposed. In Hf parameters νk read

νk =
√

g2
k − U2n2 =

√(
V0/M + ek−Un

)2

− U2n2 (27)

giving the energy eigenvalues relevant to Hf

Ef(~p ) =
∑S

k=1
[ νk(pk + 1/2) − gk/2] − C

in the Fock-space basis formed by states |~p 〉 =
∏S

k=1 |pk〉 where f+
k fk|pk〉 = pk|pk〉,

pk = 0, 1, 2... . The third and last step of the diagonalization process (see appendix

Appendix D) concerns HF which can be rewritten as

HF =
∑K

k,h=1
GkhF

+
k Fh −

Un

2

∑K

k=1

(
F 2

k + H.C.
)

,

with Gkh = gkδkh − V0rhrk/M . One can implement the same scheme applied for

diagonalizing the component HF of Hw in the SI regime. To this end we introduce new

operators C` =
∑

h fh`Fh and C+
` =

∑
h fh`F

+
h such that [C`, C

+
m] = δ`m. Parameters

fh` are undefined elements of an orthogonal matrix which can be exploited to take Gkh

into a diagonal form. Appendix Appendix D illustrates the calculations whereby the

Ck-dependent final form

HC =
∑K

`=1
θ`C

+
` C` −

Un

2

∑K

k=1

(
(C+

k )2 + C2
k

)

of Hamiltonian HC is found together with fh` and θ`. The latter (see equations (D.9))

are given by

fh` = −V0

M

rhY`

θ` − gh
, 1 = −V0

M

K∑

h=1

r2
h

θ` − gh
, (28)

where Y` =
∑K

k=1 rkfk` is determined in appendix Appendix D. Fortunately,

Hamiltonian HC exhibits the same algebraic structure of Hf . Then, also in this case,

its diagonal form HC is connected to HC by

WHCW+ = W
[∑K

h=1
(2ηhV

z
h − θh/2)

]
W+ = HC ,
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in which W = ΠkWk is a unitary transformation whose factors are defined as Wk =

exp(iβkV
y
k ). Similar to Jz

k , Jx
k and Jy

k operators V z
k , V x

k and V y
k are, for each k,

generators of an algebra su(1,1) written in terms of Ck and C+
k instead of fk, f+

k .

In particular, V z
k = (2C+

k Ck + 1)/4. Conditions θh = ηhchβh and Un = ηhshβh ensure

that WHCW+ = HC and provide the definitions

ηk =
√

θ2
k − U2n2 , thβk = Un/θk . (29)

Thanks to parameters ηh, we easily identify the energy eigenvalues relevant to HC (and

thus to HF )

EF (~q ) =
∑K

k=1
[ ηk(qk + 1/2) − θk/2] , qk = 0, 1, 2...

in the Fock-space basis formed by states |~q 〉 = Πk|qk〉 where C+
k Ck|qk〉 = qk|qk〉.

Summarizing, the eigenvalues of total Hamiltonian Hf + HC are

E(~p, ~q ) = EF (~q ) + Ef (~p ) , (30)

corresponding to eigenvectors |~p, ~q〉 = ΠS
k=1|pk〉ΠK

h=1|qh〉. Energies (30) provide as well

the spectrum of Hamiltonian (26), whose eigenvalue problem is

H|E(~p, ~q )〉 = E(~p, ~q)|E(~p, ~q )〉 (31)

where |E(~p, ~q )〉 = RDW |~p, ~q〉. This concludes the diagonalization process whose

validity is supported by the fact that one has {θ`} ≡ {gk}, fk` ≡ δk`, Ck = Fk and

xk = 0, for V0 → 0. In this case the usual scenario relevant to the Bogoliubov scheme

where ηk ≡ νk is recovered and no splitting effect, causing ηk 6= νk, is observed.

