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Abstract—In this note the Extended Lie bracket operator is introduced
for the analysis and control of nonlinear time-delay systems (NLTDS).
This tool is used to characterize the integrability conditions of a given
submodule. The obtained results have two fundamental outcomes. First,
they define the necessary and sufficient conditions under which a given
set of nonlinear one-forms in the -dimensional delayed variables
� � � �, with constant but unknown, are integrable,

thus generalizing the well known fundamental Frobenius Theorem to
delay systems. Secondly, they set the basis for the extension to this context
of the geometric approach used for delay-free systems. The effectiveness of
the results is shown by solving the problem of the equivalence of a NLTDS
to an accessible Linear Time-Delay System (LTDS) by bicausal change of
coordinates.

Index Terms—Delay systems, geometric approach, linear equivalence,
nonlinear continuous-time systems.

I. INTRODUCTION

Time-delay systems are recently gaining more and more attention
due to their importance in several applications such as those concerning
the delay in the signal transmission over communication networks. The
literature on the topic is extensive but concerns mainly linear time-
delay systems [1], [2], [8], [14], [19], [22], [25], [26] and does not
make use of geometric tools which are instead largely used in the delay
free-case both in the linear and nonlinear context, [10], [21], [27]. A
first attempt to extend these tools to this class of infinite dimensional
systems has been pursued in [24] and [23] with reference to the input-
output linearization problem and the feedback linearization problem
for a particular class of delay systems.

In this note we will consider nonlinear time-delay systems with com-
mensurate constant delays on the state and input variables—see for ex-
ample [6], [7], [12]—and we will introduce an Extended Lie bracket
operation to deal with this class of systems. As shown in Section III,
a major technical achievement is that this operation fully character-
izes the integrability of a distribution defined on the extended state
space. This tool is then used to derive necessary and sufficient inte-
grability conditions of the given submodule. Let us note that a first at-
tempt to deal with the integrability of one-forms was pursued in [17]
where a necessary condition was derived and only some special cases
were treated. The effectiveness of the proposed approach is shown by
characterizing the necessary and sufficient conditions under which a
NLTDS is equivalent to an accessible LTDS by bicausal change of co-
ordinates, a largely studied problem in the delay free case, as proven
by the extensive literature on the topic (e.g. [3], [11], [13], [15], [16],
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[20]). With respect to [5], [24] we will consider a more general class
of systems where there is no assumption on the delay of the input and
we will study the effect of bicausal change of coordinates on the given
system. For notational simplicity, and without loss of generality, we
will consider as maximal delay the largest between the maximal de-
lays on the state and input variables. Preliminary results can be found
in [4].

The technical note is organized as follows. Some fundamental no-
tions on time-delay systems are recalled and some notations are in-
troduced in Section II. In Section III geometric tools for dealing with
time-delay systems are introduced and discussed. In Section IV the pro-
posed approach is used to solve the linear equivalence problem under
bicausal change of coordinates.

II. PRELIMINARIES AND NOTATIONS

The following notations and definitions, borrowed from [9], [18],
[28], will be used: � denotes the field of meromorphic functions of a
finite number of elements in ����� ��� ���� ��� � � � � ������� ��� �� � �
���; 	 is the standard differential operator that maps elements from
� to � � ������	���� ��� 	���� ��� � � � � 	������� ��� ��� � ���;

 is the backward time-shift operator: for ����� ���� � �,

�����	����� � ��� � ��
	���� � ��� � ��	��� � ��. We will
denote by 	
�� the polynomial degree in 
 of its argument; ��
 is the
ring of polynomials in 
 with coefficients in �;��
 is the (left) ring of
polynomials in 
 with coefficients in �. Every element of ��
 may be
written as ��
 � �

��� �����

�, with �� � �, and �� � 	
����
�.

