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Abstract

Bi-capacities are a natural generalization of capacities (or fuzzy
measures) in a context of decision making where underlying scales are
bipolar. They are able to capture a wide variety of decision behaviours.
After a short presentation of the basis structure, we introduce the
Shapley value and the interaction index for capacities. Afterwards,
the case of bi-capacities is studied with new axiomatizations of the
interaction index.

Keywords: bi-capacity, Shapley value, interaction index, partner-
ship of criteria

1 Introduction

Real-valued set functions are widely used in operations research [11], while
capacities [3] have become a fundamental tool in decision making. There

∗The first author thanks the funding of the OTKA (Hungarian Fund for Scientific
Research) for the project “The Strong the Weak and the Cunning: Power and Strategy
in Voting Games” (NF-72610).
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have been some attempts to define more general concepts, among which can
be cited bi-cooperative games [2], in game theory, which generalize the idea
of ternary voting games [4]. In the field of multicriteria decision making,
there has been a recent proposal of more general functions, motivated by
multicriteria decision making, leading to bi-capacities, which have been in-
troduced by Grabisch and Labreuche [7]. Specifically, let us consider a set N
of criteria and a setX of alternatives in a multicriteria decision making prob-
lem, where each alternative x is described by a vector of real valued score
(x1, . . . , xn). A decision maker may provide a capacity ν defined over 2N ,
where ν(A) for any A ⊆ N is the score of every binary alternative (1A, 0Ac):
all criteria of A have score 1 and others, 0. Then it is well known that the
Choquet integral enables to compute an overall score of the alternative x by
interpolation between binary alternatives. Motivated with perceptible limi-
tations of such a model, the decision maker may score alternatives of X on
a bipolar scale in this way: to each bi-coalition (A,B) of criteria — positive
vs. negative ones — a ternary alternative (1A,−1B, 0(A∪B)c) is associated:
every criterion of A (the positive part) has a score equal to 1 (total satis-
faction), every one in B (the negative part) has a score equal to −1 (total
unsatisfaction) and the others have a score equal to 0 (neutrality). Scores
are given to each ternary alternative, which defines a bi-capacity.

Different values for bi-cooperative games [1, 13] have already been pro-
posed and characterized, based on the Shapley value [15]. The concept of
interaction index can be seen as an extension of the notion of value or power
index. It is fundamental for it enables to measure the interaction phenom-
ena modeled by a capacity on a set of criteria; such phenomena can be for
instance substitution or complementarity effects between some criteria [8].
Our aim is to provide axiomatizations of the Shapley interaction index of a
bi-capacity. Two of them are proposed: at first a recursive axiom is used
by extension of the one of Grabisch and Roubens [10], and subsequently
we work out the reduced-partnership-consistency axiom using the concept of
partnership [5].

2 Capacities and bi-capacities

Throughout the paper, N := {1, . . . , n} denotes the finite referential set.
Furthermore, cardinalities of subsets S, T, . . . are denoted by the correspond-
ing lower case letters s, t, . . . .

We begin by recalling basic notion about capacities for finite sets [3]. A
cooperative game ν : 2N → R+ is a set function such that ν(∅) = 0, and ν
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is said to be a capacity if A ⊆ B ⊆ N implies ν(A) ≤ ν(B) (monotonicity
condition). If in addition ν(N) = 1, the capacity is said to be normalized.

Let us denote Q(N) := {(A,B) ∈ 2N × 2N | A ∩B = ∅}.

Definition 1 A function v : Q(N) → R is a bi-capacity if it satisfies:
(i) v(∅, ∅) = 0.
(ii) A ⊆ B implies v(A, ·) ≤ v(B, ·) and v(·, A) ≥ v(·, B).

In addition, v is normalized if v(N, ∅) = 1 = −v(∅, N).

In a multicriteria decision making framework, v(A,B) represents the score
of the ternary alternative (1A,−1B, 0(A∪B)c). Note that the definition im-
plies that v(·, ∅) ≥ 0 and v(∅, ·) ≤ 0. Actually, bi-capacities are particular
bi-cooperative games [2], that is, functions defined over Q(N) with only
condition (i) holding.

From its definition, Q(N) is isomorphic to the set of mappings from N

to {−1, 0, 1}, hence |Q(N)| = 3n. Also, it is easy to see that Q(N) is a
lattice, when equipped with the order:

(A,B) ⊑ (C,D) if A ⊆ C and B ⊇ D.

