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Abstract

We consider a class of stochastic processes modeling binary interactions in an
N -particle system. Examples of such systems can be found in the modeling of
biological swarms. They lead to the definition of a class of master equations that
we call pair interaction driven master equations. We prove a propagation of chaos
result for this class of master equations which generalizes Mark Kac’s well know
result for the Kac model in kinetic theory. We use this result to study kinetic limits
for two biological swarm models. We show that propagation of chaos may be lost
at large times and we exhibit an example where the invariant density is not chaotic.
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1 Introduction

This paper is devoted to the passage from stochastic particle systems to kinetic equations
when the number of particles tends to infinity. We are specifically interested in pair-
interaction processes that are inspired from biological swarm models. We start from the
level of the master equation which describes the evolution of the N -particle probability
distribution of the system. The master equation is posed on a large dimensional space
consisting of an N -fold copy of the phase space. By contrast, the kinetic equation provides
a reduced description based on the single particle distribution function posed on a single
copy of the phase space. To show that this reduced description is valid, one needs to show
that the particles become statistically independent in the limit N → ∞; that is, that the
N -particle probability distribution becomes a N -fold tensor product of the single particle
distribution function. More precisely, the result to be shown is that, if the particles are
initially pairwise independent, the time evolution approximately propagates this pairwise
independence, and does so exactly in the large N limit; this is called “chaos propagation”.
This property of an N -particle stochastic evolution is crucial to the existence of a kinetic
description.

Kinetic models derived from particle systems abound in the literature. However, only
in very few cases has the propagation of chaos been proved, and hence only in very
few cases have these models been mathematically derived from an underlying particle
dynamics. The most emblematic kinetic model, the Boltzmann equation has received
most of the attention. Following seminal works by Kac [26, 27] and McKean [33], the
first rigorous establishment of the Boltzmann equation is due to Lanford [29, 30, 31]
and King [28] for Hard-Sphere dynamics and hard potentials (see also [23, 24, 40] and
[19, 20, 21, 34, 41]). A new approach yielding global-in-time results has been recently
developed by Mischler, Mouhot and Wennberg [36, 37, 38]. Kac proposed a caricature of
the Boltzmann equation leading to the Kac kinetic equation [26]. Propagation of chaos
for the Kac master equation and the related question of gap estimates have received a
great deal of attention (see e.g. [7, 8, 9, 10, 18, 25, 32]).

In this paper, our goal is to investigate a class of processes which are inspired from
biological swarm models. A first example is the BDG model, named after Bertin, Droz
and Grégoire [2]. This model is intended to be the kinetic counterpart of the Vicsek
particle system [43]. In the Vicsek model, particles moving with constant speed update
their velocity by trying to align with the average velocity of their neighbors. In [2], the
authors propose a kinetic formulation of a binary collision process which mimics this
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alignment tendency: at each collision, the two particles change their velocity to their
average velocity up to a certain noise. One of the goals of the present paper is to provide
a rigorous justification of this kinetic model, at least in the space-homogeneous case.

Here, we also propose a different and to our knowledge original binary collision process
which mimics the Vicsek alignment dynamics. In this process called ’Choose the Leader
(CL)’, one of the two colliding particles (the follower) decides to take the velocity of the
other one (the leader) up to some noise. The choice of the leader and the follower is
random with equal probabilities. We propose a kinetic formulation of the CL process and
rigorously establish it in the space homogeneous case. One of the advantages of the CL
process, from the mathematical viewpoint, is that it leads to a closed hierarchy of marginal
equations (or BBGKY hierarchy). We will make use of this opportunity to provide explicit
computations of the correlations, i.e. of the distance to statistical independence.

The BGD and CL processes are special examples of a general class of pair-interaction
processes. The paper will study these processes in the space-homogeneous case. Having
in mind the special examples of the BDG and CL processes, we assume that the particle
velocities are two-dimensional vectors of constant norm. However, this assumption could
be easily waived. The main theorem is that the chaos propagation property is true for
these pair-interaction processes. The derivation of the BDG and CL kinetic equations
follow from this theorem. In the case of the BDG operator, we recover the collision
operator or [2]. The proof of the theorem generalizes some of the combinatorial arguments
of Mark Kac [26].

This result can be seen as paradoxical at first sight. Indeed, the BDG and CL processes
build-up correlations, in the sense that particles tend to eventually become close to each-
other (in velocity space). This correlation build-up must be present in any model that
is to display “swarming” or “flocking” behavior, and it should lead to a breakdown of
the statistical independence of the particles. The resolution of this apparent paradox is
seen through an inspection of the time scales. Indeed, the theorem is only valid on any
finite time interval at the kinetic scale. At this scale, the average number of collisions
undergone by each particle on a finite time interval is finite and uniformly bounded. If N
is large and one selects a typical pair of particles and a finite time t, none of the particles
that have collided with the first particles by that time have also collided with any particle
that has collided with the other particle at time t. If one fixes N , and lets t become large,
pair correlations do develop. However, if one fixes t and lets N become large, the amount
of pair correlation built up by time t goes to zero as N increases.

At equilibrium, the solution of the master equation converges to the so-called invariant
density. Due to the special properties of the CL process, it is possible to provide closed
expressions for the marginals of the invariant density. When the noise distribution is
appropriately scaled as N → ∞, we show that the invariant density cannot be chaotic.
Indeed, while the single particle marginal density is uniform, the two-particle marginal
density is not. Therefore, the two-particle marginal density is not a tensor product of
two copies of the single-particle marginal density, as it should if it would be chaotic.
Numerical simulations, reported in a forthcoming work [11], confirm this result. Again,
it may seem paradoxical that the invariant measure has strong pair correlations and yet
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chaos is propagated, and again, it is consideration of the time scales that resolves the
paradox: The time for the N particle system to approach equilibrium grows so rapidly
with N that the stationary measure in not relevant to time evolution on the kinetic scale.

The message of the paper is that the chaos property may be true even for processes that
seemingly build-up correlations. However, in this case, the correlation build-up capacities
of the processes under considerations only manifest themselves at scales which are large
compared to the kinetic scale. To describe these systems at these large scales, kinetic
theory is not valid anymore, and alternate theories must be devised. So far, the subject
is widely open in the literature and constitute a fascinating area of research.

We conclude this section by a few more bibliographical remarks. In [16], an alternate
kinetic model for the Vicsek system has been proposed. It consists of a nonlinear Fokker-
Planck equation. It has been derived from a mean-field limit of the Vicsek system in [6].
In biological swarm modeling, most of the authors make use of particle (aka ’Individual-
Based’) models (see e.g. [1, 13, 14, 15, 43]) and sometimes, fluid-like hydrodynamic models
(see e.g. [13, 35, 42]). The use of kinetic models is more rare. There is a kinetic version
of the Cucker-Smale model [12]. This kinetic Cucker-Smale model takes the form of a
nonlinear non-local Fokker-Planck equation which has been rigorously derived from the
mean-field limit of the discrete Cucker-Smale model in [5]. Kinetic models have also been
proposed in the context of fish schools [17], bacteria and cell motion [22, 39] and ant-trail
formation [4]. In most cases, their justification is purely formal. The present paper is the
first step towards a justification of kinetic models in biological swarm modeling.

The paper is organized as follows. In section 2, we derive the master equations for
the two examples of biological swarm models that we will consider, the BDG and the
CL processes. We also provide the definition of the most general pair interaction driven
master equation. Section 3 is devoted to the proof of the chaos propagation theorem for
pair interaction driven master equations and its application to the BDG and CL dynamics.
This proof is modeled in part on the orginal approach of Kac, but with some differences.
Section 4 investigates the invariant measure for the CL process and shows that, under
some suitable scaling of the noise distribution, it violates the chaos property. A conclusion
is drawn in section 5.

2 Motivation: biological swarm models

2.1 Two examples

We consider a population of N agents, which to be concrete, we take to be fish in a
shallow pond, each swimming at unit speed. In this work, we are only concerned with
the evolution of the velocities, and we neglect the precise spatial location of the fish; that
is, we assume that all N under consideration are sufficiently close to interact with one
another.

