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Adiabatic solutions of a Dirac equation of a new class of quasi-particles and high harmonic generation from them in an intense electromagnetic field

INTRODUCTION

Interaction of a massless particle with an electromagnetic field might be considered rather unusual since the only apparently massless particle, the neutrino, is chargeless, and hence does not interact significantly with the electromagnetic field. However, a hypothetical particle that is massless but charged, if it would exist, would strongly interact with an electromagnetic field and hence might be expected to emit intense harmonic radiations when stimulated by a laser. It would be interesting therefore from a purely theoretical point of view to investigate the response of such particles to an electromagnetic field. In fact, recent discovery of such massless charged quasi-particles in single atomic layers of carbon atoms (or graphenes) in the laboratory [1,2], provides even a stronger and highly timely motivation for such investigations. The above mentioned quasi-particles move in a plane with a constant velocity v F that makes them fully relativistic at a much lower velocity than the velocity of light c (v F ≈ c/300). Their anti-particle counterparts with opposite helicity are also present in the graphene medium as the oppositely charged massless holes. These quasi-particles and their antiparticles are relativistic massless charged fermions that satisfy the Dirac equation in two dimenions [1,2]. The stationary eigenvalues and the spinor eigenfunctions of these quasi-particles (so-called "graphino" [3]) as well as their wavefunctions in the presence of a static electric and a magnetic field, and in crossed electric plus magnetic fields have been obtained recently (see e.g. review [2] and [5,6]). They have been used to investigate some of the most remarkable properties of the graphino quasiparticles, such as chiral scattering, confinement, and zitterbewegung [1,2]. The purpose of this communication is to present a class of adiabatic solutions of the timedependent Dirac equation of the quasi-particles (graphi-nos) interacting with a plane wave electromagnetic field and to show their usefulness for non-perturbative problems by applying them to the case of high harmonic generation in intense long-wavelength laser fields. Examples of the predicted harmonic spectra for a THz and a midinfrared laser exhibit remarkably high relative intensities over a wide range of harmonic orders and are characterized by several intensity "revivals" and "plateaus".

DIRAC EQUATION IN A LASER FIELD

The 2D Dirac Hamiltonian of a free graphino is given by [1,2] 

H = v F σ • p op (1) 
where σ = (σ x , σ y ) are 2 × 2 Pauli matrices

σ x = 0 1 1 0 , σ y = 0 -i i 0 , (2) 
v F is the graphino velocity, and p op ≡ -i ∂ ∂r , r = (x, y). We consider a general plane wave electromagnetic field, assumed to be elliptically polarized in the x-y plane and represented by the vector potential

A(t) = A 0 (η) (ˆ x cos (ξ/2) cos η -ˆ y sin (ξ/2) sin η) , η = (ωt -κz) ( 3 ) 
where A 0 (η) is the pulse envelope, ξ = [0, ±π/2] is the ellipticity parameter with left (+) or right (-) handedness, and ˆ x , ˆ y are unit polarization vectors. The minimalcoupling prescription yields the Dirac equation of the "graphino + electromagnetic field" [7]:

i ∂ ∂t Ψ(t) = v F σ • (p op - e c A(η)) Ψ(t) (4) 
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The unperturbed graphino

It will be useful first to briefly consider the eigensolutions [2] of the field-free graphino Dirac equation governed by the Hamiltonian (1),

Eψ p (r) = v F σ • pψ p (r) ( 5 
)
where E is the energy and p = q is the quasimomentum. One substitutes ψ p (r) = e i p•r u p , where

u p = a b (6) 
is a two component spinor, in Eq. ( 5) to get

Eu p = v F σ • pu p = v F p 0 e -iφp e iφp 0 u p (7)
where φ p is the polar angle of the 2D momentum p. This gives a 2 × 2 matrix equation for the components a and b of the spinor

u p E a b = v F p 0 e -iφp e iφp 0 a b (8) 
This can be readily solved to obtain the two eigenvalues

E (±) = ±v F p (9) 
and the corresponding normalized eigenspinors,

u (±) p = 1 √ 2 e -iφp/2 ±e iφp/2 . ( 10 
)
Thus the normalized eigenstates of Eq. ( 5) are

ψ (s) p (r) = 1 √ A e i p•r u (s) p (11) 
with eigenvalues E (s) (p) = sv F p, where A is the quantization area, and s = ±1 are the two components of the graphino psedo-spin.