Supremum and infimum are respectively

(A,B) ⊔ (C,D) = (A ∪ C,B ∩D)

(A,B) ⊓ (C,D) = (A ∩ C,B ∪D),

and top and bottom are respectively (N, ∅) and (∅, N). We give in Fig. 1 the
Hasse diagram of (Q(N),⊑) for n = 3 (where top, bottom and the central
point (∅, ∅) are represented by black circles).

Derivatives of bi-capacities play a central role in the definition of inter-
action [7] and are defined in this way: if v is a bi-capacity, and i ∈ N ,

∆i,∅v(K,L) := v(K ∪ i, L)− v(K,L), for any (K,L) ∈ Q(N \ i);

∆∅,iv(K,L) := v(K,L \ i)− v(K,L), for any (K,L) ∈ Q(N) with i ∈ L.

Recursively, we define ∆S,T v for any (K,L) ∈ Q(N \S) with T ⊆ L, for any
i ∈ S and any j ∈ T , by

∆S,T v(K,L) := ∆i,∅(∆S\i,T v(K,L))

= ∆∅,j(∆S,T\jv(K,L)),

so that these values are always non-negative. This generalizes the notion of
derivative for a capacity ν, that is ∆iν(A) := ν(A ∪ i)− ν(A) if i ∈ N,A ⊆
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Figure 1: The lattice Q(N) for n = 3

N \ i and ∆Sν(A) := ∆i(∆S\iν(A)) if A ⊆ N \ S. The general expression
for the (S, T )-derivative is given by, for any (S, T ) ∈ Q(N), (S, T ) 6= (∅, ∅)
(cf. [9]):

∆S,T v(K,L) =
∑

S′⊆S
T ′⊆T

(−1)(s−s′)+(t−t′)v(K ∪ S′, L \ T ′),

for all (K,L) ∈ Q(N \ S), L ⊇ T. (1)

Although we develop our results for bi-capacities, we emphasize the fact
that all subsequent results remain valid for bi-cooperative games.

3 Previous work on interaction index for capaci-

ties

We recall in this section two main ways which have been conducted to ax-
iomatize the interaction index for capacities. Since the following axioms
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extend the ones of the Shapley value, we may adopt the terminology of
Shapley interaction index.

A value ϕ maps every capacity ν on N to a real valued vector ϕν , and an
interaction index I maps every capacity ν to an allocation Iν over 2N \ {∅}.
In this section, ν denotes an arbirary capacity on N .

Let us recall the Shapley value of ν: for any element i ∈ N ,

φν(i) :=
∑

S⊆N\i

p1s(n) (ν(S ∪ i)− ν(S)),

where the coefficients p1s(n) :=
(n− s− 1)! s!

n!
define a probability distribu-

tion over {S ⊆ N \ i}.
The classical axioms introduced by Shapley [15] (see also Weber [16])

are the following

• Linearity: for any i ∈ N, φ(i) is linear on the set of capacities on N .

• i ∈ N is said to be dummy for ν if ∀S ⊆ N \ i, ν(S ∪ i) = ν(S) + ν(i).

• Dummy axiom: For any capacity ν and any i ∈ N dummy for ν,
φν(i) = ν(i).

• Symmetry axiom: for any permutation σ on N , any capacity ν and
any i ∈ N , φν◦σ−1

(σ(i)) = φν(i). This means that φν must not depend
on the labelling of the criteria.

• Efficiency axiom (Ec): for any capacity ν,
∑

i∈N φν(i) = ν(N); that is
to say the values of the criteria must be divided in proportion of the
overall score ν(N).

By generalizing Murofushi and Soneda [14], Grabisch has defined the
interaction index of capacities [6]. A first axiomatization have been proposed
by Grabisch and Roubens and rests on a recursivity axiom [10]. For this,
they introduce the following definitions:

Let K a non-empty subset of N and B ⊆ N \K. The restricted capacity
νK is the capacity ν restricted to 2K . The restriction of ν to K in the
presence of B is the capacity defined by

νK∪B(S) := ν(S ∪B)− ν(B)

for any S ⊆ K. Lastly, the reduced capacity ν[K] is the capacity defined on
N[K] := (N \K) ∪ {[K]} by

ν [K](A) := ν(A⋆)

5



where A⋆ :=

{
A if [K] 6∈ A

(A \ [K]) ∪K otherwise
; [K] actually indicates a single

hypothetical player, which is the representative of the players in K.