The shallow pond is essentially a planar domain, and so the individual velocity vectors
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belong to the unit circle S1. The state space of the system is therefore the torus

TN = [S1]×N .

The state of the swarm, or school, is then specified by giving a vector

~v = (v1, . . . , vN) ∈ TN .

All N agents, or fish, are considered as part of a local cluster, and all are interacting with
one another. The evolution of ~v = (v1, . . . , vN) will be modeled in various ways, all based
on the following general scheme: there is a steady Poisson stream of jump times, at which
a pair (i, j) is selected at random from {1, . . . , N}, and then these two fish adjust their
velocities in some way

(vi, vj) −→ (v′i, v
′
j) . (2.1)

To complete the specification of the dynamics, we need to give the precise rule for updating
the velocities in (2.1). Here are the rules we shall consider.

(1) BDG dynamics: This rule is designed to lead to a kinetic model first investigated by
Bertin, Droz and Gregoire [2]. The idea is that the pair of agents adjust their velocities
cooperatively to achieve the same direction of motion, apart from some noise in their
adjustments. More precisely, define

vi,j =
vi + vj
|vi + vj |

. (2.2)

Now think of vi,j ∈ S
1 as unit complex number. Let Wi andWj be two more unit complex

numbers, chosen independently at random from a probability distribution g(w)dw on S1,
and define

v′i =Wivi,j and v′j = Wjvi,j . (2.3)

Regarding S1 as the unit circle in the complex plane, Wjvi,j simply means the product in
the complex plane of the random variables Wi and vi,j, and likewise for the other term.
Thus, if we write

Wi = eiΘ and vi,j = eiθ, then Wivi,j = ei(Θ+θ)

so that the noise is additive in the angles. In the case of no noise, Wi and Wj are the
constant random variable Wi = Wj = 1, and in the case of small noise, they are random
variables that are strongly peaked around 1. We suppose that g(w) is symmetric; i.e.,

g(w) = g(w∗), (2.4)

where w∗ denote the complex conjugate of w, and that g(w) is somewhat peaked near
w = 1.
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Remark 2.1 This rule could be referred to as the “Maxwellian BDG” dynamics, in refer-
ence to the fact that the selection of the pair (i, j) is independent of their relative velocity,
like the Maxwellian molecular interaction in rarefied gas dynamics. A more general set-
ting would make the collision probability of the pair (i, j) depend on their relative velocity
viv

∗
j , but this will be discarded here, for reasons developed below (see remark 3.2).

(2) “Choose the leader” (CL) dynamics: In this variant, one of the two agents in
the pair decides to adopt the other agent’s velocity, though it does not get this velocity
exactly right: The new velocity it adopts is the velocity of the other agent up to some
noise term. The process is written as follows: if the pair selected is (1, 2), and agent 1
decides to adopt the velocity of agent 2, then the velocity of agent 1 is updated as follows:

v1 → v′1 := Zv2 ,

where Z is an independent random variable with values in S
1 and probability g. As before,

we regard S1 as the unit circle in the complex plane, and Zv1 simply means the product
in the complex plane of the random variables Z and v1. Here again, we assume that g is
symmetric and satisfies (2.4) for the sake of simplicity. We also have in mind that g is
peaked around 1.

We use a fair coin toss, modeled by a Bernoulli variable B, to decide which agent
adopts the velocity of the other, and then we have the following description of the jump
when pair (i, j) The selected pair of velocities is updated according to

v′i = Bvi + (1− B)Zvj
v′j = BZvi + (1− B)vj

(2.5)

and all other velocities are unchanged.

There are many other variants on these basic examples, but for now, let us focus on
these two and seek a passage from this description of the interactions of individual agents
to an evolution equation for the statistical distribution of the velocities in the system.
For this we shall employ methods of kinetic theory that have been developed for a similar
problem concerning colliding molecules in a gas. We shall use a probabilistic approach of
Marc Kac [26], using a so-called Master equation.

2.2 Master Equations

2.2.1 General framework

We now derive master equations describing the evolution of the probability density for the
state of the system as it undergoes our stochastic processes. An advantage with starting
at the microscopic level, i.e., the level of individual agents, is that the modeling is much
clearer before any large N limits are taken.
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We note that both the BDG or the CL dynamics are Markovian. In general, we
consider a Markov process on TN and we denote by ~Vk ∈ TN its state just after the kth
jump. We define its Markov transition operator Q as usual by

Qϕ(~v) = E{ϕ(~Vk+1) | ~Vk = ~v } ,

for any continuous test function ϕ on TN .
Now let Fk(~v) denote the probability density of ~Vk (with respect to the uniform measure

on TN). Then by definition, one has

E(ϕ(~Vk+1)) =

∫

TN

ϕ(~v)Fk+1(~v)d
Nv .

On the other hand, by standard properties of the conditional expectation,

E(ϕ(~Vk+1)) = E(E{ϕ(~Vk+1) | Vk}) =
∫

TN

Qϕ(~v)Fk(~v)d
Nv .

That is,
Fk+1 = Q∗Fk, (2.1)

where Q∗ is the adjoint of Q in L2(TN , d
Nv).

The next step is to construct a time continuous process which will lead to a time-
continuous master equation. The state of the process is now a function of time ~v(t) ∈ TN

and the probability density F (~v, t) is a function of the continuous time parameter t instead
of the discrete jump index k. We assume that F (~v, t + dt) only depends on F (~v, t) and
not on the past values F (~v, s) for s < t. In this way, we can construct a time-continuous
Markov process. Thus, we assume that between time t and t + dt the probability that a
collision occurs is

λQ∗F (~v, t) dt+ o(dt),

where λ is a constant. We assume that the probability that multiple collisions occur
in the time interval [t, t + dt] is negligible. Thus, since there are N particles colliding
independently, we have, for dt:

F (~v, t+ dt) = NλQ∗F (~v, t) dt+ (1−NλF (~v, t)) dt+ o(dt).

Equivalently, we can write

F (~v, t+ dt)− F (~v, t) = Nλ[Q∗F (~v, t) dt− F (~v, t)] dt+ o(dt),

which leads to the Master Equation in the limit dt→ 0:

d

dt
F (~v, t) = λN [Q∗ − I]F (~v, t),

where I is the identity operator. This equation must be complemented by the initial
condition

F (~v, 0) = F0(~v)
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where F0 is the initial probability distribution. In the remainder, we scale time in such a
way that λ = 1 and we define

L = N [Q− I] and L∗ = N [Q∗ − I]. (2.2)

We summarize the previous discussion in the following definition:

Definition 2.1 The time-continuous master equation associated to a discrete Markov
process of transition operator Q is written

d

dt
F (~v, t) = L∗F (~v, t), (2.3)

F (~v, 0) = F0(~v). (2.4)

where L∗ = N [Q∗−I] with Q∗ the adjoint of Q and F0 is the initial probability distribution.

In the next sections, we determine the master equations of the BDG and CL processes
successively.

2.2.2 The BDG dynamics

We state the following:

Proposition 2.2 The master equation of the BDG dynamics is written (2.3) with

L∗ = N

(
N
2

)−1∑

i<j

(Q∗
(i,j) − I) , (2.5)

and the binary interaction operator Q∗
(i,j) given by:

Q∗
(i,j)F (~v) =

∫

T2

F (v1, . . . , yi, . . . , yj, . . . , vN) g
(
viy

∗
i,j

)
g
(
vjy

∗
i,j

)
dyidyj . (2.6)

Proof: ¿From the definition (2.3) of the BDG dynamics, we get

Qϕ(~v) = E{ϕ(~Vk+1) | ~Vk = ~v }
= Eϕ(v1, . . . ,Wivi,j, . . . ,Wjvi,j, . . . , vN)

=
2

N(N − 1)

∑

i<j

∫

T2

ϕ(v1, . . . , wivi,j, . . . , wjvi,j, . . . , vN) g(wi) g(wj) dwidwj .
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To compute the adjoint of Q, we note that for any probability density F on TN ,

∫

TN

F (v1, . . . , vN)×
[∫

T2

ϕ(v1, . . . , wivi,j, . . . , wjvi,j, . . . , vN) g(wi) g(wj) dwidwj

]
dv1 . . .dvN =

=

∫

TN

[∫

T2

F (v1, . . . , vi, . . . , vj , . . . , vN) g
(
yiv

∗
i,j

)
g
(
yjv

∗
i,j

)
dvidvj

]
×

ϕ(v1, . . . , yi, . . . , yj, . . . , vN) dv1 . . .dyi, . . .dyj . . . , dvN ,

where we have introduced the variables

yi = wivi,j and yj = wjvi,j .