Adiabatic solutions in presence of a laser field

We may now proceed to obtain a class of useful solutions of the time-dependent Dirac equation (4) for the interacting system "graphino + laser field". We first make the following adiabatic ansatz for the wavefunction (e.g. [START_REF] Schiff | Quantum Mechanics[END_REF])

Ψ p (r, t) = 1 √ A e -i R t E(t )dt e i p•r u p (t) (12) 
where E(t) and u p (t) are time dependent unknowns to be determined. To this end we substitute (12) in Eq. ( 4) and obtain

E(t)u p (t) + i ∂ ∂t u p (t) = v F σ • (p - e c A(η)) u p (t) ( 1 3 ) 
Next, projection from the left with the hermitian adjoint spinor u † p (t) gives

E(t)u † p (t)u p (t) + i u † p (t) up (t) = u † p (t) v F σ • (p - e c A(η)) u p (t) (14) 
where we have denoted up (t) = ∂ ∂t u p (t). Comparing the last term in (14) with the unperturbed equations ( 7) and [START_REF] Abdurrouf | [END_REF] we make the ansatz

u p (t) ≡ u (s) p(t) = 1 √ 2 e -iφ p(t) /2 se iφ p(t) /2 , (15) 
where we have defined

p(t) = (p -e c A(η)), p(t) = |p(t)|, and tan φ p(t) = p y (t)/p x (t). It is easily seen by direct calculation that, u (s) † p(t) u (s ) p(t) = δ s,s (16) 
By calculations similar to that shown above for the unperturbed case but with the time-dependent spinors defined by Eq. ( 15) and noting that the 2D spatial differential operator does not act on the z-coordinate, we find

v F σ • (p - e c A(η)) u (s) p (t) = sv F |p(t)|u (s) p (t)(17) Moreover, since u(s) p (t) = 1 √ 2 e -iφ p(t) /2 (-i 2 φp(t) ) se iφ p(t) /2 ( i 2 φp(t) ) , (18) 
and

u (s) † p (t) = 1 √ 2 (e iφ p(t) /2 , se -iφ p(t) /2 ), (19) 
therefore, the inner product

u (s) † p (t) u(s) p (t) = 1 4 (-i φp (t) + i φp (t)) = 0 (20)
Thus, substituting Eqs. ( 16), ( 17) and [START_REF] Ashcroft | Solid State Physics[END_REF] in Eq. ( 14) it is seen that Eq. ( 14) is fully satisfied provided

E(t) = sv F |p(t)| (21) 
Hence, finally, we obtain the desired adiabatic solution of the time-dependent Dirac equation ( 4) [START_REF] Faisal | Theory of Multiphoton Processes[END_REF] with s = ±1. They fulfil the biorthonormal conditions

Ψ (s) p (r, t) = 1 √ A e -i svF R t |p(t )|dt e i p•r u (s) p(t)
Ψ (s ) † p (r, t)Ψ (s) p (r, t)d 2 r = δ(p -p )δ s,s p s=± Ψ (s) p (r , t)Ψ (s) † p (r, t) = δ(r -r ) (23)
and thus form a complete set of functions that can be used to represent a state |Φ(t) satisfying the initial condition |Φ(t 0 ) at a time t 0 , in the form

|Φ(t) = p s=± Ψ (s) p (t 0 )|Φ(t 0 ) Ψ (s) p (t) (24) 
High harmonic emission from graphinos

As an example of the usefulness of the solutions obtained here, we investigate the problem of generation of high order harmonics by the pseudo-particles interacting with an intense laser field. In view of their zero-mass we may expect a strong effective coupling of graphinos with low frequency electromagnetic fields and consequently the possibility of strong emissions of high harmonics by them [START_REF]generation of harmonic radiations from the charged pseudo-particles might[END_REF]. To examine this expectation theoretically we next obtain the quantum expectation value of the current operator of the pseudo-particles in the presence of an electromagnetic field and calculate the relative harmonic intensities by a THz and a mid-infrared laser.