Recursivity axiom 1 (R1c): For any capacity ν, ∀S ⊆ N,

s > 1, ∀i ∈ S,

Iν(S) = Iν
N\i
∪i (S \ i)− Iν

N\i
(S \ i).

Recursivity axiom 2 (R2c): For any capacity ν, ∀S ⊆ N,

s > 1,

Iν(S) = Iν
[S]
([S])−

∑

K(S

K 6=∅

Iν
N\K

(S \K).

These axioms are well explained in [10]: to link value and interaction,
the authors first consider the reduced capacity ν [ij], and claim that the value
of [ij] should depend on the values of i when j is absent, and j when i is
absent, as well as their interaction in ν. As a positive interaction (profitable
cooperation) implies that the value of [ij] should be greater than the sum
of the above individual values, and on the contrary, a negative interaction
(harmful cooperation) implies that the value of [ij] should be less than the
sum, the following formula is natural

φν[ij]([ij]) = φνN\i
(j) + φνN\j

(i) + Iν(ij),

that can be put also into this form

Iν(ij) = Iν
[ij]

([ij])− Iν
N\i

(j)− Iν
N\j

(i).

Axiom (R2c) is a straightforward generalization, expressing interaction of S
in terms of all successive interactions of subsets, whereas (R1c) says that the
interaction of the criteria in S is equal to the interaction between the criteria
in S \ i in the presence of i, minus the interaction between the criteria of
S \ i (in the absence of i).

Theorem 1 (Grabisch, Roubens [10]) Under linear axiom, dummy ax-
iom, symmetry axiom, efficiency axiom (Ec) and ((R1c) or (R2c)), for any
capacity ν, ∀S ⊆ N , S 6= ∅,

Iν(S) =
∑

T⊆N\S

pst (n)∆Sν(T ),

where pst (n) := p1t (n− s+ 1) =
(n− s− t)! t!

(n− s+ 1)!
.
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Actually, the authors have shown that (R1c) and (R2c) are equivalent under
the first axioms [10].

Now we present an axiomatization of Fujimoto, Kojadinovic and Marichal
based on the concept of partnership coalition [5]; we use for this the following
generalized axioms:

Linear axiom (Lc): For any S ⊆ N , I(S) is linear on the set
of capacities on N .

Dummy axiom (Dc): For any capacity ν and any i ∈ N dummy for ν,
{

Iν(i) = ν(i),
Iν(S ∪ i) = 0, ∀S ⊆ N \ i, S 6= ∅.

This means that whenever i’s contribution to any coalition is a
constant worth, while i’s value must be this worth, the interac-
tion of any non-singleton coalition containing it must vanish.

Symmetry axiom (Sc): For any permutation σ on N , any
capacity ν and any S ⊆ N ,

Iν◦σ
−1
(σ(S)) = Iν(S).

For any P ⊆ N , P is said to be a partnership for ν if

∀S ( P, ∀T ⊆ N \ P, ν(S ∪ T ) = ν(T ).

In other words, as long as the elements of P are not present, the worth of
any coalition outside P is left unchanged.

Reduced-partnership-consistency axiom (RPCc): For any
capacity ν and P ⊆ N partnership for ν,

Iν(P ) = Iν
[P ]
([P ]).

In words, the interaction of a partnership P in a game equals the
value of its “representative player” [P ] in the associated reduced
game.

Theorem 2 (Fujimoto, Kojadinovic, Marichal, [5]) Under (Lc), (Dc),
(Sc), (Ec) and (RPCc), for any capacity ν, ∀S ⊆ N , S 6= ∅,

Iν(S) =
∑

T⊆N\S

pst (n)∆Sν(T ),

As in Theorem 1, Iν is again the Shapley interaction index of ν.
Let us point out that I is cardinal-probabilistic, that is to say, (pst (n))T⊆N\S

is a probability distribution, for any S ⊆ N , S 6= ∅ (see [5]).
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4 Axiomatizations of the interaction for bi-capa-

cities

In the sequel, v is a bi-capacity. Since criterion i has two possible situations
(either being in the positive part or in the negative part of the bi-coalition),
the effects of which being not necessarily symmetric on v, we should define a
value Φi,∅ representing the contribution of i “joining the positive part” and
a value Φ∅,i representing the contribution of i “leaving the negative part”.

