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INTRODUCTION

In signal processing, sparsity is a very interesting property which becomes more and more popular. Usually, it is used as a criterion in a transformed domain for compression, compress sensing, denoising, etc [START_REF] Starck | Redundant multiscale transforms and their application for morphological component analysis[END_REF]. As we will then consider, sparsity can also be used as a feature extraction method, to make emerge from data elements containing relevant information. In our application, we extract motion primitives of the handwriting.

In a Hilbert space, we define the matrix inner product 1 as A, B = trace(B H A) and its associated Frobenius norm denoted . . We consider a signal y ∈ C N of N samples and a normed dictionary Φ ∈ C N×M composed of M atoms {φm} M m=1 . The decomposition of the signal y is done on the dictionary Φ such that y = Φx+ , assuming x ∈ C M the coding coefficients and ∈ C N the residual error. The dictionary is said redundant when M > N : the linear system is thus under-determined and accepts several possible solutions. The introduction of constraints such as positivity, sparsity or other, allows to regularize the solution. The decomposition under sparsity constraint is formalized by : minx x 0 s.t. y -Φx 2 ≤ C0 (P0), in which C0 is a constant and x 0 the 0 pseudo-norm defined as the cardinal of the x support 2 . In order to solve (P0), we want to determine the dictionary Φ which fits the set of the studied signals. That means Φ contains dedicated atoms allowing to sparsely code any signal of this set. To provide the decomposition sparsity, a first approach consists in the union of several classical dictionaries such as wavelets, curvelets and others with fast transforms [START_REF] Starck | Redundant multiscale transforms and their application for morphological component analysis[END_REF] : the main drawback is the choice of these dictionaries. A second approach, called sparse coding, is a data driven learning method which 1. The conjugate transpose operator is denoted (.)

H . 2. The support of x is support(x) = {i ∈ N N : x i = 0} .
adapts atoms to elementary patterns characteristic of the studied set [START_REF] Olshausen | Sparse coding with an overcomplete basis set : a strategy employed by V1 ?[END_REF][START_REF] Kreutz-Delgado | Dictionary learning algorithms for sparse representation[END_REF][START_REF] Aharon | K-SVD : An algorithm for designing overcomplete dictionaries for sparse representation[END_REF]. The obtained atoms do not belong to classical dictionaries : they are appropriate to the considered application.

In this paper, we briefly present the existing sparse approximation and dictionary learning algorithms. We look at the multivariate and shift-invariant cases. We then expose our new methods : Multivariate OMP (Orthogonal Matching Pursuit) and Multivariate DLA (Dictionary Learning Algorithm), and their specifications to the 2D rotation-invariant case. As a validation, proposed methods are applied to handwritten signals : results are shown and then discussed.

STATE OF THE ART

Sparse Approximation Algorithms

In general, finding the sparsest solution of the coding problem (P0) is NP-hard. To overcome this difficulty, one way consists in relaxing (P0) with a 1 norm : minx x 1 s.t. y -Φx 2 ≤ C1 (P1), with C1 a constant. (P1) is a convex optimization problem having a single minimum. Different algorithms solving this problem are presented in [START_REF] Tropp | Computational methods for sparse solution of linear inverse problems[END_REF] such as methods based on Interior Point, Homotopy, Iterative Thresholding, etc. A high coherence 3 µΦ does not ensure that these algorithms recover the optimal x support, and if it is the case, the convergence is long.

Another way consists in simplifying (P0) in a sub-problem : minx y -Φx 2 s.t. x 0 ≤ C 0 (P 0 ), with C 0 a constant. Pursuit algorithms [START_REF] Tropp | Computational methods for sparse solution of linear inverse problems[END_REF] tackle sequentially (P 0 ), but this optimization is nonconvex. The OMP algorithm [START_REF] Pati | Orthogonal Matching Pursuit : recursive function approximation with applications to wavelet decomposition[END_REF] solves the least squares problem increasing iteratively the constant C 0 . The obtained solution is suboptimal because the support recovery is not guaranteed especially for a high coherence µΦ. However, it is fast when one searches very few coefficients.

Dictionary Learning Algorithms

The aim of DLA is to find a dictionary adapted to the signals set we want to code. Classical learning methods alternate between two steps : i) Φ is fixed and x is obtained by sparse approximation (Section 2.1), ii) x is fixed and Φ is updated. The update is based on criteria such as Maximum Likelihood (ML) [START_REF] Olshausen | Sparse coding with an overcomplete basis set : a strategy employed by V1 ?[END_REF], Maximum A Posteriori [START_REF] Kreutz-Delgado | Dictionary learning algorithms for sparse representation[END_REF] or Majorization-Minimization. There are also simultaneous learning methods such as K-SVD presented in [START_REF] Aharon | K-SVD : An algorithm for designing overcomplete dictionaries for sparse representation[END_REF], the bibliography of which synthesizes well the state of the art. Some of these methods have been modified to deal with atoms overlappings in the shift-invariant case : extensions of MOD [START_REF] Skretting | General design algorithm for sparse frame expansions[END_REF] and of K-SVD [START_REF] Mailhé | Shift-invariant dictionary learning for sparse representations : Extending K-SVD[END_REF].