Addition and multiplication on this ring, which is non-commutative but
Euclidean [28], are defined by ��
 � ��
 �

����� �� �

��� ������ �
������


� and ��
��
 � �

���

�

��� ��������� � ��
��� . Given
���� � ��, ��		
 � ��� ���� � � � �� �� � ��� and ��		
�����

� �

��� �� � ��� � � � �� �� � � � ���, accordingly ���	

������� ��
����� � ��� � � � � ��� � � � ���; �		
��		
������		
, and �		
���� are
defined in a similar vein. When no confusion is possible the subindex
will be omitted so that � will stand for �		
 and ����� will stand
for �		
����. Finally we will denote by �

	�
 �� ��� ��� � � ������ for
� 	 � while �	��
 �� 
. Given �� ��� � ������� � � � � �����, we will
denote by �� ���������� � ��� � �

��� ������������� � ��� the
submodule element which has component ����� in position �� � �.
� � �������
������ 
�� � � � � ����� 
��, is the right module spanned
over ��
 by the column elements ����� 
�� � � � � ����� 
� � ���
.
Finally, let us recall that a polynomial matrix ���� 
� � �����
 is
called unimodular if it has a polynomial inverse. If � � 	����� then
	������� � �� � ���, [4].

In the following we will consider a nonlinear dynamics with integer
delays �, represented as:1

� � ����� � � �		
 �

	

���

�� �		
 ���� �� (1)

with � � ��, � � �. We have that ��, the variational or differential
form representation of �, is given by

�� � 	 �� � � �		
��		
� 
 	�� � �		
� 
 	� (2)

with ���		
� 
� � 	

��� ����		
�

� and ���		
��		
� 
� �

	

������� ��		
������ � ���� 	

��� ��� � ��������		
������ �

����
�.

1Note that considering integer delays is not restrictive since any commensu-
rable delay system, where all the delays are multiples of a base constant delay
�, can be put into this form by time scaling.
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In this context the following definition of bicausal change of coordi-
nates [18] must be recalled.

Definition 1: Consider the dynamics � with state coordinates �.
� � �������� � � �� is a bicausal change of coordinates for � if
there exist an integer � � �� and a function ��������� � �� such that
���� � ���������.

Let 	� � 
 ������ ��	� be the differential form representation of the
bicausal change of coordinates ���� � �������:

• 
 ������ �� �
�

���������������� � ������ �

��� 

��������

�

is unimodular and � � �.
• The inverse � � ��������� is characterized by � � �� � ���,

and its differential representation is given by 	� � 
����� ��	�,
with 
����� �� � �

������
������������ � ������


����� ���
��� �� �.

• The differential form (2) is transformed into 	 ����� �
������� ��	� � ����� ��	�, with

������� �� � 
 ��� �������� �� � �
 ��� ��

� 
����� ��
���� ���

����� �� � �
 ��� ������ ������� ��� �

III. GEOMETRY OF TIME-DELAY SYSTEMS

The Extended Lie bracket is now introduced. It is shown how,
through its application, it is possible to answer to some basic questions
in control theory which were open problems up to now, such as:
when a given set of one-forms depending on the state variable ����
and its delays ��� � ��� � � 	�� �
, is integrable; when a given square
matrix 
 ��� �� is the differential representation of a bicausal change
of coordinates.

Definition 2: Let ������� �� � �

	�� �
	

�������
	 , with � � �� �

and set �	������ � �, for � � �. Then, ��� � 	 �, the Extended Lie
bracket 	�
� ������ �

�
������
��, on ����	���, � 	 �, is defined as

�
� ������ �
�
������

��

�

���
�����

	��

�
�	� ������ ���	� �����
��

�

�����	�����	��

�
�

����� ��
(3)

with

�
� ������ �
�
������

��
�




���

���������

����� ��
�
��� ��������������

�

�

���

��
� �����

����� ��
����� ������������� � (4)

By definition the Extended Lie Bracket is antisymmetric.
Remark: The Extended Lie bracket definition is related to the infi-

nite dimensional system

����� �� ���� �

�

	��

�	 ���� ���� ��

����� �� �� �������� �

�

	��

�	 �������� ���� � � ��

... (5)

naturally associated to the delay system (1). As a consequence
if ����� ��, � � 	�� �
 is associated to the dynamics ����� �

� �������
�

	�� �	������������, then to ������� � � �����������
�

	�� �	�������������� � � �� it will be associated ������ �� and
so on, that is

�� �� � � � �� � � � �

� ������ � � � �������� ������ �
. . .

...
. . .

. . .
...

...
. . . � � �

� � � � � ������ ������ � � �
. . .

...
...

...
...