Therefore, a value maps every bi-capacity to a couple of real valued
vectors. And as an interaction index for capacities is defined for non-empty
coalitions, here an interaction index maps every bi-capacity to an allocation
over Q(N) \ {(∅, ∅)}.

Labreuche and Grabisch have already axiomatized a Shapley value for
bi-capacities [13], which is done by introducing axioms similar to the original
ones of Shapley that we recalled above:

Linearity (L): For any i ∈ N , Φi,∅ and Φ∅,i are linear on the set
of bi-capacities on N .

i ∈ N is said to be left-null (resp. right-null) for v if ∀(K,L) ∈ Q(N \ i),

v(K ∪ i, L)
(
resp. v(K,L ∪ i)

)
= v(K,L).

Left-null axiom (LN): For any bi-capacity v and any i ∈ N

left-null for v,
Φv
i,∅ = 0.

Right-null axiom (RN): For any bi-capacity v and any i ∈ N

right-null for v,
Φv
∅,i = 0.

The interpretation of (LN) and (RN) is clear: if joining i to the positive
(resp. negative) part of every bi-coalition of Q(N \ i) has no effect, the
“left-value” Φv

i,∅ (resp. the “right-value” Φv
∅,i) must be null.

Invariance axiom (I): For any two bi-capacities v, w, and any
i ∈ N such that ∀(K,L) ∈ Q(N \ i)

{
v(K ∪ i, L) = w(K,L),
v(K,L) = w(K,L ∪ i),

then Φv
i,∅ = Φw

∅,i.
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This axiom which, has no equivalent in the case of capacities, says that when
a game w behaves symmetrically with v, then the Shapley values are the
same.

Symmetry axiom (S): For any permutation σ on N , any bi-
capacity v and any i ∈ N ,

Φv◦σ−1

σ(i),∅ = Φv
i,∅ and Φv◦σ−1

∅,σ(i) = Φv
∅,i.

Efficiency axiom (E): For any bi-capacity v,

∑

i∈N

(φv
i,∅ + φv

∅,i) = v(N, ∅)− v(∅, N).

Sticking to the interpretation of the classical case, compared to
the situation where all criteria would have been in the negative
part, the gain is v(N, ∅) − v(∅, N), and this amount is to be
shared among criteria (“left” and “right” contributions).

Theorem 3 (Labreuche, Grabisch [13]) Under (L), (LN), (RN), (I),
(S) and (E), for any bi-capacity v, ∀i ∈ N,

Φv
i,∅ =

∑

S⊆N\i

p1s(n) [v(S ∪ i, N \ (S ∪ i))− v(S,N \ (S ∪ i))],

Φv
∅,i =

∑

S⊆N\i

p1s(n) [v(S,N \ (S ∪ i))− v(S,N \ S)].

Now, since Grabisch and Labreuche have also defined an interaction
index Iv over Q(N) for bi-capacities [9], it is necessary to give satisfactory
properties to characterize it.

In the first place, as the interaction index for capacities can be obtained
from the Shapley value by a recursion formula, we give here a similar ap-
proach to build IvS,T from Φv

i,∅ =: Iv
i,∅ and Φv

∅,i =: Iv∅,i. Practically, IvS,T
denotes the interaction index when S is added to the positive part, and T is
withdrawn from the negative part (i.e., the elements of T become neutral).

For any non-empty subset K, the restricted bi-capacity vK is the re-

striction of v to Q(K). Besides, v
N\i
+ and v

N\i
− are particular restricted

bi-capacities defined by

v
N\i
+ (A,B) := v(A ∪ i, B)− v(i, ∅)

v
N\i
− (A,B) := v(A,B ∪ i)− v(∅, i),

9



for any (A,B) ∈ Q(N \ i). We respectively call v
N\i
+ and v

N\i
− the restric-

tions of v in positive and negative presence of i. Note that the subtractions
of v(i, ∅) and v(∅, i) are necessary to constraint the nullity in (∅, ∅). The
following axiom generalizes (R1c).