3.1. Discussion

An important aspect of the diagonalization scheme leading to quasi-particle energies

(27) and (29) concerns the range of parameters in which it should be valid. This is

related to the conditions ensuring that quasi-particle energies are real and positive. The

first condition is

gk − Un = V0/M + ek − 2Un > 0 , (32)

which, being gk +Un = V0/M +ek > 0 for any k, implies that g2
k −U2n2 > 0 in equation

(27). The second one is

θk + Un > 0 , θk − Un > 0, (33)

ensuring that θ2
k − U2n2 is positive in equation (29). By using parameters τ and v,

inequality (32) reduces to

τ > (1 − v/2)[ 2M sin2(πk/M)]−1 (34)

which essentially reproduces the well-known condition establishing the parameter-τ

interval in which the Bogoliubov approximation is valid. In the worst case (k = 1)

this inequality gives τ > (1−v/2)M/(2π2) for large M . The novelty here is represented
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Figure 5. Relative error |(E0 −Egs) / E0| given in terms of the approximate ground-
state energy Egs and of its exact value E0 for M = N = 6. The grey scale describes
the relative error whose maximum is 5%.

by factor 1 − v/2 showing that such an interval is enlarged because v 6= 0 due to the

presence of local potential V0.

Inequalities (33) involve a more complicated situation. Parameters θ` are solutions

of equation (28) which, being gk = V0/M + 2T (1 − ck) − Un can be rewritten as

2TM

V0
=
∑

k 6=0

[(
1 − UN − V0

2TM
− ck

)
− µ

]−1

= F(µ) (35)

with µ ≡ θ/2T (we drop index ` of θ` which is viewed as a continuous variable). In

general, such an equation can be solved only numerically and no simple condition such

as inequality (34) is available in this case.

The only exception is the regime 2TM/V0 >> 1 (when, for example, V0 is

perturbative and/or M is large enough) in which approximate solutions can be found

through an analytic approach (see Appendix Appendix E). In this regime the number

of solutions is expected to coincide with the number K of the asymptotes characterizing

F(µ) so that the quasi-particle energy spectrum exhibits an evident doublet structure

being ηk ' νk.

After setting µ = V0/(2TM) − Un/(2T ) + 1 − cos y, approximate solutions of

2TM/V0 = F(µ) are found by substituting y = yk + ξk in its trigonometric version

(E.1). The Taylor expansion of the latter to the second order in ξk yields equation (E.2)

whose solutions (E.3), at fixed M and with t = 8T/(MV0) sufficiently large, reduce to

ξk = −8/(tM2sk) entailing

θk = 2Tµk =
V0

M
− Un + 2T (1 − cos(yk + ξk)) ' gk −

2V0

M
.

These results show that the two conditions (33), now expressed as gk − 2V0/M > ±Un

and therefore as

4τM sin2(πk/M) > v , 4τM sin2(πk/M) − 2 > v,
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Figure 6. Left panel: dependence on v of the first five energy eigenvalues for
τ = 1, M = N = 6. Continuous lines describe exact eigenvalues denoted by Ek

(0 ≤ k ≤ 4) obtained numerically, while dashed lines describe eigenvalues Eap
k obtained

from formula (30). Right panel: dk = |(Ek − Eap
k )/Ek|

0.5 1 1.5
−120

−100

−80

−60

−40

−20

τ

E
k

/U

0.5 1 1.5
0

0.01

0.02

0.03

0.04

0.05

τ

d k

Figure 7. Left panel: dependence on τ of the first five energy eigenvalues for v = 1/6,
M =N =6. Continuous lines describing Ek and dashed lines describing Eap

k have the
same meaning as in figure 6. Right panel: dk = |(Ek − Eap

k )/Ek|

can be fulfilled for large enough τ and sufficiently small v in plane v-τ even in the

most restrictive case k = 1. Of course these inequalities supply a limited information

on the range of validity of our scheme since they have been obtained in the limiting

case t >> 1. A complete information is provided by inequalities (33) only through a

systematic numerical study of solutions θ` when the model parameters are varied. This

analysis is beyond the scope of this work.