Now changing the names of variables, we finally have

Q∗F (v1, . . . , vN) =

2

N(N − 1)

∑

i<j

∫

T2

F (v1, . . . , yi, . . . , yj, . . . , vN)g
(
viy

∗
i,j

)
g
(
vjy

∗
i,j

)
dyidyj , (2.7)

where

yi,j =
yi + yj
|yi + yj |

.

Therefore, we can write

Q∗ =

(
N
2

)−1∑

i<j

Q∗
(i,j),

with Q∗
(i,j) defined by (2.6). Then, using (2.2), we get eq. (2.5).

Remark 2.2 It is useful to note that the adjoint L of L∗ which corresponds to the Markov
transition operator, is defined by

L = N

(
N
2

)−1∑

i<j

(Q(i,j) − I) , (2.8)

with

Q(i,j)ϕ(~v) =

∫

T2

ϕ(v1, . . . , wivi,j, . . . , wjvi,j, . . . , vN) g(wi) g(wj) dwidwj .
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2.2.3 The CL dynamics

We now derive the master equation for the CL model. We introduce the notation
(v1, . . . , v̂i, . . . , vN) for the n− 1 tuple formed by removing vi from ~v and

[F ]̂i(v1, . . . , v̂i, . . . , vN ) :=

∫

S1

F (v1, . . . , vN )dvi

for the marginal of F obtained by integrating vi out. We show the

Proposition 2.3 The master equation of the CL dynamics is written (2.3) with L∗ given
by (2.5) and the binary interaction operator Q∗

(i,j) by:

Q∗
(i,j)F (~v) =

1

2

[
[F ]̂i(v1, . . . , v̂i, . . . , vN) + [F ]ĵ(v1, . . . , v̂j, . . . , vN)

]
g(v∗i vj) . (2.9)

Proof: From the definition (2.5) of the CL process, the Markov transition operator Q is
given by:

Qϕ(~v) =
1

N(N − 1)

∑

i<j

∫

S1

[ϕ(v1, . . . , zvj , . . . , vj , . . . , vN)

+ϕ(v1, . . . , vi, . . . , zvi, . . . , vN)] g(z) dz . (2.10)

To compute the adjoint of Q, we note that for any probability density F on TN ,
∫

TN

F (v1, . . . , vN)

[∫

S1

ϕ(v1, . . . , zvj , . . . , vj, . . . , vN)g(z)dz

]
dv1 . . .dvN =

=

∫

TN−1

[F ]̂i(v1, . . . , v̂i, . . . , vN)

∫

S1

ϕ(v1, . . . , zvj , . . . , vj, . . . , vN) g(z)

dz dv1 . . . d̂vi, . . . , dvN (2.11)

We next introduce a new variable

yi = zvj (or equivalently z = v∗j yi ).

Evidently dz = dyi. Additionally, since vi has been integrated out, it has disappeared
from (2.11). Therefore, we can change the name yi into vi without any confusion. We can
then rewrite (2.11) as
∫

TN

F (v1, . . . , vN)

[∫

S1

ϕ(v1, . . . , zvj , . . . , vj, . . . , vN)g(z)dz

]
dv1 . . .dvN =

=

∫

TN

[F ]̂i(v1, . . . , v̂i, . . . , vN ) g(v
∗
jvi)ϕ(v1, . . . , vi, . . . , vj , . . . , vN)

dv1 . . .dvi, . . . , dvN . (2.12)

Using this formula and its analog for i and j exchanged, we see that the master equation
for the CL dynamics is given by (2.2), (2.5) with Q(i,j) given by (2.9).
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Remark 2.3 Again, we note that the adjoint L of L∗ is defined by (2.8) with Q(i,j), the
adjoint of Q∗

(i,j), given by:

Q(i,j)ϕ(~v) =

∫

S1

ϕ(v1, . . . , zvj , . . . , vj , . . . , vN)g(z)dz .

2.3 Extension: Pair-Interaction driven Master Equation

The master equations of the BDG and CL dynamics are two examples of a class of master
equations which we will call ’Pair Interaction driven Master Equations’, defined below.

Definition 2.4 (Pair Interaction Driven Master Equation) A pair interaction driven
Master equation is an equation of the form

∂

∂t
F (~v, t) = L∗F (~v, t),

describing the evolution of probability densities on some product space XN with elements
~v = (v1, . . . , vN) where

L∗ = N
∑

i<j

pi,j(~v) (Q
∗
(i,j) − I) .

The operators Q(i,j) are Markov operators on functions on XN such that Q(i,j)ϕ = ϕ
whenever ϕ does not depend on either vi or vj. The pair selection probabilities pi,j(~v) are
such that pi,j(~v) ≥ 0 and ∑

i<j

pi,j(~v) = 1 .

We have given two examples already: the CL and BDG master equations. The Kac
Master equation [26] is another example and is described below.

Example 2.1 The Kac Master equation. In this example, XN is the sphere in RN of
radius

√
N ,

Q(i,j)ϕ(~v) =

∫ π

−π

ρ(θ)ϕ(Ri,j,θ~v)dθ ,

Ri,j,θ~v = (v1, v2, . . . , cos θ vi + sin θ vj , . . . ,− sin θ vi + cos θ vj , . . . , vn),

pi,j =
2

N(N − 1)

and ρ is a probability density on S1. The operators Q(i,j) in the Kac model are self adjoint
with respect to the uniform probability measure on the sphere SN−1, which is therefore the
invariant measure for this process. In other words the Kac process is reversible meaning
that is satisfies detailed balance: if you saw a movie of the process running backwards,
there would be no clue that it was running backwards.
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By contrast to the Kac model, the BDG and CL models do not have detailed balance
property and time reversibility. If you ran the movie backwards, you would see pairs of fish
with similar velocities changing them to differ in a random way. For these non-reversible
processes, it is not so easy to determine the invariant measure, though it will exist and
be unique for each N for our processes under mild assumptions on the noise distribution
g. In section 4, it will be possible to determine the marginals of the invariant density of
the CL dynamics in closed form. However, this simplification is not possible for the BDG
dynamics.

In the next section, we show that pair interaction driven master equations with uniform
selection probabilities pi,j = 2/(N(N − 1)) do have the propagation of chaos property,
and therefore, satisfy a kinetic equation at the kinetic time scale. However, in section 4,
we show that the equilibrium density of the CL dynamics cannot satisfy the propagation
of chaos property, meaning that this property may break down at larger time scales.

3 Propagation of Chaos

3.1 Definition

To pass to a kinetic description, and then on to a hydrodynamic description, the key step
is a propagation of chaos result. That may seem unlikely in the cases of the CL and
BDG dynamics which are expected to build pair correlations. However, the time scales
at which pair correlations built up may be longer than the kinetic time scale at which
a kinetic model is expected to be valid. In the present section, we shall see that chaos
is propagated in both the BDG and CL models at the kinetic time scale. In section 4,
we prove that the invariant measure of the CL dynamics is not chaotic; it exhibits pair
correlation. These two observations are not self-contradictory since propagation of chaos
holds only on a finite time scale while the invariant measure is reached as time tends to
infinity.

Definition 3.1 (Chaos) Let XN be the N-fold cartesian product of a polish space X
equipped with some reference measure µ. Let f be a given probability density on X. For
each N ∈ N, let F(N) be a probability density on XN with respect to µ⊗N . The sequence
{F(N)}N∈N of probability densities on XN is f -chaotic in case

(1.) Each F(N) is a symmetric function of {v1, v2, . . . , vN}
(2.) For each fixed k, and any bounded measurable function φ on Rk,

lim
N→∞

∫

XN

φ(v1, v2, . . . , vk)F(N)(~v)dσ =

∫

Xk

φ(v1, v2, . . . , vk)

k∏

j=1

f(vj)d
kv .