Recursivity axiom (R): For any bi-capacity v, ∀(S, T ) ∈ Q(N),
s+ t ≥ 2;

∀i ∈ S, IvS,T = I
v
N\i
+

S\i,T − Iv
N\i

S\i,T , if s ≥ 1,

∀i ∈ T, IvS,T = Iv
N\i

S,T\i − I
v
N\i
−

S,T\i, if t ≥ 1.

(R) can be explained like (R1c) in Section 3. The first equality
says that the interaction of (S, T ) is equal to the interaction of
(S \ i, T ) with the restriction of v in the positive presence of i,
minus the interaction of (S\i, T ) in v restricted toN\i. Similarly,
the interaction Iv(S, T ) is given in terms of the interactions of
(S, T \ i) of the restriction of v in negative presence of i.

Theorem 4 Under (L), (LN), (RN), (I), (S), (E) and (R), for any bi-
capacity v, for any bi-coalition (S, T ), (S, T ) 6= (∅, ∅),

IvS,T =
∑

K⊆N\(S∪T )

ps+t
k (n)∆S,T v(K,N \ (K ∪ S)). (2)

Proof: By Theorem 3, Iv
i,∅ and Iv∅,i write for all i ∈ N :

Ivi,∅ =
∑

S⊆N\i

(n− s− 1)!s!

n!
[v(S ∪ i, N \ (S ∪ i))− v(S,N \ (S ∪ i))],

Iv∅,i =
∑

S⊆N\i

(n− s− 1)!s!

n!
[v(S,N \ (S ∪ i))− v(S,N \ S)].

We show the result by induction on m = s+ t.

• For m = 1, it is immediate.

• Assume that (2) is shown for m ∈ {1, . . . , n − 1}. Let (S, T ) ∈ Q(N)

10



and s+ t = m+ 1. If s ≥ 1 and i ∈ S then

IvS,T = I
v
N\i
+

S\i,T − Iv
N\i

S\i,T

=
∑

K⊆(N\i)\((S\i)∪T )

((n− 1)− (s− 1)− t− k)! k!

((n− 1)− (s− 1)− t+ 1)!

∆S\i,T [v
N\i
+ − vN\i](K, (N \ i) \ (K ∪ (S \ i)))

=
∑

K⊆N\(S∪T )

(n− s− t− k)! k!

(n− s− t+ 1)!

∆S\i,T [v(· ∪ i, ·)− v(i, ∅)− v + v(i, ∅)](K,N \ (K ∪ S))

=
∑

K⊆N\(S∪T )

(n− s− t− k)! k!

(n− s− t+ 1)!

∆S\i,T∆i,∅v(K,N \ (K ∪ S)).

If t ≥ 1 and i ∈ T then

IvS,T = Iv
N\i

S,T\i − I
v
N\i
−

S,T\i

=
∑

K⊆(N\i)\((S∪(T\i))

((n− 1)− s− (t− 1)− k)! k!

((n− 1)− s− (t− 1) + 1)!

∆S,T\i[v
N\i − v

N\i
− ](K, (N \ i) \ (K ∪ S))

=
∑

K⊆N\(S∪T )

(n− s− t− k)! k!

(n− s− t+ 1)!

∆S,T\i[v − v(∅, i)− v(·, · ∪ i) + v(∅, i)](K,N \ (K ∪ S ∪ i))

=
∑

K⊆N\(S∪T )

(n− s− t− k)! k!

(n− s− t+ 1)!

∆S,T\i∆∅,iv(K,N \ (K ∪ S)).

Since operators ∆S\i,T∆i,∅ and ∆S,T\i∆∅,i are by definition ∆S,T , the
result is shown for s+ t = m+ 1.

�

Let us remark that a such result has also been derived from a general-
ization of (R2c) (see [9]).
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In the second place, one can take inspiration from the Fujimoto, Ko-
jadinovic and Marichal’s work [5] in working out an equivalent axiom of the
above (RPC) axiom for capacities. Let us start by defining the concepts of
partnership and reduced bi-capacity.

For any P ⊆ N , P is said a partnership for v if

∀(S, T ) ∈ Q(N \ P ), ∀P+, P− ( P such that P+ ∩ P− = ∅,

v(S ∪ P+, T ∪ P−) = v(S, T ).

The meaning is the same as for capacities, that is to say, if all elements of
P are not joined together then they have a null effect on the worth of v.