...
... � � �

(6)

with ���� � � �������� ��� � � � � �
�
	���� ���. De-

spite the infinite dimensionality of the state space �� �

��� ���� �� ��� ��� �� ��� ��� � � ��
�

these elements are finite-dimen-
sional so that we can thus consider the Lie bracket 	�	

� � �	
� 
 with

�
	

� � 	

��� ��
	 ��
� ��������

�
������ � ���, � � �� �. Denoting

by � � !������ ���, 	�
	
� � �	

� 
 � 	�	� ���� �	� ���

�	

. The Extended
Lie bracket (3) is thus a projection on the �� � ���-dimensional state
space. "

Remark: The delayed state bracket introduced in [24] does not yield
a criterion for the integrability of one-forms intrinsically depending on
the delayed state variables as no decisive difference is made between
the non integrable one-form #���� ��	� � 	�� � ���� � ��	�� and
the exact one-form #���� ��	� � 	�� � ���� � ���	��. The use of
the Extended Lie bracket allows to make the difference as shown in the
Examples 1 and 2. "

To deal with the integrability of one-forms, we need
now to introduce the following definition of integrable
submodule. Let ����� �� � �

��� �
�
� ����

�, � � 	�� �

and set  � ��������
����� ��� � � � � �	��� ���, and

�
� � ������� � � � � � ����� ��� �

�
.

Definition 3: The submodule  is nonsingular locally around �� if
��������� � �, �� � �� an open and dense subset of ��.

Definition 4: The submodule  nonsingular locally around �
�, is

integrable if there exist � � � independent functions $�������, � �
	�� � � �
 such that ������$��������� � � � � and

�

���

�$����

�����  �
��

�


��

�
� ����

��� �� � 	�� �� �
� �� � 	�� �
�

Definition 5: Consider the bicausal change of coordinates
� � �������, with 	� � 
 ��� ��	�. In the new coordinates the
submodule element ������ �� is transformed as

������� �� � 	
 ��� �������� ��
���� ��� � (7)

From (7), setting 
 	 � � for � � � � 	%��
 ��� ��� and �	 � � for
� � 	%������ ��� one has

�������� �

�

���


 �������� ���� ����� ��
���� ���

� (8)

Accordingly, from (8), the following result holds true.
Lemma 1: Let ������� �� � �

	�� �
	

�������
	 , � � �� �.

Under the bicausal change of coordinates � � �������, with
	� � 
 ��� ��	� � �

	�� 

	����		� one has, for � 	 �, � � � � �

��
� ������ ��
�
������

��
� ������� �
� ������ �

�
������

�� ���� ���

where, setting 
 	 � � for � � �

��������


 ���� � � � � � � � � � 
 ����

�
. . .

...
� � 
 � ������� � � � 
 ��� �������

�
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The proof, omitted for space reasons, can be carried out by substi-
tuting in ����� ������ ��

�
��������� the relations given by (8) and by re-

calling that ��� ������ ������ �� � ���� �����
�
������ 	��

�

.

A. Integrability Conditions of One-Forms

We will now address the problem of defining the necessary and suf-
ficient conditions under which some given one-forms are integrable.
The obtained results are based on the consideration that though when
dealing with delay systems one ends up on the infinite dimensional
system (5), the elements that one considers are characterized by a fi-
nite number of components. This is enlightened in next Lemma which
displays the properties of the Extended Lie bracket operator.

Lemma 2: Let � � �	
����������� 
�� � � � � ����� 
�� with
����� 
� � 	

��� �
�
����
��


�, � � �
��� �������� 
��� � � �� ��.
Then for any couple of integers � � �, and for any integer �� ��� 	 � �
such that � � � and �� � �� 	�, the following properties hold true:

���� �
�
�

��
� ���� �

�
�

��

�

�

���

����� ���� ���� ���
��

�

��������

�
�

����� ��
(9)

��	�	� � ��	�	�
�
�

� ��	�	� � ��	�	�
���	�	

�

�

���

����� ���� ����� ���
��

�

��������	��

�
�

����� � � 	��
� � � � (10)

���� �
�
�

��
� ���� �

�
�

��
� �� � � � � ��� (11)

Sketch of Proof: The proof of (9) 	 (11) is immediate if one
considers the elements ��

� ��� � �

��� �
���
� �������������� � ���

defined on (6). In fact on the extended state space ����
�������

�
� �

����
� ������

�
� � � whenever 
� � �
 � ��, while the others yield the

same equations, only time and coordinates -shifted. �
Next theorem, whose proof is reported in the Appendix, enlightens

the conditions under which � one-forms are exact and define a bicausal
change of coordinates. The conditions are given on the corresponding
submodule elements. It is shown that the nilpotency condition of a
given Lie Algebra which is the key point in the case of nonlinear sys-
tems without delays is transformed into a nilpotency condition on the
given submodule which takes into account not only the state variable
���� but also the delayed variables. The bound on the delay is defined
by the state dimension and maximal delay.