Kac [26] proved that the semigroup etL
∗

associated to Kac’s master equation propagates
chaos. More precisely, Kac’s Theorem is stated as follows:
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Theorem 3.2 (Propagation of chaos) Let {F(N)}N∈N be f–chaotic. Then the family
{etN(Q−I)F(N)}N∈N is f(·, t)–chaotic where f(v, t) is the solution of

∂f

∂t
(v, t) = Q(f, f)(v, t) with f(v, 0) = f(v) , (3.1)

with

Q(f, f) = 2

∫

R

∫ π

−π

[f(v′)f(w′)− f(v)f(w)] ρ(θ) dθdw ,

and
v′ = cos θ v + sin θ w, w′ = − sin θ v + cos θ w.

Eq. (3.1) is called the Kac-Boltzmann equation. In this section we prove a propagation
of chaos result valid in the general class of pair interaction driven Master equations. We
shall use this result to discuss the kinetic limits of the BDG and CL dynamics.

3.2 Propagation of chaos for pair interaction driven master equa-

tions

Consider a general Master equation

∂

∂t
F = L∗F, (3.2)

for a probability density F on TN of the form

L∗F = N(Q∗ − I)F =
2

N − 1

∑

i<j

(Q∗
(i,j) − I)F, (3.3)

where Qi,j is a Markovian operator acting on F through vi and vj alone. The goal of this
section is to prove the following:

Theorem 3.3 Let {F (N)
0,N }N∈N be f -chaotic. Then for each t > 0, the family of marginals

{etL∗

F
(N)
0,N }N∈N associated to eq. (3.2), where L∗ is a pair-interaction operator of the form

(3.3), is f(·, t)-chaotic where f(·, t) satisfies the following Boltzmann equation:

∂

∂t
f(v, t) = 2

[∫

S1

Q∗
(1,2)f

⊗2(v, w) dw − f(v, t)

]
, (3.4)

associated to the initial condition f(v, 0) = f .

Before proving Theorem 3.3, we make some preliminary comments. Let initial data F0,N

be given, and let us compute the evolution of F
(1)
t , the single particle marginal at time t.

For any test function ϕ(v) of the single coordinate v ∈ S
1, we have

∫

S1

ϕ(v)F
(1)
t (v) dv =

∫

TN

ϕ(v1) e
tL∗

F0,N (~v) dv1 . . .dvN

=

∫

TN

etLϕ(v1)F0,N(~v) dv1 . . .dvN .

13



A similar relation holds for the two particle marginal and so on. So, to study the evolution
of low dimensional marginals, it is helpful to understand the behavior of expressions of
the form etLϕ(~v) when ϕ(~v) depends on only finitely many coordinates in ~v.

It is clear that in general, for a bounded continuous function ϕ on TN ,

‖Lϕ‖∞ ≤ 2N‖ϕ‖∞ .

However, if ϕ depends only on v1, . . . , vk, tighter bounds are valid. This is because

i, j > k ⇒ Q(i,j)ϕ = ϕ ,

and so

Lϕ =
2

N − 1

∑

i<j

(Q(i,j) − I)ϕ =
2

N − 1

k∑

i=1

N∑

j=i+1

(Q(i,j) − I)ϕ , (3.5)

and thus, as soon as k ≥ 1:

‖Lϕ‖∞ ≤ 2

N − 1
k(N − k + 1

2
) 2‖ϕ‖∞ ≤ 4k‖ϕ‖∞ . (3.6)

We can now state the following fundamental lemma:

Lemma 3.4 Let ϕ be a function depending only on v1, . . . , vk. We can regard ϕ as a
function on XN for each N ∈ N, N ≥ k. Then, the power series

etLϕ =
∞∑

k=0

tk

k!
Lkϕ, (3.7)

converges absolutely in L∞, uniformly in N ∈ N∗ and t ∈ [0, T ] for any T < 1/4.

Proof: Consider first the case in which ϕ depends only on one variable. Without loss of
generality, owing to the permutation symmetry of the problem, we can set this variable
to v1. Then from (3.5), Lϕ is an average of functions depending on only two velocities.
Likewise, L2ϕ is a combination of terms depending only on three velocities and so on. By
what we have noted above, we can expect the following formula:

‖Lkϕ‖ ≤ 4k k! ‖ϕ‖∞ . (3.8)

To show (3.8) we prove that Lkϕ is of the form

Lkϕ =

(
2

N − 1

)k ∑

s∈Sk

ψ(k)
s , (3.9)

where the set Sk is a set of multi-indices s = (1, s1, . . . , sk), such that

CardSk ≤ k!
k∏

j=1

(N − j + 1

2
). (3.10)
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The function ψ
(k)
s depends only on the k + 1 variables (v1, vs1, . . . , vsk) and satisfies

‖ψ(k)
s ‖∞ ≤ 2k‖ϕ‖∞. (3.11)

Of course, (3.8) results from (3.9), (3.10) and (3.11) and the remark that

1

(N − 1)k

k∏

j=1

(N − j + 1

2
) ≤ 1.

We note that, if k + 1 > N , some of the variables (v1, vs1, . . . , vsk) may be identical, but
the arguments below are still valid in this case.

The proof of (3.9) is by induction. For k = 1, using (3.5), we have

Lϕ =
2

N − 1

N∑

j=2

(Q(1,j) − I)ϕ.

Therefore, letting S1 = {2, . . . , N} and ψ
(1)
s = ψ

(1)
j = (Q(1,j) − I)ϕ, we can write Lϕ

according to formula (3.9). Clearly, Card S1 = N − 1 in accordance to (3.10). Finally,

by the Markov property, we have ‖ψ(1)
j ‖∞ ≤ 2‖ϕ‖∞, which is consistent with (3.11).

Therefore, (3.8) is proved for k = 1.
Now, we assume that (3.8) is true for k and try to deduce it for k+1. By the induction

hypothesis, ψ
(k)
s depends only on k + 1 variables so (3.5) applies and we have

Lk+1ϕ =

(
2

N − 1

)k ∑

s∈Sk

Lψ(k)
s

=

(
2

N − 1

)k+1 ∑

s∈Sk

∑

m∈s,ℓ>m

(Q(m,ℓ) − I)ψ(k)
s .

The expression m ∈ s means that m takes any of the indices {1, s1, . . . , sk} present
in the multi-index s. We know from the computation in formula (3.6) that there are
(k + 1)(N − k+2

2
) such pairs (m, ℓ) for a given s. Defining Sk+1 as the set of the so-

constructed multi-indices {s′ = (s, ℓ)}, we can write

Lk+1ϕ = =

(
2

N − 1

)k+1 ∑

s′∈Sk+1

ψ
(k+1)
s′ , (3.12)

with
ψ

(k+1)
s′ = (Q(m,ℓ) − I)ψ(k)

s .
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Clearly, ψ
(k+1)
s′ is a function of the k + 2 variables (v1, vs1, . . . , vsk , vm) and we have

CardSk+1 = (k + 1)(N − k + 2

2
)CardSk

= (k + 1)(N − k + 2

2
) k!

k∏

j=1

(N − j + 1

2
)

= (k + 1)!
k+1∏

j=1

(N − j + 1

2
). (3.13)

Finally, we have, using the Markov property

‖ψ(k+1)
s′ ‖∞ ≤ 2‖ψ(k)

s ‖∞ ≤ 2k+1‖ϕ‖∞. (3.14)

Now, collecting (3.12), (3.13), (3.14) shows that the induction hypothesis is valid at rank
k + 1. This proves (3.8).

Using (3.8), we deduce that

∥∥∥∥
tk

k!
Lkϕ

∥∥∥∥
∞

≤ (4t)k ‖ϕ‖∞ ,

uniformly in N , and so for t < 1/4, we have the uniform absolute convergence of the
series (3.7).

If now ϕ is a function p variables, p ≥ 2, formula (3.8) is changed into

‖Lkϕ‖ ≤ 4k k!