For any non-empty subset K, the reduced bi-capacity v[K] is the bi-
capacity defined on N[K] := (N \K) ∪ {[K]} by

v[K](S, T ) := v(S⋆, T ⋆),

where A⋆ :=

{

A if [K] 6∈ A

(A \ [K]) ∪K else
, and [K] is still comparable to a single

macro player.

Reduced-partnership-consistency axiom (RPC): For any
bi-capacity v and any partnership P ⊆ N for v,

IvP,∅ = Iv
[P ]

[P ],∅.

Like (RPCc) for capacities (Section 3), the interpretation is quite
clear: when we measure the interaction among the criteria of a
partnership, it is as if we were measuring the value of a hy-
pothetical player. Axiom (RPC) then simply states that the
interaction of a bi-coalition splitted into a partnership P as the
positive part and an empty negative part should be regarded as
the left-value of the reduced partnership [P ] in the corresponding
reduced game.

A first remark is that one could replace this axiom with its symmetric,
that is, Iv∅,P = Iv

[P ]

∅,[P ], when P is still a partnership for v, one or the other
being sufficient. On the other hand, from this axiom and the above ones
(N), (LN), (RN), (I), (S) and (E), it is impossible to compute every IvS,T
whenever T 6= ∅. Consequently, we do it by generalizing these axioms:

Generalized linearity (GL): For any (S, T ) ∈ Q(N), IS,T is
linear on the set of bi-capacities on N .
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Generalized left-null axiom (GLN): For any bi-capacity v

and any i ∈ N left-null for v,

IvS∪i,T = 0, ∀(S, T ) ∈ Q(N \ i).

Generalized right-null axiom (GRN): For any bi-capacity v

and any i ∈ N right-null for v,

IvS,T∪i = 0, ∀(S, T ) ∈ Q(N \ i).

Generalized invariance axiom (GI): For any two bi-capacities

v, w and any i ∈ N such that ∀(K,L) ∈ Q(N\i),

{
v(K ∪ i, L) = w(K,L),
v(K,L) = w(K,L ∪ i),

we have
IvS∪i,T = IwS,T∪i, ∀(S, T ) ∈ Q(N \ i).

Generalized symmetry axiom (GS): For any permutation σ

on N , any bi-capacity v and any (S, T ) ∈ Q(N),

Iv◦σ
−1

σ(S),σ(T ) = IvS,T .

Proposition 1 Under (GL), (GLN), (GRN), (GI) and (GS), for any bi-
capacity v, and any (S, T ) ∈ Q(N) \ {(∅, ∅)}, IvS,T is given by

IvS,T =
∑

(K,L)∈Q(N\(S∪T ))

ps+t
k,l (n)∆S,T v(K,L ∪ T ), (3)

where (puk,l(n))(K,L)∈Q(N\U), U := S ∪ T , is a probability distribution.

Proof: We straightforwardly derive from (GL) that for any bi-capacity v

IvS,T =
∑

(K,L)∈Q(N)

p
(S,T )
(K,L) v(K,L) ∀(S, T ) ∈ Q(N),

where the p
(S,T )
(K,L)’s are real numbers.

1. For all i ∈ N and all (S, T ) ∈ Q(N \ i),

IvS∪i,T =
∑

(K,L)∈Q(N\i)

[

p
(S∪i,T )
(K∪i,L) v(K∪i, L)+p

(S∪i,T )
(K,L) v(K,L)+p

(S∪i,T )
(K,L∪i) v(K,L∪i)

]

.
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Then if i is left-null:

IvS∪i,T =
∑

(K,L)∈Q(N\i)

[(

p
(S∪i,T )
(K∪i,L)+p

(S∪i,T )
(K,L)

)

v(K,L)+p
(S∪i,T )
(K,L∪i) v(K,L∪i)

]

.

From (GLN), IvS∪i,T vanishes for all v, which leads to equalities

{

p
(S∪i,T )
(K,L) = −p

(S∪i,T )
(K∪i,L)

p
(S∪i,T )
(K,L∪i) = 0

.

Let pS∪i,TK,L := p
(S∪i,T )
(K∪i,L).