Here we limit our attention to some specific cases. In Figure 5, the ground-state

energy Egs, given by equation (30) with pk = qh = 0 for all k and h, is compared with

the exact ground-state energy E0, evaluated numerically: in the figure the relative error

|(Egs − E0) / E0| is plotted as a function of v and τ . Also in this case, extended regions

of the (τ ; v) plane show an almost negligible relative error. In particular, at increasing

values of τ one can see that the results provided by the Bogoliubov approximation

become more precise, while the rise in v implies a fast decrease in the effectiveness of

the approximation in the prediction of the ground-state energy.
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Figure 8. Momentum distribution mk (left panel) and space distribution nj (right
panel) of bosons in the ground state for T = 1, V0 = 0.2, U = 0.2, M = 7, N = 8.
Symbols © and • have the same meaning as in figure 4 and show an excellent agreement
between the distributions relevant to the exact and the approximate ground state.

The scenario outlined in the previous paragraph is further confirmed by the

numerical calculations of the first low-energy excited levels, illustrated in figure 6 and 7.

In figure 6, where τ = 1 while v varies, the first five energy eigenvalues Ek, k ∈ [0, 4] (E0

corresponds to the ground state) obtained numerically can be compared with energies

Eap
k given by formula (30) within the Bogoliubov approximation. The agreement is, in

general, extremely good for v < 0.5, and becomes excellent in the case of the ground

state, as shown by the relative error dk in the right panel of figure 6. Figure 7, where

v = 1/6 while τ varies, shows that the agreement between Eap
k and Ek is excellent for

any value of τ > 0.5. For τ < 0.5 (this case is not shown) the deviation of Eap
k from Ek

becomes significant.

As in the case of the SI-regime spectrum, we conclude by reconstructing the

boson distribution both among space modes and among momentum modes through

the formulas ni = 〈GS|a+
i ai|GS〉 and mk = 〈GS|b+

k bk|GS〉 where |GS〉 now represents

the approximate SF ground state. Observing that |GS〉 = |E(~p, ~q)〉 = RDW |~p, ~q〉 with

~p = 0 = ~q, it is advantageous to define operators Bk = (RDW )+bkRDW whose explicit

expression is

Bk = xk +
1

2
D+

k fkDk +
1

2

∑K

`=1
fk`W

+
` C`W` . (36)

In this formula D+
k fkDk = fkch(αk/2) − f+

k sh(αk/2) while W+
k CkWk = Ckch(βk/2) +

C+
k sh(βk/2). The calculation of mk remarkably simplifies since 〈GS|b+

k bk|GS〉 =

〈0, 0|B+
k Bk|0, 0〉 where the simple ground state |0, 0〉 of diagonal Hamiltonian Hf + HC

can be used. The resulting momentum mode distribution reads

mk = 〈b+
k bk〉 = x2

k +
sh2(αk/2)

2
+

1

2

∑K

h=1
f 2

khsh
2(βh/2)

while the ground-state distribution among space modes n` = 〈a+
` a`〉 =

∑
k

∑
q exp[i(k̃−

q̃)`]〈b+
q bk〉/M is achieved by resorting again to formula (36) to calculate 〈b+

q bk〉. Figure

8 shows that essentially no difference is visible between the values of mk and ni obtained
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Figure 9. Momentum distribution mk (left panel) and space distribution nj (right
panel) of bosons in the ground state for T = 1.6, V0 = 1, U = 0.1, M = 7, N = 8.
Symbols © and • have the same meaning as in figure 4 and show an satisfactory
agreement between the distributions relevant to the exact and the approximate ground
state.

with a ground state determined numerically and those supplied by our approximation

scheme. We note that the choice of parameters in figure 8 entails that τ = 0.625 = 5v

and, in particular, 2TM/V0 = 70 >> 1. Then the conditions for which solutions θk ' gk

in equation (35) are satisfied. In figure 9, where condition 2TM/V0 >> 1 is weakened

(2TM/V0 = 22.4), distributions based on |GS〉 show some deviations from those based

on the exact ground state. Their agreement however is still very satisfactory. In both

cases the approximation θk ' gk − 2V0/M cannot be used since the more restrictive

condition t >> 1 is never reached.

4. Conclusions

In this paper we have analysed the properties of attractive bosons trapped in a 1D

optical lattice in the presence of a localized attractive potential. The two particular

regimes that we have considered (the SI and the SF one) allow a completely analytical

approach by means of a Bogoliubov-type approximation.