(
p+ k − 1

k

)
‖ϕ‖∞ (3.15)

≤ 4k k!
(k + p− 1)p−1

(p− 1)!
‖ϕ‖∞

≤ Cp 4
k k! (k + 1)p−1 ‖ϕ‖∞ . (3.16)

The proof follows the same lines as above. The only thing to note is that Card Sk is now
changed into

CardSk =
k∏

j=1

(p+ j − 1)(N − p + j

2
),

the other expressions remaining identical. Then, we get
∥∥∥∥
tk

k!
Lkϕ

∥∥∥∥
∞

≤ Cp (4t)
k (k + 1)p−1 ‖ϕ‖∞ , (3.17)

uniformly in N . For any given p ≥ 2, the right-hand side of (3.17) is still the general term
of a convergent series for t < 1/4. Therefore, the series (3.7) is still absolutely uniformly
convergent for t < 1/4, which ends the proof of Lemma 3.4.
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Remark 3.1 ¿From the last proof, we note that the series (3.7) is not uniformly con-
vergent with respect to p.

We now have the following

Lemma 3.5 Suppose that F0,N is a symmetric probability density on TN , and suppose
that ϕ(k) depends only on v1, . . . , vk and is L∞. Define ϕ(k+1) by

ϕ(k+1)(v1, . . . , vk+1) = 2
k∑

i=1

(Q(i,k+1) − I)ϕ(k)(v1, . . . , vk) . (3.18)

Then, if N ≥ k + 1, we have
∫

TN

F0,N Lϕ
(k) dv1 . . . dvN =

∫

TN

F0,N (ϕ(k+1) + ϕ̃(k+1)) dv1 . . .dvN , (3.19)

where ϕ̃(k+1) only depends on v1, . . . , vk+1 and is such that

‖ ϕ̃(k+1) ‖∞ ≤ 6
k (k − 1)

N − 1
‖ϕ(k)‖∞. (3.20)

Proof: We compute, using (3.5) and that N ≥ k + 1:
∫

TN

F0,N Lϕ
(k) dv1 . . .dvN =

=
2

N − 1

k∑

i=1

N∑

j=i+1

∫

TN

F0,N (Q(i,j) − I)ϕ(k) dv1 . . .dvN

= 2
N − k

N − 1

k∑

i=1

∫

TN

F0,N (Q(i,k+1) − I)ϕ(k) dv1 . . .dvN +

+
2

N − 1

∑

i<j≤k

∫

TN

F0,N (Q(i,j) − I)ϕ(k) dv1 . . .dvN

=
k∑

i=1

∫

TN

F0,N (ϕ(k+1) + ϕ̃(k+1)) dv1 . . .dvN ,

where we have used the symmetry in the second equality, and where

ϕ̃(k+1)(v1, . . . , vk+1) = 2
k − 1

N − 1

k∑

i=1

(Q(i,k+1) − I)ϕ(k) +

+
2

N − 1

∑

i<j≤k

(Q(i,j) − I)ϕ(k). (3.21)
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This shows (3.19). Now, from the Markov property of Q(i,j) and from (3.21), we get (3.20),
which ends the proof of the Lemma.

Now consider any ϕ(m) depending only on v1, . . . , vm. Since if F0,N is symmetric, so is
each (L∗)kF0,N . Therefore, we can repeatedly apply the previous lemma and so on. Using
(3.18), we inductively define ϕ(m+1), ϕ(m+2), . . .ϕ(m+k). We note that, if ϕ(m) does not
depend on N , neither does ϕ(m+k). Therefore, the functions ϕ(m+k) are good candidates
to express what happens in the limit N → ∞. However, for a given N , formula (3.19)
is only valid until m + k ≤ N . A special treatment is required for indices k such that
m+ k > N . The contribution of the remainder ϕ̃(k+1) needs also to be estimated. These
are the goals of the following Lemma.

Lemma 3.6 We assume that {F0,N} is f -chaotic (see definition 3.1). Then, for t < 1/4,
we have:

lim
N→∞

∫

TN

F0,N etLϕ(m) dv1 . . .dvN =

=
∞∑

k=0

tk

k!

∫

Tk+m

(
k+m∏

j=1

f(vj)

)
ϕ(m+k)(v1, . . . , vk+m) dv1 . . .dvk+m . (3.22)

Proof: ¿From Lemma 3.4, we have

lim
N→∞

∫

TN

F0,N etLϕ(m) dv1 . . .dvN = lim
H→∞

lim
N→∞

SN
H (t) ,

with

SN
H (t) =

H∑

k=0

tk

k!

∫

TN

F0,N L
kϕ(m) dv1 . . .dvN , (3.23)

Indeed, according to Lemma 3.4, the series (3.23) converges absolutely, uniformly with
respect to N and we can interchange theH → ∞ and N → ∞ limits. Now, for k+m ≤ N ,
according to the inductive definition of ϕ(m+k) and to (3.19), we can write:

∫

TN

F0,N L
kϕ(m) dv1 . . .dvN =

∫

TN

F0,N

(
ϕ(m+k) +

k∑

j=1

Lk−jϕ̃(m+j)

)
dv1 . . .dvN .

Taking an index H such that H +m ≤ N , we have:

SN
H (t) =

H∑

k=0

tk

k!

∫

TN

F0,N ϕ
(m+k) dv1 . . .dvN +

∫

TN

F0,N RN
Hϕ

(m) dv1 . . .dvN , (3.24)

with

RN
Hϕ

(m) =
H∑

k=0

tk

k!

k∑

j=1

Lk−jϕ̃(m+j).
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Now, taking successively N → ∞ then H → ∞, we show that the first term of (3.24)
tends to the right-hand side of (3.22) and the second one tends to zero.

We start with the first term. By the chaos assumption, we have, as N → ∞:

lim
N→∞

H∑

k=0

tk

k!

∫

TN

F0,N ϕ
(m+k) dv1 . . .dvN =

=

H∑

k=0

tk

k!

∫

Tm+k

(
k+m∏

j=1

f(vj)

)
ϕ(m+k) dv1 . . .dvN . (3.25)

We show that the series at the right-hand side of (3.25) is absolutely convergent, uniformly
with respect to t in any interval [0, T ] with T < 1/4. The proof follows the same lines
as that of Lemma 3.4 and we only sketch it. Using (3.18) and the Markov property of
Q(i,k+1), we have

‖ϕ(m+k)‖∞ ≤ 4(m+ k − 1) ‖ϕ(m+k−1)‖∞

≤ 4k k!

(
m+ k − 1

k

)
‖ϕ(m)‖∞ (3.26)

≤ Cm4
k k! (k + 1)m−1 ‖ϕ(m)‖∞.

Therefore, since
∏k+m

j=1 f(vj) is a probability:

∣∣∣∣∣
tk

k!

∫

Tm+k

(
k+m∏

j=1

f(vj)

)
ϕ(m+k) dv1 . . .dvN

∣∣∣∣∣ ≤ Cm(4t)
k (k + 1)m−1 ‖ϕ(m)‖∞.

This is the general term of a convergent series which converges uniformly as stated above.
We deduce that

lim
H→∞

lim
N→∞

H∑

k=0

tk

k!

∫

TN

F0,N ϕ
(m+k) dv1 . . .dvN =

=

∞∑

k=0

tk

k!

∫

Tm+k

(
k+m∏

j=1

f(vj)

)
ϕ(m+k) dv1 . . .dvN ,

which is the right-hand side of (3.22).
We now consider the second term of (3.24). First, using (3.15) with the pair (k, p)

replaced by (k − j,m+ j), we get

‖Lk−jϕ̃(m+j)‖∞ ≤ 4k−j (m+ k − 1)!

(m+ j − 1)!
‖ϕ̃(m+j)‖∞ . (3.27)

Then, (3.20) with k replaced by m+ j − 1 yields

‖ ϕ̃(m+j) ‖∞ ≤ 6
(m+ j − 1)2

N − 1
‖ϕ(m+j−1)‖∞ . (3.28)
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Finally, using (3.26) with k = j − 1, we obtain

‖ϕ(m+j−1)‖∞ ≤ 4j−1 (m+ j − 2)!

(m− 1)!
‖ϕ(m)‖∞. (3.29)

Collecting (3.27), (3.28) and (3.29) leads to

‖Lk−jϕ̃(m+j)‖∞ ≤ 3

2
4k

(m+ k − 1)!