Graphino current driven by an electromagnetic field

From Eq.( 5) we have

∂ ∂t Ψ p (t) = -v F σ • ∇Ψ p (t) = -v F σ • ∇Ψ p (t) ( 2 5 ) 
and from its hermitian conjugate

∂ ∂t Ψ † p (t) = -v F σ • ∇Ψ * p (t) = -v F ∇ • Ψ † p (t)σ (26) 
since σ † = σ. Multiplying (25) with Ψ † p (t) and (26) with Ψ p (t) and adding them we obtain

∂ ∂t Ψ † p (t)Ψ p (t) = -v F ∇ • Ψ * p (t)σΨ p (t) (27) 
or, the graphino continuity equation:

∂ ∂t ρ(t) + ∇ • j(t) = 0 ( 28 
)
where

ρ(t) = Ψ † p (t)Ψ p (t) = u (s) † p(t) u (s) p(t) (29)
is the probability density, and

j(t) = v F Ψ † p (t)σΨ p (t) = v F u (s) † p(t) σu (s) p(t) (30)
is the probability current density. We assume that the lower state (s= -1) is fully occupied. Therefore, in an adiabatic laser field harmonic emission is due to the coherently driven graphino current in the upper state (s=+1) [18].

For a laser incident perpendicular to the graphene plane and linearly polarized along the x-axis, the current is given by the quantum expectation value of j x (t). We substitute the spinors ( 15) and (19) in Eq. ( 30) and readily evaluate:

J (s) x (p, t) = -ej x (t) = -esv F cos φ p (t) = -esv F p x -e c A x (η) (p x -e c A x (η)) 2 + p 2 y (31)
Similarly, for the laser polarization along the y-axis we obtain

J (s) y (p, t) = -esv F sin φ p (t) = -esv F p y -e c A y (η) p 2 x + (p y -e c A y (η)) 2 (32)
and for the more general case of an elliptically polarized laser field (cf. Eq.( 3)) we get [19]:

J (s) (p, t) = -esv F (ˆ x cos φ p (t) + ˆ y sin φ p (t)) = -esv F ˆ x (p x -e c A x (η)) + ˆ y (p y -e c A y (η)) (p x -e c A x (η)) 2 + (p y -e c A y (η)) 2 (33) 
where A x (η) = A 0 (η) cos (ξ/2) cos η, and A y (η) = A 0 (η) sin (ξ/2) sin η.

The intensity of the harmonic emission at the nth harmonic frequency Ω = nω depends essentially on the absolute square of the Fourier transform of the graphino current:

S (s) (nω) = (nω) 1 2π π -π e -inωη J (s) (p, η)dη 2 (34) 
where n = 1, 2, 3, • • • . In Fig. 1 we present the results of calculations for the relative intensity of harmonics emitted from low energy excitations in the upper state by a 3 THz laser with a focused intensity of 50 MW/cm 2 , that is polarized linearly along the y-axis and is directed perpendicular to the graphene plane. It should be noted that exactly at zero momentum p = q = 0 the driven graphino current in the present case becomes a constant (cf. Eq. ( 32)) and therefore no harmonics are produced Figure 1: High order harmonic emission (shown up to the 101st harmonic) by a THz laser interaction with "graphinos"; calculated high harmonic spectrum for the initial momentum p = q (qx = 0.01a, qy = 0.01b), laser polarization along y-axis, frequency 3 THz, focused laser intensity I = 50 MW/cm 2 . Note the presence of several "revivals" and "plateaus" in the distribution.