2. Similarly, if i is right-null, we have

IvS,T∪i =
∑

(K,L)∈Q(N\i)

[

p
(S,T∪i)
(K∪i,L) v(K∪i, L)+

(

p
(S,T∪i)
(K,L) +p

(S,T∪i)
(K,L∪i)

)

v(K,L)
]

,

which implies from (GRN):

{

p
(S,T∪i)
(K∪i,L) = 0

−p
(S,T∪i)
(K,L∪i) = p

(S,T∪i)
(K,L) =: pS,T∪i

K,L

,

∀i ∈ N, ∀(S, T ) ∈ Q(N \ i), ∀(K,L) ∈ Q(N \ i).

3. Letv w two bi-capacities, and i ∈ N ; thus

IvS∪i,T =
∑

(K,L)∈Q(N\i)

p
S∪i,T
K,L (v(K ∪ i, L)− v(K,L)),

IwS,T∪i =
∑

(K,L)∈Q(N\i)

p
S,T∪i
K,L (w(K,L)− w(K,L ∪ i)).

If we assume that

{
v(K ∪ i, L) = w(K,L)
v(K,L) = w(K,L ∪ i),

∀(K,L) ∈ Q(N \ i) then

the second equality above writes

IwS,T∪i =
∑

(K,L)∈Q(N\i)

p
S,T∪i
K,L (v(K ∪ i, L)− v(K,L)).

since IvS∪i,T = IwS,T∪i for all v, by (GI), we have pS∪i,TK,L = p
S,T∪i
K,L , ∀(K,L) ∈

Q(N \ i). Note that we get

IvS∪i,T =
∑

(K,L)∈Q(N\i)

p
S∪i,T
K,L ∆i,∅v(K,L),

IwS,T∪i =
∑

(K,L)∈Q(N\i)

p
S,T∪i
K,L ∆∅,iw(K,L ∪ i) with p

S,T∪i
K,L = p

S∪i,T
K,L .
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By applying (GI) for another criterion j 6= i de N , for all (S, T ) ∈
Q(N \ ij), we have

IvS∪ij,T =
∑

(K,L)∈Q(N\ij)

p
S∪ij,T
K,L ∆i,∅∆j,∅v(K,L),

IvS∪i,T∪j =
∑

(K,L)∈Q(N\ij)

p
S∪i,T∪j
K,L ∆i,∅∆∅,jv(K,L ∪ j),

IvS,T∪ij =
∑

(K,L)∈Q(N\ij)

p
S,T∪ij
K,L ∆∅,i∆∅,jv(K,L ∪ ij),

where p
S,T∪ij
K,L = p

S∪i,T∪j
K,L = p

S∪ij,T
K,L , ∀(K,L) ∈ Q(N \ ij). Thus, by

successively applying (GI), we deduce that (S, T ) ∈ Q(N) \ {(∅, ∅)}
and (K,L) ∈ Q(N \ (S ∪ T )), pS,TK,L only depend on S ∪ T and (K,L).

Let U := S ∪ T and pUK,L := p
U,∅
K,L. We have

IvS,T =
∑

(K,L)∈Q(N\(S∪T ))

pS∪TK,L ∆S,T v(K,L ∪ T ).

4. Finally, let σ be any permutation of N . From (GS), we get Iv◦σ
−1

σ(S),σ(T ) =

IvS,T for all (S, T ) of Q(N) \ {(∅, ∅)}. Besides,

Iv◦σ
−1

σ(S),σ(T ) =
∑

(K,L)∈Q(N\σ(S∪T ))

p
σ(S∪T )
K,L ∆σ(S),σ(T )v◦σ

−1 (K,L ∪ T )
︸ ︷︷ ︸

∆S,T v(σ−1(K),σ−1(L,∪T ))

=
∑

(K,L)∈Q(N\(S∪T )

p
σ(S∪T )
σ(K),σ(L)∆S,T v(K,L ∪ T ).

Thus p
σ(S∪T )
σ(K),σ(L) = pS∪TK,L , ∀(K,L) ∈ Q(N \ (S∪T )), that is to say, pUK,L

depend only on the cardinals of U,K,L. Let puk,l := pUK,L, then (3) is
shown.

�

Under this form, the mapping I is said to be cardinal-probabilistic, as a
generalization of cardinal-probabilistic indices defined for capacities.