(m− 1)!

m+ j − 1

N − 1
‖ϕ(m)‖∞ ,

and:

‖
k∑

j=1

Lk−jϕ̃(m+j)‖∞ ≤ 3

2
4k

(m+ k − 1)!

(m− 1)!

(m+ k)2

2(N − 1)
‖ϕ(m)‖∞

≤ Cm 4k k!
(k + 1)m+1

N
‖ϕ(m)‖∞,

which finally gives:

tk

k!
‖

k∑

j=1

Lk−jϕ̃(m+j)‖∞ ≤ Cm (4t)k
(k + 1)m+1

N
‖ϕ(m)‖∞,

Therefore, we have

∫

TN

F0,N RN
Hϕ

(m) dv1 . . .dvN ≤ 1

N
Cm ‖ϕ(m)‖∞

(
∞∑

k=0

(4t)k (k + 1)m+1

)
,

and deduce that

lim
H→∞

lim
N→∞

∫

TN

F0,N RN
Hϕ

(m) dv1 . . .dvN = 0,

which ends the proof.

We now have all the elements to prove Theorem 3.3.

Proof of Theorem 3.3: We need to show the existence of a function of a single velocity
variable f(v, t) such that

lim
N→∞

∫

TN

F0,N etLϕ(m) dv1 . . .dvN =

∫

Tm

(
m∏

j=1

f(vj , t)

)
ϕ(m) dv1 . . .dvN , (3.30)

for all functions ϕ(m) of m velocity variables (v1, . . . , vm) and all m ≤ 1.
First applying this definition with m = 1 defines f(v, t) (if it exists), by duality:

∫

T1

f(v, t)ϕ(v) dv = lim
N→∞

∫

TN

F0,N etLϕ dv1 . . .dvN . (3.31)
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Now, applying (3.30) with m = 2, ϕ(2)(v1, v2) = η(1)(v1)ξ
(1)(v2), and using (3.31) leads to

lim
N→∞

∫

TN

F0,N e
tLϕ(2) dv1 . . .dvN =

(
lim

N→∞

∫

TN

F0,N e
tLη(1) dv1 . . . dvN

)(
lim

N→∞

∫

TN

F0,N e
tLξ(1) dv1 . . .dvN

)
. (3.32)

Reciprocally, (3.32) implies (3.30) for m = 2 and general functions ϕ(2)(v1, v2) by the
density of linear combinations of tensor products. Finally, the same argument applied to
arbitrary m would require to check the property for ϕ(m) equal to the tensor product of
m one-dimensional functions. This proof follows closely the proof for the case m = 2 and
will be omitted. So, we now focus to the case m = 2.

We first consider the case of small t < 1/4. Then, using (3.22), eq. (3.32) is equiva-
lently written:

∞∑

K=0

tK

K!

∫

TK+2

(
K+2∏

j=1

f(vj)

)
ϕ(K+2) dv1 . . .dvK+2 =

(
∞∑

k=0

tk

k!

∫

Tk+1

(
k+1∏

j=1

f(vj)

)
η(k+1) dv1 . . .dvk+1

)
×

×
(

∞∑

ℓ=0

tℓ

ℓ!

∫

Tℓ+1

(
ℓ+1∏

j=1

f(vj)

)
η(ℓ+1) dv1 . . .dvℓ+1

)
.

We start with the right-hand side of this formula, denoted by R. By distributing the
various terms in the product, we can write

R =

∞∑

K=0

tK

K!

∫

TK+2

(
K+2∏

j=1

f(vj)

)(
K∑

m=0

(
K
m

)

η(m+1)(v1, v3, . . . , vm+2)ξ
(K−m)+1(v2, vm+3, . . . , vK+2)

)
dv1 . . .dvK+2.

Therefore, the result is proved if we show that for any symmetric function of F (v1, v2,
. . . , vK+2), we have

∫

TK+2

(
K∑

m=0

(
K
m

)
η(m+1)(v1, v3, . . . , vm+2)ξ

(K−m)+1(v2, vm+3, . . . , vK+2)

)

F (v1, v2, . . . , vK+2) dv1 . . .dvK+2 =

=

∫

TK+2

ϕ(K+2)(v1, v2, . . . , vK+2)F (v1, v2, . . . , vK+2) dv1 . . .dvK+2 . (3.33)
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Indeed, at the initial step K = 1, by direct computation we get:

∫

T3

ϕ(3)(v1, v2, v3)F (v1, v2, v3) dv1 . . . dv3 =

=

∫

T3

(η(2)(v1, v3)ξ
(1)(v2) + η(1)(v1)ξ

(1)(v2, v3))F (v1, v2, v3) dv1 . . .dv3 .

Then, (3.33) is easily proved by induction, using elementary properties of the binomial
coefficients. This shows that etL

∗

F0,N is f(·, t)-chaotic for small t < 1/4.
It remains to show that f(v, t) is a solution of (3.4). Again, assuming small t < 1/4

and Using (3.22) with m = 1 and (3.31), we get

∫

T1

f(v, t)ϕ(1)(v) dv =

∞∑

k=0

tk

k!

∫

Tk+1

(
k+1∏

j=1

f(vj)

)
ϕ(k+1)(v1, . . . , vk+1) dv1 . . .dvk+1 .

The convergence of the series at the right-hand side is uniform for t < 1/4. So, we can
differentiate this formula with respect to t and obtain:

∫

T1

∂f

∂t
(v, t)ϕ(1)(v) dv =

=

∞∑

k=0

tk

k!

∫

Tk+2

(
k+2∏

j=1

f(vj)

)
ϕ(k+2)(v1, . . . , vk+2) dv1 . . .dvk+2 . (3.34)

Applying (3.22) and (3.30) with m = 2, we can re-write the right-hand side of (3.34) and
get

∫

T1

∂f

∂t
(v, t)ϕ(1)(v) dv =

∫

T2

(
2∏

j=1

f(vj, t)

)
ϕ(2) dv1 dv2

= 2

∫

T2

f(v1, t)f(v2, t) (Q(1,2) − I)ϕ(1) dv1 dv2

= 2

∫

T2

(Q∗
(1,2) − I)(f ⊗ f)ϕ(1) dv1 dv2 ,

which is the weak form of (3.4). This shows that f(v, t) is a weak solution of (3.4) for
small t < 1/4.

In the last step of the proof, we need to remove the restriction on t < 1/4. However,
since this bound is independent of the initial data, we can partition any interval [0, T ] by
intervals [tk, tk+1] of length tk+1− tk < 1/4 and apply the result on each of these intervals
with initial data FN (tk) and f(v, tl). This shows that etL

∗

F0,N is f(·, t)-chaotic on any
finite-size interval [0, T ] where f(v, t) is the solution of (3.4). This ends the proof.
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Remark 3.2 In Theorem 3.3 the assumption that the pair selection probabilities pi,j(~v)
are uniform, i.e.

pi,j =
2

N(N − 1)
, (3.35)

is crucial. Indeed, we need at least that

(i) there exists a uniform constant C (independent of N) such that

pi,j ≤
C

N(N − 1)
.

This is required to get the fundamental property (3.6), with the constant 4k replaced by
4Ck.

(ii) pi,j = pi,j(vi, vj). In this way, the key fact in the proof of Lemma 3.4 that Lϕ, for ϕ
depending on only one velocity, is an average of terms only depending on two velocities
and so on for Lkϕ remains true.

(iii) pi,j(v, w) = p(v, w) is independent of (i, j) to preserve the permutation symmetry of
the problem.

We see that these three properties together imply that (3.35). Indeed, maintaining that

∑

i<j

pi,j = 1, (3.36)

for all velocity configurations necessitates that p is a constant, and the normalization
constraint (3.36) leads to (3.35).

Remark 3.3 Theorem 3.3 can be extended to interaction processes involving multiple
interactions as soon as the number of particles involved in an elementary interaction is
finite and bounded independently of N . For instance, it will hold with a ternary interaction
process, in which any interaction involves triples of particles. More generally, it will hold
with a p-fold interaction process where any interaction involves exactly p particles. As
long as the interactions involve a finite number p of interactions, with p constant or
bounded by a constant P independent of N , the combinatorial arguments which have been
developed above can be extended. Again, the master equation must combine the elementary
interaction operators by means of uniform selection probabilities for the same arguments
as those developed in Remark 3.2. Boltzmann operators with multiple interactions have
been previously considered in [3].