In section 2 we observed that in the SI regime the localization of bosons, enhanced

by the presence of a single attractive potential well, allows one to obtain the approximate

Hamiltonian (6). The diagonalization of the latter gives an excellent description of the

main properties of the ground-state and of the low-excited states, in terms of energy

and mean occupation number in the ambient and momentum space. The comparison

between analytical and numerical results (the latter are necessary to compute the exact

spectrum of Hamiltonian (3)) allows one to identify the region in the parameter space

in which the SI hypothesis is satisfied and thus the approximation is valid.

In addition, the opposite SF regime has been studied in section 3 by applying a

Bogoliubov-type treatment justified by the hypothesis of localization in the momentum

space. The simplification introduced has enabled us to compute the spectrum and the

mean occupation number of particles in the ambient and momentum space. Also in this
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case, the support of numerical results makes it possible to show for which values of the

parameters the Bogoliubov approximation is actually effective.

The possibility to study our model Hamiltonian in a fully analytical manner

is obviously due to the simple shape of potential V which just reduces to a single

localized potential. However, despite its simplicity, this model represents an instructive

intermediate step toward more structured systems such as lattices with several defects

(local potentials with perturbative depths) or, more in general, to lattices with many

local potentials possibly characterized by random depths: even if the approach to such

systems will be mainly numeric, we expect that the methodology and the analytical

results contained in this paper still represent useful tools. We expects as well that

our approach may be fruitfully applied to other condensed-matter models. The

scheme applied to model (26) in section 2, for example, should be applicable in the

diagonalization of the polaron-like Hamiltonian of mixtures with two atomic species

[26]. Also, simple heuristic calculations show that the repulsive version (U → −U)

of model (3) could be studied through the scheme of section 2 for V0 > 2T + UN/2.

Finally, the knowledge of low-energy states achieved in the attractive case is necessary

to investigate the model when the local potential is time dependent. The study of this

case is in progress and will be discussed elsewhere.

At the experimental level, the lattice with a single localized potential could be more

than a simple but interesting toy model since it certainly represents the simplest way

to break the translational symmetry of the BH Hamiltonian and thus to make appear

the spatial localization, when present. In this respect the realization of toroidal traps

[27] with a persistent flow is encouraging. This system has raised a lot of interest owing

to the possibility to create a bosonic Josephson junction by intersecting the toroidal

domain with a transverse laser beam to generate a potential barrier. In our periodic-

lattice model a possible experimental realization of the local potential could be achieved

by using a red detuned laser beam.

Appendix A. Number of solutions of equation (20)

The two parametrizations µ = chy and µ = cos y, allow one to rewrite equation (20) as
∑M−1

k=0

1

chy − ck
=

M sh(My)

shy [ch(My) − 1]
, (A.1)

∑M−1

k=0

1

cos y − ck

=
M sin(My)

sin y [cos(My) − 1]
, (A.2)

giving equations (21) and (22). Their extremely simple form is particularly useful to find

single-particle energies λk both numerically and analytically. Nevertheless, the series-like

version (20) of such equations better elucidates the dependence of the effective number

of solutions λk from parameter M . By assuming, in equation (20), the equivalent ranges

k ∈ [−M
2

+ 1, M
2

], for M = 2p, and k ∈ [−M−1
2

, M−1
2

], for M = 2p + 1, one finds

2TM

w
=

1

cos y − 1
+

1

cos y + 1
+
∑p−1

k=1

2

cos y − ck
,
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(remind that ck = cos(2πk/M)) for M = 2p and

2TM

w
=

1

cos y − 1
+
∑p

k=1

2

cos y − ck
,

for M = 2p + 1. It is thus evident how in λ = 2T cos y the values of y solving such

equations are in one-to-one correspondence with critical values yk = 2πk/M > 0 and

that for sufficiently large TM/w one has y ' yk. In particular, for M = 2p, the number

of different eigenvalues is p = M/2, while p = (M − 1)/2 is found for M = 2p + 1. In

both cases term 1/(cos y−1) occurring in the preceding formulas does not generate any

solution in that it tends to −∞ while 2TM/w is positive. Including the isolated solution

given by equation (21), the solution number is M/2 + 1 for M = 2p and (M + 1)/2 for

M = 2p + 1.