Theorem 1: Let ����� 
� � ������ 
�� � � � � ����� 
�� � �����
�
be a full rank matrix, with ����� 
� � 	

��� �
�
� ���
��


� ,
� � �
��� �������� 
��� � � ��� ���, which can be factor-
ized as ����� 
� � � ��� 
���
�, with � ��� 
� unimodular. Then
������ 
� defines a bicausal change of coordinates iff

������� �
�
� ���

���	
� � �� � � ��� �� 
�� � � � � ��� ���

or equivalently

������� �
�
� ���

��
� � �� � � ��� �� 
�� � � � � ��� ���� (12)

Consider now ����� 
� � ������ 
�� � � � � ����� 
�� �
	

��� ������

� with ������ of rank � and ����� 
� �

	

��� �
	
����


	,
� � ��� ��. Consider the distributions �� and ��

�, � � �
defined on ����	��� and with vector fields parameterized by

��� � � � ��� � � � � ��� � � � ��

�� ��	
��

�

���

����� �������
� �

����� ��
�
� � ��� ��

� � ��� ��
�

��
� ��	
��

��������

���

����� �������
� �

����� ��
�

� � ��� ��

� � ��� �� ��
� (13)

By construction �� � ��
�. Let �� � �
�����

�� locally around ��, then
��

� � �	
�������� � � ��� ���� � ��
��	��� while its elements depend

on the variables ���		� . Let us thus consider the series development of
�� with respect to the parameters ������� locally around ��������
which without loss of generality can be assumed to be the origin, that
is

����� � ��� ���� �

	

���

�


��


 ��� ���� �
���� ��

�
�

�

�


����

	

�����


 � ��� ���� �
���� �������� �� � � � �

and consider the possibly infinite set of distributions

��
�� ��	
������ � � ��� ���

��
�� ��	
� 
 ���� � � ��� ��� � � ��� ��� � � ��� ��

... (14)

Set ��� � �����
����

�
���. We can now state the main result con-

cerning integrability.
Theorem 2: Let � � �	
����������� 
�� � � � � ����� 
�� with

����� 
� � 	

��� �
�
����
��


�, � �  ����������� 
�� � � ��� ��� ��
and such that the matrices ����� 
� � ������ 
�� � � � � ����� 
�� �

	

��� ������

� and ������ are of rank �. Let ��

� and �
����

�
���

be the associated set of distributions defined, respectively, by
(13) and (14) which are assumed to be locally non singular
on �

� � ������� � � � � ����� ��� �
�

with �� � ������
� and

��� � �����
����

�
��� (with ��� � ����� � �). Then � is

integrable iff there exists an index � such that:
a) �� � � ��� �� and � � 	 � � � �, ��� ���� �

�

������� � ��
�� � �

��� ��;
b) �� � ���� � �;
c) ��� � ������ � ��

Proof: Necessity: Assume that there exist��� independent func-
tions !����, � � ��� � � �� with �
����!������� � � � � which
are in the kernel of ����� 
�. In the set of all possible independent
solutions, consider the one characterized by the minimum delay. De-
note by � the maximum delay in the functions !����, then !���� �

�

��� "
�
� ���


�� satisfies
�

���

"�� ���

�

	

���

������

� � ��

It is easily seen that for any index � � �, ��� ���� �
�

������� � �� ,
� � 	 � �. As a consequence ��� ���� �

�

������� � ��
�, � � 	 � �� �

which proves a).
Let � be the maximum delay in the functions !����. If

���� � �� � ����, then there exist ���� independent one-forms
�"��� 
�� � ���

��� �"
�������� �� (not necessarily exact) such that

��"����� � � � � �"���������
��� � �. As a consequence

"���� "���� � � � "����

� �"� ������� � � � �"��� �������
��

� � �
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with ����������� ������ � � � � ������ � � � �, which implies that
�� � ��	 � ��� ��� ��� ����, and thus b) must hold.