Finally, we have the following result:
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Theorem 5 Under (GL), (GLN), (GRN), (GI), (GS) and (E), axioms (R)
and (RPC) are equivalent, thus for any bi-capacity v, for any bi-coalition
(S, T ), (S, T ) 6= (∅, ∅),

IvS,T =
∑

K⊆N\(S∪T )

ps+t
k (n)∆S,T v(K,N \ (K ∪ S)).

Proof: Note that (GL), (GLN), (GRN), (GI) and (GS) respectively imply
(L), (LN), (RN), (I) and (S). Thus by Theorem 2, it is sufficient to prove
that the formula holds with the first axioms and (RPC).

1. Clearly, for all i ∈ N ,

Ivi,∅ =
∑

S⊆N\i

(n− s− 1)!s!

n!
[v(S ∪ i, N \ (S ∪ i))− v(S,N \ (S ∪ i))],

(4)

Iv∅,i =
∑

S⊆N\i

(n− s− 1)!s!

n!
[v(S,N \ (S ∪ i))− v(S,N \ S)].

2. Let us compute Iv
S,∅, s ≥ 2.

By proposition 1, there are some real numbers psk,l(n), k + l ≤ n − s

such that

IvS,∅ =
∑

(K,L)∈Q(N\S)

psk,l(n)∆S,∅v(K,L)

=
∑

(K,L)∈Q(N\S)

psk,l(n)
(
v(K ∪ S,L) +

∑

S′(S

(−1)s−s′v(K ∪ S′, L)
)
,

from the explicit expression (1) of ∆S,T v. Now, let S be a partnership,
then for all S′ ( S, v(K ∪ S′, L) = v(K,L). Also, since

∑

S′(S

(−1)s−s′ =
∑

S′⊆S

(−1)s−s′ − 1

=
s∑

s′=0

(
s

s′

)

(−1)s−s′ − 1

= (1− 1)s − 1

= −1,

then IvS,∅ =
∑

(K,L)∈Q(N\S)

psk,l(n)
(
v(K ∪ S,L)− v(K,L)

)
. (5)
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Moreover, by (RPC) and (4) with [S] = i, we have also

IvS,∅ = Iv
[S]

[S],∅

=
∑

K⊆(N\S∪[S])\[S]

((n− s+ 1)− k − 1)! k!

(n− s+ 1)!

∆[S],∅v
[S](K, (N \ S ∪ [S]) \ (K ∪ [S]))

=
∑

K⊆N\S

(n− s− k)! k!

(n− s+ 1)!

(
v(K ∪ S,N \ (K ∪ S))− v(K,N \ (K ∪ S))

)
.(6)

Let U := S. By identifying coefficients of (5) in (6) (formulae are
true for all v), we get ∀u ∈ {1, . . . , n} , ∀k ∈ {0, . . . , n− u} , ∀l ∈
{0 . . . , n− u− k}:

• For the terms of (5) that arise in (6): let K ⊆ N \ U and L =
N \ (U ∪K). Note that k + l = n− u.

puk,l(n) = puk,n−u−k(n)

=
(n− u− k)! k!

(n− u+ 1)!
.

Note that these coefficients are identical to those given in Theo-
rem 1, i.e., puk,l(n) = puk(n).

• For all other coefficients, i.e., if k + l ≤ n− u, then

puk,l(n) = 0.

This ends the proof in this case.

3. The computation of the IvS,T ’s with s + t ≥ 2, t ≥ 1 is already given

above. Indeed, all the ps+t
k,l (n)’s of (3) are given with s+ t = u.

4. Finally, for all u ∈ {1, . . . , n},

∑

(K,L)∈Q(N\U)

puk,l(n) =
∑

K⊆N\U

puk(n)

= 1,

since the Shapley interaction index for capacities is cardinal-probabilistic
(see Section 3, p. 7). Thus I for bi-capacities is also cardinal-probabilistic.
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�

It is noteworthy that Kojadinovic has also proposed an alternative inter-
action index [12] for bi-capacities in the context of aggregation by the bipolar
Choquet integral, however his solution is not completely axiomatized.

Conclusion

Axiomatic characterizations of the interaction index of bi-capacities have
been proposed. The presented description is based on generalizations of
the recursivity axiom and the reduced-partnership-consinstency axiom. Ac-
cording to the choice of one or the other, more or less powerful linearity,
invariance and symmetry are required.
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