Appendix B. Approximate solutions of equation (22)

For 2T/w >> M/2, function z(y) = 2T
w

sin(y) intercepts z(y) = cot(My/2) in the

proximity of its asymptotes placed at y = yk = 2πk/M in the interval [0, π]. Substituting

y = yk + εk with |εk| << yk in equation (22) gives (2T/w) sin(yk + εk) = −ctg(Mεk/2),

which, with the further assumption Mεk << 1, becomes, to the second order in Mεk,

(ηck − 1) ε2
k + ηsk εk + 8/M2 = 0 , η = 8T/(wM) ,

with sk = sin(2πk/M) and, as usual, ck = cos(2πk/M). The ensuing solutions are

εk =
1

2(ηck − 1)

[
−ηsk ±

√
η2s2

k − 32(ηck − 1)/M2

]

where one should remind that cases k = 0 and (in even-M case) k = M/2 are excluded.

These solutions are well defined for η >> 1, a condition that perfectly matches initial

assumption 2T/w >> M/2. For large η, one obtains εk ' −8/(ηM2sk) giving the

approximate solutions

λk/(2T ) = cos(yk + εk) ' cos(yk) + 8/(ηM2) ,

where cos(yk+εk) ' cos(yk) +|εk| sin(yk) has been used. Notice that, at least to the first

order in 1/η, energies λk simply represent a shift from values cos(yk). In order to satisfy

condition η = 8T/(wM) >> 1, the potential-well depth w (the hopping amplitude T )

must be much smaller (larger) than T (w). This request, however, is not matched in

the SI regime since T/UN < 1 and the effective depth w = UN + v0 ' UN due to

v0 << UN . Then the opposite regime described by the inequality 1 >> 8T/(wM) must

be considered.

This circumstance suggests to develop a different approximation scheme. Owing to

1 >> 8T/(wM), function (2T/w) sin y in equation (22) ends up intercept ctg(My/2)

close to the zeros thereof. As a consequence y = ȳk + εk, with ȳk = yk + π/M , where,
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locally, ctg(My/2) ' −M(y − ȳk)/2. Then, by considering only first-order terms,

equation (22) becomes (2T/w) sin(ȳk+εk) ' Mεk/2 giving in turn εk ' (4T/wM) sin(ȳk)

and

λk/(2T ) = cos(ȳk + εk) ' cos(ȳk) + 4T sin2(ȳk)/(wM) ,

due to approximation cos(ȳk + εk) ' cos(ȳk) + εk sin(ȳk).

Appendix C. Ground-state boson distribution

The boson distrubution in the ambient space involved by state (19) is obtained by

calculating 〈GS|a+
j aj|GS〉. To this end it is useful to reformulate the ground state in

terms of spacelike boson operators. From equations (13) and the fact that F+
0 = b+

0 ,

F+
k = (b+

k + b+
−k)/

√
2 one has

D+
0 =

K∑

k=0

B0k F+
k =

K∑

k=0

wrk

M

A(0)

λ0 − 2Tck

F+
k =

M−1∑

k=0

xk b+
k

with xk = wA(0)/[M(λ0 − 2Tck)]. Then ground state (19) reduces to |GS〉 =(∑M−1
k=0 xk b+

k

)N

|0〉/
√

N !. The latter is a SU(M) coherent state with the normalization

condition
∑

k |xk|2 = 1 (this exactly matches equation (14)) and the properties that the

momentum-mode and space-mode boson distributions are given by [21]

〈GS|b+
q bq|GS〉 = N |xq|2 , 〈GS|a+

j aj|GS〉 = N |ξj|2

respectively, being

D+
0 =

M−1∑

k=0

xk b+
k =

M−1∑

`=0

ξ` a+
` , ξ` =

M−1∑

k=0

xk eik̃`/
√

M ,

owing to definitions (5). After setting λ0 = 2T chy, the series in ξ` can be computed

explicitly giving

ξj =
wA(0)

2TM3/2

M−1∑

k=0

eik̃j

chy − ck

=
wA(0)

2TM3/2

ch[(M/2 − j)y]

shy sh(My/2)
.