Let us finally consider the distributions �
����

�
������ and

�
����

�
����, and let ������ � �	 � ��, and ���� � ��	 ���� ��,

��� �� � 	. Then there exist �� � 	 exact and independent one-forms


���������� �

���
��� 
��

� ���
�� � �� such that


������ � � � � 
�������
���

��
����� � 	�

On the other hand the � � � functions ������� � � � � �� � 	�� being
independent on ��� �� for � � 	, implies that 
������� � � � � ���
	�� � �

��� 
�
�
� ���
��� �� satisfies

������ � � � � �����
���

��
��� � 	�

Since also �	� 
���������� � � � � 
�������������
����

�
���� � 	 then

�� � �� � � � � and c) follows.
Sufficiency: Assume that conditions a) � c) are satisfied. Then

by assumption due to a) and b) there exists an index 	 such that �� �
���� � �	 � ��� � �� � �� � ��	 � ��� � �, that is, there exist
�� � �� � independent one-forms �

��� �
�
� ���
��� �� such that

����� � � � ����� ���
� � 	

with ���������� � �� � locally around ��. Finally according to c)
the one-forms ����� ��
� can be chosen to be exact, that is, there exist
� � � functions ����� such that

������

����
� � � � �

������

���� 	�
��

� � 	

with ��������������� � �� �, which ends the proof.
Example 1: Let � � �������������������������������.

From Theorem 2 it follows that � is not integrable. In fact

�� � ��
� � ���� ���� ��

�

�����
�

�

�����

which satisfies ���� � �
�
� ��� � 	 � ��, while

�����
��������� ���� ��

�

����� ��
�

�

����� ��

for which ����� �
�
� ��� � ���������� �� ��

�, thus proving that the
one-form ����� ��
� � 
�� � ��� � ��
�� which lies in the left
kernel of � is not integrable.

Example 2: Consider the submodule � � ����������� �
������ ���������������������������. According to Theorem
2, to check if there exists a one-form which lies in the left kernel of �,
we must consider

��
������ ����

�

�����
� ���� ������ ��

�

�����
�

��
������ ����

�

�����
� ���� ������ ��

�

����� ��

� ���� ���� ������ ��
�

�����

����� ��
�

����� ��
�

...

since �� � ��� � �������
�� � � locally around �� �� 	, then condi-

tion a) of Theorem 2 holds true for ��
�. As for ��

�, it is readily seen that

it is independent of ��� �� � � � and is involutive, so that condition
a) is satisfied for ��

�; moreover �� � ���� � �������
�� � � so that

also condition b) and c) are satisfied being �� � �� � ��� � ��� � �.
Thus there exists one integrable one-form in the left kernel of � given
by ����� ��
� � 
��� ���� ���
��� ����� ���������� ����.

IV. APPLICATION TO LINEAR EQUIVALENCE OF TDS

It is now shown how the results derived in Section III can be ef-
ficiently used to solve the linear equivalence problem under bicausal
change of coordinates.

Problem Statement (The Linear Equivalence Problem): Given
system (1), find, if possible, a bicausal change of coordinates
� � ������� such that

�� �

�

	��

�	��� �� �

�

	��

�	��� �� (15)

with ���� � �

	�� �	�
	 , ���� � �

	�� �	�
	 a weakly accessible

pair.
Some preliminary definitions related to the accessibility properties

of a NLTDS are in order.

A. Accessibility Submodules

Let �����
�� �� �� ����
�� ��. The module generators
������

������ ��, � � � are recursively defined as

�� ��������� � ������� ������ ��������� � ������ ��������� � �

Definition 6: The accessibility submodules 	� of �, are defined as
	� � ������������� �� � � � ������

������ ���� � � �.
Remark: Note that for nonlinear time-delay systems, the left-kernel

of 	� is the left-submodule 
�	�, as shown in [28]. For nonlinear
systems without delays

�� ���� ���� � � � � �����
��

� ������� �
���
� � � �� �
���

� � �� � � �

while for the linear time-varying and time-invariant cases,	� reduces
to the corresponding accessibility matrices ����������� ���� � � ��,
�� �� � � ������� resp. �

The following results hold true [4].
Proposition 1: If ��	�����

������ �� � 	� then �� � �,
��		����

��		���� �� � 	�.
Proposition 2: Under the bicausal change of coordinates

� � �������, with 
� � � ��� ��
� the accessibility submod-
ules elements �	��� are transformed, for � � �, as


�	 ����	���� � � � ��� ���	 ����	���� �
�� ��


� (16)

Corollary 1: Under a bicausal change of coordinates � � �������

	� �������� ����� �� � � � �� ��������� � � 
	�

�������� 
����� �� � � � 
�� ��������� � �

B. Linear Equivalence of Time-Delay Systems

Theorem 3: System (1) is equivalent, under a bicausal change of
coordinates, to a linear weakly accessible delay system if and only if
there exist a unimodular matrix ������ �� and a full rank matrix ����,
such that
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a) the module generators ��’s do not depend on ������, that is, for
� � � � �, ����� �� ����� ��;

b) ����� � ������ ��� � � � ����� ��� � ������ ������;
c) ������� �� ������� ��� ���	����������� ��� � � � � ����� ���;
d) denoting by 
	 � ����
����������� ���� � � �� ��� �, for �� � �

�� �� and � � � � �� �
	�

��� ���� �
	

 ���

����
� �

or equivalently

��� ���� �
	

 ���

��
� �� (17)

The proof, omitted for space reasons, can be carried out as in [4], by
first showing that the conditions are satisfied by a weakly accessible
LTDS and are invariant under bicausal change of coordinates, and then
by showing that, if the conditions are satisfied, according to Theorem
1 the matrix ������ �� defines a bicausal change of coordinates and
that in these new coordinates the system is linear.

Corollary 2: System (1) is equivalent, under a bicausal change of
coordinates, to a delay-free linear accessible system iff conditions a)
and d) of Theorem 3 are satisfied, and

b’) ����� � ������ ��� � � � ����� ��� is unimodular
c’) ������� �� ������� �� � ���	�������� ��� � � � ����� ���.

Example 3: Consider the dynamics

������ ������� ����� �� � ������ ��

�

�	�

���� ��

������ ����� � ���� ��

for which ����� � ����� � ���� � ����������������� �
������������, ����� � ��� ������������� and �
��� � �.

Condition a) of Theorem 3 is satisfied and the accessibility matrix
����� is given by

����� �
������ ���� � ��� �� ��

� � � �

�
������ ��� �

� �

� � � �

� �� ��

������� �������

����� is not unimodular but it is factorized in the product of an uni-
modular matrix ������ �� and a full rank matrix ����, which shows
that condition b) is verified. Condition c) is also satisfied so we must
only check condition d) with 
	 � �. We can equivalently consider the
Extended Lie brackets ��� � �




	���
with �� � � �� �� and � � � � �� ��

with ��� � ����������, ��� � ����� � ������������ � ����������,
��� � ������������������,�
� � ��� � �, ��� � ����������, ��� � �,
��� � �����������, �
� � ��� � �. Since these Extended Lie brackets
are zero, the matrix ������ �� defines the bicausal change of coordi-
nates 
� � �
�������� 
������� ������ ����� and yields

������ � ���� � ���� ��� ������ � ����� � ����� ���

V. CONCLUSION

In this note a geometric approach for the analysis of the properties
of time-delay systems has been presented. The proposed approach re-
lies on the introduction of the Extended Lie bracket operation which
reduces to the standard Lie bracket for systems without delays. This
operation has allowed to define integrability conditions for modules as-
sociated to systems with delays. As an example the linear equivalence
problem for time-delay systems was addressed and solved.