Remark 3.4 As a by-product of Theorem 3.3, we have the existence of a weak solution
of the nonlinear problem (3.4). Additionally, the proof is constructive. However, the
Theorem does not prove uniqueness, as another solution could exist not being related to a
solution of the corresponding master equation.
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3.3 Application to the BDG and CL dynamics

3.3.1 The BDG dynamics

In the BDG case, thanks to (2.6), we have

Q∗
(1,2)f

⊗2(v, w) =

∫

T2

f(y1) f(y2) g(vy
∗
i,2) g(wy

∗
1,2) dy1 dy2 ,

and thus ∫

S1

Q∗
(1,2)f

⊗2(v, w) dw =

∫

T2

f(y1) f(y2) g(vy
∗
i,2) dy1 dy2 .

Thus defining

Q+(f, f)(v) =

∫

T2

f(y1) f(y2) g(vy
∗
i,2) dy1 dy2 ,

the one particle marginal f(·, t) such that {etL∗

F
(N)
0,N } is f(·, t)-chaotic satisfies the kinetic-

type equation
∂f

∂t
(v, t) =

∫

T2

f(y1) f(y2) g(vy
∗
i,2) dy1 dy2 − f(v, t) , (3.37)

with f(v, 0) = f(v).

3.3.2 The CL dynamics

In the CL case, thanks to (2.9) we have:

Q∗
(1,2)f

⊗2(v, w) =
1

2
(f(v) + f(w)) g(v∗w) ,

and thus
∫ 1

S

Q∗
(1,2)f

⊗2(v, w) dw =
1

2

(
f(v) +

∫

S1

f(w) g(v∗w) dw

)
=

1

2
[f(v) + f ⋆ g(v)] ,

where ⋆ denote the convolution. Thus defining

Q+(f, f)(v) =
1

2
[f(v) + f ⋆ g(v)] ,

the one particle marginal f(·, t) such that {etL∗

F0,N} is f(·, t)-chaotic satisfies the kinetic-
type equation

∂f

∂t
(v, t)(v, t) =

1

2
[g ⋆ f(v, t)− f(v, t)], (3.38)

with f(v, 0) = f(v).
In this treatment, we have assumed that g is independent of N . But if we let the

variance of gN go to zero with N , we find

lim
N→∞

gN ⋆ f(v) = f(v) ,
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and then we have
∂f

∂t
(v, t) = 0 .

That is, chaos is propagated, but nothing at all happens on the kinetic time scale. On
a much longer time scale, correlations develop and a new approach is needed to describe
the bulk limit. This is what is shown in the next section by investigating the invariant
densities, i.e. the equilibria of the master equation.

4 The Invariant densities F∞,N for the CL dynamics

4.1 Preliminaries

Both the BDG and CL processes are clearly ergodic as long as g is continuous, say, and
so for each there will be a unique invariant density F∞, i.e., a unique density F∞ with
Q∗F∞ = F∞. Since the process is symmetric under permutations of the variables, it is
clear that F∞ will be symmetric. It is not easy to write F∞ down in closed form. However,
in the case of the CL dynamics, a very special property is true, namely the hierarchy of
equations for the marginals (or BBGKY hierarchy) is closed at any order. This special
feature will provide more information on the marginals of F∞. In particular, we show
that under some specific scaling of the noise with respect to N , the invariant measure is
not chaotic. This is not in contradiction to Theorem 3.3, since it is valid for fixed noise
and on finite time intervals.

The invariant density for the CL dynamics is the function F∞ which cancels the right-
hand side of (2.5) with Q∗

(i,j) given by (2.9). Therefore, it satisfies

F∞(~v) =
1

N(N − 1)

∑

i<j

[[F∞ ]̂i(v1, . . . , v̂i, . . . , vN)+

+[F∞]ĵ(v1, . . . , v̂j , . . . , vN)
]
g(v∗i vj) . (4.1)

While it is not easy to write F∞ down in closed form, we can at least say what F∞ is not:
In general F (~v) = 1 does not solve Q∗F = F , i.e., F∞ is not the uniform density. Indeed,
if we replace F∞ by 1 on the right hand side of (4.1), we find

∑

i<j

2

N(N − 1)
g(v∗j vi) .

This will equal 1 for all ~v if and only if g(z) = 1 for all z. However, it is easy to see that
for fixed smooth g, and large N,

∑

i<j

2

N(N − 1)
g(v∗jvi) ≈ 1 ,

with high probability if ~v is selected at random, uniformly on TN , and so one can expect
that for fixed g, the invariant density F∞ becomes more and more uniform as N increases.
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However, a non-uniform invariant density can be found in the large N limit if one
includes some N dependence in the noise density g in such a way that it more and more
closely approximates a δ function. This is perhaps justified in the context of biological
modeling: if the population is small, one fish may be less interested in carefully mimicking
his neighbor than when the population is large. One can imagine that the larger the group,
the more important it is to follow behavioral rules closely. However, biological data are
needed to support this claim.

While it does not seem easy to write F down in closed form, it is possible to obtain
analytical expressions of its marginals. This is the aim of the next section.

4.2 Marginals

For any symmetric density F and any m = 1, 2, N − 1, define the m-variable marginal
density F (m) on Tm by

F (m)(v1, . . . , vm) =

∫

TN−m

F (v1, . . . , vm, vm+1, . . . , vN) dvm+1 . . .dvN .

For typical binary collision process master equations, the evolution of the m-variable
marginal density depends on the (m + 1)-variable marginal density, and one gets a hi-
erarchy of evolution equations, the so-called BBGKY hierarchy. To break the hierarchy
at some manageable level (e.g. m = 1 in the usual kinetic theory case) in the large N
limit, one generally needs special assumptions on the initial data, such as the f -chaotic
property, for a suitable f . One typically runs into the same hierarchy problem when
trying to compute the marginals of the invariant density, except that in some cases, one
has Q = Q∗, and then the invariant density is simply uniform.

For the CL dynamics, the hierarchy breaks itself. Before stating the result, we recall
that the Fourier series of a given function φ(w), w ∈ S

1 is defined by

φ̂(k) =

∫

S1

w−k φ(w) dw, k ∈ Z.

We have:

Proposition 4.1 Let F
(1)
∞ and F

(2)
∞ be the one and two-variable marginal invariant den-

sities of the CL process. We have:

(i) F
(1)
∞ is uniform, i.e.

F (1)
∞ (v1) = 1, ∀v1 ∈ S

1.

(ii) F
(2)
∞ is given by:

F (2)
∞ (v1, v2) = F(v∗1v2), ∀(v1, v2) ∈ T2 ,

with F(w), w ∈ S1 given by its Fourier series

F̂(k) =
1

N − 1
ĝ(k)

[
1− N − 2

N − 1
ĝ(k)

]−1

, (4.2)
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or equivalently

F =
1

N − 2

∞∑

ℓ=1

[(
N − 2

N − 1

)ℓ

g∗ℓ

]
. (4.3)

Remark 4.1 Since
∑∞

ℓ=1

(
N−2
N−1

)ℓ
= N − 2, Eq. (4.3) defines F as an average of convo-

lution powers of g.

Proof: We begin with F
(1)
∞ . First of all, it is easy to see that for all i > 1 and all j , then

∫

TN−1

[F∞ ]̂i(v1, . . . , v̂i, . . . , vN)g(v
∗
j vi)dv2 · · ·dvN = F (1)

∞ (v1) ,

Therefore, by integrating (4.1) with respect to (v2, . . . , vN) and using (2.4), we have:

F (1)
∞ (v1) =

1

N(N − 1)

N∑

j=2

∫

TN−1

[F∞]1̂(v̂1, . . . ) g(v
∗
1vj) dv2 · · ·dvN

+
N − 1

N
F (1)
∞ (v1). (4.4)

Then, using the permutation symmetry of [F∞]1̂, one finds for each j ≥ 2,
∫

TN−1

[F∞]1̂(v̂1, . . . ) g(v
∗
1vj) dv2 · · ·dvN =

∫

S1

F (1)
∞ (vj) g(v

∗
1vj) dvj = F (1)

∞ ∗ g(v1) ,

where the ∗ denotes convolution on S1. Substituting it into (4.4), we find

F (1)
∞ (v1) =

1

N
F (1)
∞ ∗ g(v1) +

N − 1

N
F (1)
∞ (v1) ,

which reduces to
F (1)
∞ (v1) = F (1)

∞ ∗ g(v1) .
The only solution of this equation for any L1 density g is the uniform density F

(1)
∞ (v1) = 1.