Equation (14) provides A(0)

1

|A(0)|2 =

K∑

k=0

w2r2
k/M

2

(λ0 − 2Tck)2
=

w2

(2TM)2

M−1∑

k=0

1

(chy − ck)2

=
w2

(2TM)2

M + sh(My) cothy

2 sh2(My/2) sh2y
.

Then, the boson distribution in the ambient space reads

〈GS|a+
j aj|GS〉 = N |ξj|2 = 2N

ch2[(M/2 − j)y]

M + sh(My) cothy
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Appendix D. Diagonalization of SF Hamiltonian

The action of R =
∏

k 6=0 Tk on Hamiltonian (26) entails that b+
k → b+

k + z∗k and

bk → bk + zk. The new Hamiltonian contains a linear term L depending on parameters

z∗k and zk which can be removed by exploiting the arbitrariness of z∗k and zk. After some

algebra, the new Hamiltonian is found to have the form

H = R+HR = −Λ + 1/2
∑′

k
gk(nk + n−k)

−1/2
∑′

k
Un

(
b+
−kb

+
k + bkb−k

)
− V0B

+B + L + Φ

with
∑′

k =
∑

k 6=0, where L is defined as

L =
∑′

k

[
gk

(
zkb

+
k + z∗kbk

)
− Un

(
z∗−kb

+
k + bkz−k

)]

−V0

√
n(B+ + B) − V0√

M

(
B
∑′

k
z∗k + B+

∑′

k
zk

)
,

and

Φ =
∑′

k

gk

2

(
|zk|2 + |z−k|2

)
−
∑′

k

Un

2

(
z∗−kz

∗
k + zkz−k

)

−(V0/M)
∑′

k

∑′

h
z∗hzk − V0

√
n/M

∑′

k
(z∗k + zk) .

L vanishes if the following equations are satisfied

V0

√
n/M = gkzk − Unz∗−k −

V0

M

∑
k 6=0

zk , (D.1)

Exploiting the fact that gk = g−k one can show that zk ≡ z−k = xk. The new equation

for xk’s reads V0

√
n/M = (gk − Un)xk − XV0/M , with X =

∑
k 6=0 xk, giving

xk =
V0

gk − Un

( √
n√
M

+
X

M

)
= −V0(X +

√
N)

UN − Mgk
. (D.2)

Summing on index k on both the left and right-hand side of equation (D.2) provides

X = −S
√

N/(1 + S) in which S =
∑

k 6=0 V0/(UN − Mgk), and

xk = − V0

√
N

(UN − Mgk)(1 + S)
(D.3)

determining parameters xk. As a consequence, one can simplify the scalar terms Φ

depending on zk’s in H finding Φ = NV0/[M(1 + S)]. The Hamiltonian becomes

H =
∑

k 6=0

(
gknk −

Un

2
(b+

−kb
+
k + bkb−k)

)
− V0B

+B − C (D.4)

with C = Λ + Φ, and thus

H =
∑

h,k 6=0

(
gkδkh −

V0

M

)
b+
h bk −

Un

2

∑

k 6=0

(b+
−kb

+
k + H.C.) − C.
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The latter can be separated in two independent parts by exploiting operators fk and

Fk (see equation (7)) such that F0 = b0 and f0 = 0 (remind that, if M is even,

operator FM/2 = bM/2 must be considered while fM/2 = 0). By observing that

b+
−kb

+
k + b−kbk = (F+

k )2 + F 2
k − (f+

k )2 − f 2
k and nk + n−k = F+

k Fk + f+
k fk, Hamiltonian

H reduces to H = Hf + HF where

Hf =
S∑

k=1

[
gkf

+
k fk + Un

(
(f+

k )2 + f 2
k

)]
−C , (D.5)

HF =

K∑

k=1

[
gkF

+
k Fk − Un

(
F 2

k + H.C.
)]

− V0B
+B. (D.6)

In operator B =
∑K

k=1 rkFk/
√

M , apart from r2
M/2 = 1 when M is even, r2

k = 2. The

ranges of S and K are defined in equations (8) and (10), respectively.