Figure 2: High order harmonic emission (shown up to the 121st harmonic) by a mid-infrared laser interaction with "graphinos" ; calculated high harmonic spectrum for the initial momentum p = q (qx = 0.01a, qy = 0.01b), laser polarization along y-axis, wavelength 3660 nm, focused laser intensity I = 50 GW/cm 2 . Note the marked presence of several "revivals" and "plateaus" in the distribution. from this point. Nevertheless, as expected above high order harmonic emission can be seen to occur copiously from the initially occupied low energy states in the vicinity of this point [18]. In Fig. 2 we show another example of harmonic emission for (q x = 0.01a, q y = 0.01b) by a mid-lnfrared laser with wavelength = 3.6µm and inten-sity = 50 GW/cm 2 . It is found that in both cases the harmonic emission spectra are highly non-perturbative in strengths [START_REF]Probability of an n-photon perturbative process [22decreases as (I/Ia) n with increasing n, where I is the laser intensity in W/cm 2 and Ia is the[END_REF] which decrease only about two orders of magnitude over some 100 orders of the harmonics. Moreover, it can be seen from Figs. 1 and 2 that the relative intensity of the harmonic spectra are characterized by a sequence of "revivals" and "plateaus".

High harmonic emission from a 2D graphene sheet

The full dispersion relation of a graphene layer is different from that of the graphino quasi-particles associated only with the low-energy excitations of graphene. It should be therefore interesting to see the difference between the harmonic generation spectra in the two cases. To this end, in this final section we briefly consider [23] the energy bands of a graphene sheet in the tight-binding approximation, calculate the associated band current, and obtain the high harmonic emission spectrum in a particular case, analytically. In the tight binding approximation the upper and the lower bands are given by (e.g. [2])

E (s) (k) = st{3 + 2 cos (2k y b) + 4 cos (k x a) cos (k y b)} 1 2 = st{1 + 4 cos (k x a) cos (k y b) + (2 cos (k y b)) 2 } 1 2 (35) 
where s = ±1, t is the hopping integral, a = 3 2 a 0 , b = √ 3 2 a 0 , and a 0 is the side-length of unit cell of the hexagonal lattice. The semiclassical band current in the presence of the electromagnetic field can be obtained by differentiating the band energy with respect to the quasimomentum and applying the minimal coupling prescription to the quasi-momentum to obtain the corresponding canonical momentum in the presence of the electromagnetic field (see, e.g. [START_REF] Ashcroft | Solid State Physics[END_REF], appendix H). Thus, for the band current induced by an elliptically polarized electromagnetic field propagating perpendicular to the graphene plane we find the current, ); illustrative calculation for qxa ≡ (Kx -kx)a = 0, qyb ≡ (Ky -ky)b = 0.01, laser polarization along y-axis, frequency 3 THz, focused laser intensity I = 500 GW/cm 2 . Note the presence of a cutoff order n cutof f ≈ 20 after which the relative harmonic intensity drops exponentially, consistent with the formula

J (s) (k, t) = ˆ x j (s) x (k(η)) + ˆ y j (s) y (k(η)) j (s) x (k, t) = st(-2a) sin (k x (η)a) cos (k y (η)b) ×{1 + 4 cos (k x (η)a) cos (k y (η)b) +(2 cos (k y (η)b)) 2 } -1 2 (36) j (s) y (k, t) = st(-2b){cos (k x (η)a) sin (k y (η)b) + sin 2(k y (η)b)} ×{1 + 4 cos (k x (η)a) cos (k y (η)b) +(2 cos (k y (η)b)) 2 )} -1 2 (37) 
n cutof f = ω B ω = 19.9.
where,

k(η) = (k x (η), k y (η)) k x (η) = k x - e c A x (η) cos (η) ( 3 8 ) 
k y (η) = k y - e c A y (η) sin (η) ( 3 9 ) 
Let the laser (with a constant or slowly varying envelope) be polarized along the y-axis and hence assuming that the initial states along k y (with k x = 0) contribute the most to the driven current in this case we get:

j (s) y (k y , t) = (-2stb) sin (k y (η)b) = (-2stb) sin (k y -ρ sin η) (40) 
where, ρ = eF0b ω and F 0 = ωAy c . Using the Jacoby-Anger relation

e iρ sin η = ∞ n=-∞ J n (ρ)e inη (41) 
the Fourier transform of the current can be readily obtained:

F.T.[J (s) y (k y , t)](nω) = (-2stb) 1 2i (e iky b -(-1) n e -iky b ) ×(-1) n J n (ρ) ( 4 2 ) = (-2stb) sin (k y b)J n (ρ) for, n=even (43) 
= (-2stb)i cos (k y b)J n (ρ) for, n=odd (44) 
Using the above expression for the current in Eq. ( 34), we obtain for the relative intensity of the harmonics emitted from an initial state k y in s = ±1 bands analytically as:

S (s) (nω) = 4t 2 b 2 (nω) 2 J 2 n (ρ) sin 2 (k y b), for, n=even (45) = 4t 2 b 2 (nω) 2 J 2 n (ρ) cos 2 (k y b) for, n=odd (46) 
It is immediately seen from the formulae above that for k y = 0 only odd harmonics are generated while for values of k y in the neighborhood of zero both odd and even harmonics are emitted. From the known exponentially decreasing asymptotic behavior of Bessel functions of order n, for n > ρ, we expect an exponential "cutoff" of the harmonic emission above

n cutof f = ρ = ω B ω ( 47 
)
where ω B ≡ eF0b is the so-called Bloch frequency. In Fig. 3 we show the relative intensity distribution of the harmonics for the case of a 3 THz laser, polarized along the y-axis, at an intensity I = 500 GW/cm 2 , near the Dirac point (q x a = 0, q y b = 0.01). As can be seen, now the harmonic spectrum extends significantly only up to about n cutof f ≈ 20 that confirms the prediction of the cutoff-formula n cutof f ≈ ωB ω = 19.9; beyond this value it indeed falls of exponentially. This behavior is qualitatively different from that of the free graphinos discussed above (cf. Figs. 1 and2), as well as from the case of free atoms and molecules for which a cutoff order exists but is given differently by the formula: n cutof f ≈ I p + 3.17U p , where U P = e 2 F 2 0 4mω 2 is the so-called ponderomotive potential [START_REF] Krause | [END_REF]25]. In the present case, the relative intensity spectrum for 2D graphene sheet is reminiscent of the high harmonic emission spectrum observed recently [17] in experiments with bulk ZnO crystals and analyzed within a rather similar 1D tight-binding model. Finally, the differences seen in the two cases of free graphinos (Figs. 1 and2) and the 2D graphene layer (Fig. 3) is largely due to the very different dispersion relations they satisfy and hence the different induced currents they generate. It might be possible to design experiments with low-energy excitations only, or with excitations of the whole band in a graphene sheet, to observe and reveal the qualitative features of the high harmonic emission spectra analyzed above.

CONCLUSION

We obtain a class of exact adiabatic solutions of the time-dependent Dirac equation for the massless charged quasi-particles (so-called "graphinos") interacting with a transverse plane wave electromagnetic field. The solutions are useful for analyses of non-perturbative processes in intense laser fields. As a first here we investigate high harmonic generation from them and predict strong emissions of harmonic radiation by interaction with a THz and a mid-infrared laser. Explicit results of calculations for a linearly polarized 3 THz laser with a focused intensity of 50 MW/cm 2 , and a mid-infrared 3.66 µm laser with a focused intensity of 50 GW/cm 2 , show that the relative intensities of the harmonics change by only about two orders of magnitude over about 100 orders of harmonic emission. Furthermore, the emission spectra are found to be characterized by intensity "revivals" and formation of several "plateaus". We also briefly consider high harmonic emission from a 2D graphene layer that show a qualitatively different spectrum with a an exponential cutoff behavior above an harmonic order n cutof f = ωB ω where ω B = eF0b is the so-called Bloch frequency. In future experiments, it would be interesting to observe the "revivals" and "plateaus" from the high harmonic emission spectra of low-energy excitations in graphene (or "graphinos"), and/or the spectrum with an exponential cutoff at n cutof f = ωB ω from excitations of the whole graphene band.
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 3 Figure 3: High order harmonic emission (shown up to the 46th harmonic) by a THz laser interaction with a 2D graphene layer near the Dirac point K( 2π 3a 0 , 2π 3 √ 3a 0