We now turn to F
(2)
∞ (v1, v2). Again, it is easy to see that if i, j > 2,

∫

TN−2

[F∞ ]̂i(v1, v2, . . . , v̂i, . . . , vN) g(v
∗
jvi) dv3 · · ·dvN = F (2)

∞ (v1, v2) ,

and ∫

TN−2

[F∞]ĵ(v1, v2, . . . , v̂j, . . . , vN) g(v
∗
1vj) dv3 · · ·dvN = F (2)

∞ (v1, v2) .

Next, for i = 1 and j = 2, using the permutation symmetry of [F∞]1̂ and (2.4):
∫

TN−2

[F∞]1̂(v̂1, v2, . . . , vN) g(v
∗
2v1) dv3 · · ·dvN = F (1)

∞ (v2) g(v
∗
2v1) = g(v∗1v2) ,
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and
∫

TN−2

[F∞]2̂(v1, v̂2, . . . , vN ) g(v
∗
1v2) dv3 · · ·dvN = F (1)

∞ (v1)g(v
∗
1v2) = g(v∗1v2) .

Finally, for i = 1 and j > 2, we have
∫

TN−2

[F∞]1̂(v̂1, v2, . . . , vN ) g(v
∗
jv1) dv3 · · ·dvN =

∫

S1

F (2)
∞ (v2, vj) g(v

∗
jv1) dvj ,

and ∫

TN−2

[F∞]ĵ(v1, v2, . . . , v̂j, . . . , vN) g(v
∗
1vj) dv3 · · ·dvN = F (2)

∞ (v1, v2) ,

and for i = 2 and j > 2,
∫

TN−2

[F∞]2̂(v1, v̂2, . . . , vN ) g(v
∗
jv2) dv3 · · ·dvN =

∫

S1

F (2)
∞ (v1, vj) g(v

∗
jv2) dvj ,

and ∫

TN−2

[F∞]ĵ(v1, v2, . . . , v̂j, . . . , vN) g(v
∗
2vj) dv3 · · ·dvN = F (2)

∞ (v1, v2) .

We can now compute the two variable marginals of both sides of (4.1), and we find

F (2)
∞ (v1, v2) =

[
(N − 2)(N − 3)

N(N − 1)
+ 2

N − 2

N(N − 1)

]
F (2)
∞ (v1, v2)

+
2

N(N − 1)
g(v∗1v2) +

N − 2

N(N − 1)
H(v1, v2),

where

H(v1, v2) =

∫

S1

F (2)
∞ (v2, z) g(z

∗v1) dz +

∫

S1

F (2)
∞ (vj , v1) g(z

∗v2) dz .

This simplifies to

F (2)
∞ (v1, v2) =

1

N − 1
g(v∗1v2) +

N − 2

2(N − 1)
H(v1, v2) .

Fourier transforming both sides, we have

Ĥ(k1, k2) = F̂ (2)
∞ (k1, k2)(ĝ(k1) + ĝ(k2))

and so

F̂ (2)
∞ (k1, k2)

[
1− N − 2

N − 1

(
ĝ(k1) + ĝ(k2)

2

)]
=

1

N − 1
ĝ(k1)δk1,−k2 ,

where δi,j is the usual Kronecker symbol. It follows that F̂
(2)
∞ (k1, k2) has the form

F̂(k1)δk1,−k2, i.e. that F
(2)
∞ has the form F

(2)
∞ (v1, v2) = F(v∗1v2) with F defined by its

Fourier transform according to (4.2) (owing to the evenness of ĝ, a consequence of (2.4)).
This ends the proof of proposition 4.1.
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4.3 Noise scaling

The reason for considering a scaling of the noise intensity is the following. For fixed
g ∈ L1(S1), limℓ→∞ g∗ℓ = 1, and since for large N , most of the weight in the average is on
large values of ℓ, F will be nearly uniform for large values of N , and the correlations are
washed out. Therefore, we recover here that the invariant density is nearly uniform for
large values of N , a fact which has already been noticed (see section 4.1).

But if g is taken to depend on N itself, this need not be the case. As a typical example,
we can consider g(z∗w) to be the kernel of e∆/N on S1; i.e., the heat kernel on S1 at time
1/N . Then

ĝN(k) := e−k2/N . (4.5)

We now state the

Proposition 4.2 Suppose the scaled noise intensity gN is such that

lim
N→∞

(N − 2)(ĝN(k)− 1) := γ(k) (4.6)

exists and is non trivial (i.e. not equal to the Kronecker δk,0). Then, the corresponding
correlation FN associated to gN through (4.2) or (4.3) satisfies:

lim
N→∞

F̂N(k) := F∞(k) =
1

1− γ(k)
.

Proof: Using gN in place of g in (4.2), we find

F̂N(k) =
1

N − 1
ĝN(k)

[
1− N − 2

N − 1
(1 + (ĝN(k)− 1))

]−1

=
1

N − 1
ĝN(k)

[
1

N − 1
− N − 2

N − 1
(ĝN(k)− 1)

]−1

= ĝN(k) [1− (N − 2)(ĝN(k)− 1)]−1 .

(4.7)

The result follows from inserting (4.6).

Example 4.1 The heat kernel (4.5). In this case, we have

γ(k) = −k2, F∞(k) =
1

1 + k2
.

Hence, the correlation function is a Lorentzian in Fourier space.
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With this noise scaling, the two-variable marginal invariant density of the N -particle
CL process F

(2)
∞,N(v1, v2) is such that

F
(2)
∞,N(v1, v2) → F∞(v∗1v2), as N → ∞,

where F∞ is not the uniform distribution. Therefore, non-trivial correlations remain in
the large N limit and in particular, the invariant density {F∞,N} is not chaotic. This
result is in marked contrast to the case studied by Kac, in which the invariant density is
the uniform density on the sphere SN−1(

√
N). This family is well known to be G-chaotic

where G(v) denotes the centered unit Gaussian on R. The lack of chaos in the invariant
density might seem to be a strong obstacle to propagation of chaos. But as we have seen
in Theorem 3.3, this is not the case. As already noticed, there is no contradiction between
this two seemingly paradoxical results. Theorem 3.3 is valid under fixed noise and on a
finite time interval. By contrast, the lack of chaos property of the invariant density for
the CL model is shown under N -dependent noise intensity and in the infinite time limit.
But these two results show that the chaos property can be valid for a finite time interval
at the kinetic time scale and be lost at larger times.

5 Conclusion

We have considered a class of pair-interaction stochastic processes in an N -particle system
and their associated pair interaction driven master equations. We have proved a chaos
propagation theorem for this class of master equations and have used this result to study
the kinetic limits of two biological swarm models, the BDG and CL processes. By inves-
tigating the invariant density of the CL process, we have shown that the chaos property
may be lost at large times. This work shows that the chaos property may be true even for
processes that seemingly build-up correlations but may not be uniformly valid in time.
Correlation build-up manifests itself at large time scales. In order to restore the validity
of kinetic theory at these large scales, new theories must must be developed. This is a
fascinating and widely open area of research.
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[2] E. Bertin, M. Droz, G. Grégoire, Boltzmann and hydrodynamic description for self-
propelled particles, Phys. Rev. E, 74 (2006), 022101.

[3] A.V. Bobylev, C. Cercignani, I. M. Gamba, On the self-similar asymptotics for gener-
alized non-linear kinetic Maxwell models, Comm. Math. Phys., 291 (2009), 599–644.

[4] E. Boissard, P. Degond, S. Motsch, Trail formation based on directed pheromone
deposition, preprint arXiv:1108.3495.

30
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