APPENDIX

Proof of Theorem 1: Let ����� �� � �
		� �

	
� ����

	 be the �-th
row of the matrix ������ ��. Setting � � 	 � 
	, by construction
�� � � �� ��, ����� ������� �� � �

�	��
�
���

�, that is, for � �
� � � � �, �


	� �


�����

��


� ������� � ��
��. We thus have �� � �,

� � �� ��

�

����� ��

�


	�

�

�����

��


� ������� � �� (18)

Equation (18) immediately implies

�

�	�

�

���� ��

	

�	�

��
�����

	��

� �������

�

	

�	�

�

����� ��

�

�	�

��
�����

���

 ������� � �� (19)

Assuming without loss of generality � � � and setting ��
�� �

�����
�����

�
������ ���� �����

�����
������� ���

�
, (19) leads to

�

�	�

	

�	�

�	��� �������
�

��
���

���

 �������

� ��
���� � � ��

�
���� ��
 � �

	
�

��
� �� (20)

Necessity: Assume now that ����� ��
� � �
�	� �

�
�����

�
� is
exact, then for any �� � � �� ��, ��

�� � �. Assuming without loss of
generality � � �, from (20) we get that necessarily

����� � � � �����

�
. . .

...
� � �� �������

��
 � �
	
�

��
� �

which due to the full rank of �����, proves (12).
Sufficiency: By assumption ����� �� � � ��� ������ �




	� ��
�

 , that is ��	 � 	

�	� �
�����	������ �

	

�	� �
�����	��.

Let �
������ � �

�	� 	��
� be the adjugate matrix associated to

���� � �

�	����
�. Then, since �����
������ � �
�
���������

�
���� � ��� � � � � � ���
���� , we have that �

�	���	��� � �

for � �  � � while �

�	���	��� � �
��� 
� �. It follows that
�

�	� �������	��� � � for � �  � � and �

�	� �������	��� �
� �������.

Consider now (20). Since condition (12) is satisfied, for any couple
of indices �� �

�

�	�

	

�	�

�	��� �������
�

��
���

���

 ������� � � (21)

that is, ��	��� �
�

�	�
	

�	� ��
	��
� ��������

�
��
��������������� �

�. It follows that:

�

�	�

��	���	��� �

	

�	�

�	��� �������
�

��
���

��� � �

which due to the invertibility of � ���, implies that

��	��� �

	

�	�

�	��� �������
�

��
�� � ��

For � � �� ��, and � � ��  � we get ��	 �
	


	����	�
��������
���


� � �. Then �

�	� 	
�
���

��� �

���
��
�
��
�� � � that is ��

�� � �.
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By induction, assume that ��� � � �� � � when � � ��� �� � �� and
for � � ��� �� � �� when � � ��, then �� � �

� �

�

���

���������
	�
����

�

����

���

�
������

� 	�	��


	

�

���	

� 	�	���

 ��

that is, due to the invertibility of 	 �	�	���

��,
����

���

��
������

� 	�	��

�
	

�

��� � � or equivalently �

���

������ 	�	��� � �

�
	
�

�������

� �. One thus gets � � �

���

�

���

�	
��� �
�����	�	���� �

�	�


�������
that is � � ���	

�	�	���

�
	
�

�����

which proves the thesis, ���	 �	�	���

�
	

being invertible.
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The Bounded Real Lemma for Internally Positive Systems
and H-Infinity Structured Static State Feedback

Takashi Tanaka and Cédric Langbort

Abstract—We consider the bounded real lemma for internally positive
linear time-invariant systems. We show that the norm of such systems
can be evaluated by checking the existence of a certain diagonal quadratic
storage function. Taking advantage of this fact, the problem of designing
a structured static state feedback controller achieving internal stability,
contractiveness, and internal positivity in closed loop becomes convex and
tractable.

Index Terms—Decentralized control, linear matrix inequality (LMI),
positive systems.

I. INTRODUCTION

The design of structured and decentralized static state feedback con-
trollers has attracted attention in the controls community for several
decades. For arbitrary plants and controller structures, the problem is
known to be NP-hard [2]. However, a number of situations have been
identified recently in which the plant’s spatial invariance or quadrati-
cally invariant structure make it possible to reformulate it as a convex
program.

In this technical note, we identify another class of plants, the
so-called internally positive systems, for which the design of struc-
tured �� static state feedback controllers can be reformulated as
a convex problem. Roughly speaking (a rigorous definition is given
in Section III), internally positive systems are such that their state
and output lie in the first orthant of their respective spaces, when the
disturbance input does, i.e., such that the positive cone of the state-
and output-space is positively invariant under positive disturbances.
Positive systems have been studied extensively in the past (see, e.g.,
[5] for a thorough study of their stability properties) and shown to
be accurate models of dynamic processes taking place over networks
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