The third and last step for diagonalizing H concerns HF which, after setting

Gkh = gkδkh − V0rkrh/M , reads

HF =
∑K

k,h=1
GkhF

+
k Fh −

Un

2

∑K

k=1

(
F 2

k + H.C.
)

.

To get the diagonal form of HF we define new operators C` =
∑

h fh`Fh and

C+
` =

∑
h fh`F

+
h where fh` are undetermined elements of an orthogonal matrix

whose arbitrariness can be exploited to diagonalize matrix Gkh. We remind that the

orthogonal-matrix properties
∑K

h=1
fh`fhm = δ`m ,

∑K

k=1
f`kfmk = δ`m , (D.7)

are equivalent to the commutation relations [C`, C
+
m] = δ`m and [F`, F

+
m ] = δ`m. Imposing

that ∑K

k,h=1
GkhF

+
k Fh =

∑K

`=1
θ`C

+
` C`

yields the condition θ`fh` = ghfh` − (V0/M)rhY`, in which Y` =
∑K

k=1 rkfk`, giving in

turn the two equations

fh` = −V0

M

rhY`

θ` − gh
, 1 = −V0

M

K∑

h=1

r2
h

θ` − gh
. (D.8)

The second equation easily follows from the first one. Owing to gh = g−h, equation

(D.8) can be written in the more general form

1 = −V0

M

∑
h 6=0

1

θ` − gh
. (D.9)

Moreover, the calculation of
∑

h fhmfh` for m = ` gives |Y`|−2 = (V 2
0 /M2)

∑
h r2

h/(θ` − gh)
2

thus fixing Y`. The final form of Hamiltonian HF is found to be

HC =
∑K

`=1

[
θ`C

+
` C` −

Un

2

(
(C+

` )2 + C2
`

)]
(D.10)

thanks to the identity
∑

` C2
` =

∑
h,k

∑
` fh`fk`FhFk =

∑
` F 2

k (⇒
∑

`(C
+
` )2 =∑

`(F
+
` )2). This can be easily proven by means of equations (D.7).
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Appendix E. Calculation of parameters θ`

Since gk = V0/M + 2T (1 − ck) − Un equation (28) (equivalent to (D.9)) takes the form

F(µ) = 2TM/V0 described by equation (35) where

F(µ) = −
∑

k 6=0

[
µ −

(
1 − UN − V0

2TM
− ck

)]−1

with µ ≡ θ/2T . In the regime 2TM/V0 >> 1 one expects that the solutions of such an

equation are values of θ very close to the asymptote positions gk. This suggests in turn

to represent µ as µ = V0/(2TM) − Un/(2T ) + 1 − cos y leading to equation

2TM

V0
=

1

1 − cos y
+
∑

k

1

cos y − ck
.

Equation (28) clearly shows how the asymptotes of F(µ) are K and thus one expects

to find K solutions. Thanks to equation (A.2), the latter becomes

(2TM/V0) sin y = ctg(y/2) − M ctg(My/2) . (E.1)

Approximated solutions are found by replacing y = yk + ξk in the latter formula and

using the Taylor expansion to the second order in ξk. This supplies the equation

2TM

V0
(sk + ckξk)ξk =

ξksk − ξ2
k

1 − ck
− 2 +

M2

4
ξ2
k .

(sk = sin yk, ck = cos yk) giving in turn

(tck − 1 + ρk)ξ
2
k + (t − ρk)skξk + 8/M2 = 0 . (E.2)

with t = 8T/MV0 and ρk = 4/[M2(1 − ck)]. At fixed M with T/V0 sufficiently large,

ρk appears to be negligible with respect to t for each k ∈ [1, K]. Then the solutions are

found to be

ξk =
1

2(tck − 1 + ρk)

[
−(t − ρk)sk ±Rk(t, M)

]
(E.3)

where Rk(t, M) ≡
√

(t − ρk)2s2
k − 32(tck − 1 + ρk)/M2.
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