MULTIVARIATE AND SHIFT-INVARIANT CASES

In the multivariate case, the studied signal becomes y ∈ C N×V , denoting V the number of components. Two problems can be considered depending on the Φ and x natures :

-Φ ∈ C N×M univariate and x ∈ C M×V multivariate, the common case handled by multichannel sparse approximation algorithms [START_REF] Lutoborski | Vector greedy algorithms[END_REF][START_REF] Cotter | Sparse solutions to linear inverse problems with multiple measurement vectors[END_REF][START_REF] Tropp | Algorithms for simultaneous sparse approximation ; Part I : Greedy pursuit[END_REF][START_REF] Chen | Theoretical results on sparse representations of multiple-measurement vectors[END_REF]. -Φ ∈ C N×M×V multivariate and x ∈ C M univariate 4 , case only evoked in [START_REF] Gribonval | Beyond sparsity : Recovering structured representations by l1-minimization and greedy algorithms. -Application to the analysis of sparse underdetermined ICA[END_REF] for sparse approximation, but with a particular dictionary template. In the present work, we will focus on this case, with Φ multivariate and normed. In the shift-invariant case, we want to code the signal y as a sum of few structures, named kernels, characterized independently of their positions. The L shiftable kernels of the compact Ψ dictionary are replicated at all positions to provide the M atoms of the Φ dictionary. Kernels {ψ l } L l=1 can have different lengths : zeropadding is done to make them all have N samples. The N samples of the signal y, the residue , the atoms φm and the kernels ψ l are indexed by t. Considering a kernel ψ l , σ l is a subset of the N indexes t. Translated at all positions τ ∈ σ l , the kernels ψ l (t) generate all atoms φm(t) :

y(t) = M m=1 xmφm(t) + (t) = L l=1 τ ∈σ l x l,τ ψ l (t -τ ) + (t) (1)
To sum up, the multivariate signal y is approximated as a weighted sum of few shiftable multivariate kernels ψ l .

METHODS PRESENTATION

We now expose our new methods for sparse coding : Multivariate OMP (M-OMP) for multivariate sparse approximation, Multivariate DLA (M-DLA) for multivariate dictionary learning and their specifications to the 2D Rotation-Invariant (2DRI) case.

Multivariate OMP

Sparse approximation can be achieved by any algorithm able to overcome the high coherence due to the shift-invariant case. OMP is chosen for its speed : a more precise description is given in [START_REF] Pati | Orthogonal Matching Pursuit : recursive function approximation with applications to wavelet decomposition[END_REF]. We modify it to handle the multivariate case described previously (Section 3) and we name it Multivariate OMP (Algorithm 1). Denoting k the current iteration, the inner product between k-1 and each atom is now replaced by the correlation with each kernel (step 1), generally computed by FFT. The orthogonal projection (step 4) is often computed recursively by different methods : we choose the block matrix inversion one [START_REF] Pati | Orthogonal Matching Pursuit : recursive function approximation with applications to wavelet decomposition[END_REF]. The obtained vector x k is reduced to its active (i.e. nonzero) coefficients. The multivariate case is taken account in selection (step 2) and in the orthogonal projection where the multivariate signal y (resp. dictionary D) is unfolded along the components dimension in a univariate vector y (resp. matrix D ). Compared with the original OMP, the complexity of the M-OMP is only increased by a factor of V , the number of components.

Multivariate DLA

Our learning method named Multivariate DLA (Algorithm 2) is an alternation between two steps : a sparse approximation step done 4. Φx is considered as a element-wise product along dimension M . 5. The complex correlation between the u th components of the multivariate signals a and b is denoted

Γ {a[u], b[u]}. Algorithm 1: x = Multivariate_OMP (y, Ψ) initialization : k = 1, 0 = y, dictionary D 0 = ∅ repeat 1. Correlations 5 : for l ← 1 to L do C k l (τ ) ← V u=1 Γ k-1 [u], ψ l [u] (τ ) 2. Selection : (l k max , τ k max ) ← arg max l,τ C k l (τ ) 3. Active Dictionary : D k ← D k-1 ∪ ψ l k max (t -τ k max ) 4. Active Coefficients : x k ← arg minx y -D k x 2 5. Residue : k ← y -D k x k 6. k ← k + 1 until convergence
by M-OMP and a dictionary update step. M-DLA is applied on training signals {yp} P p=1 representative of the studied set. Our update step is based on the ML criterion [START_REF] Olshausen | Sparse coding with an overcomplete basis set : a strategy employed by V1 ?[END_REF], usually optimized by the Stochastic Gradient method. To achieve this optimization, we choose a Levenberg-Marquardt 2 nd order Gradient Descent [START_REF] Madsen | Methods for nonlinear least squares problems, 2nd edition[END_REF] which increases the convergence speed, blending Stochastic Gradient and Gauss-Newton methods. The current iteration is denoted i. For each multivariate kernel ψ l , the update rule is given by :

ψ i l (t) = ψ i-1 l (t) + (H i l + λ i .I) -1 • τ ∈σ l x i * l,τ i-1 (t + τ ) (2)
with t the indexes limited to the ψ l temporal support, (.) * the conjugate operator, λ the adaptive descent step and H l the average hessian computed for the kernel (and not for each sample). In atoms overlappings cases, the learning method can become unbalanced due to the error done on the gradient estimation. We slightly overestimate the hessian H l to compensate this phenomenon. The update step, which now stabilizes the method, is called LM-modif (step 2). Moreover, kernels are normalized at the end of each iteration and their lengths are modified depending on the energy present in their edges. Added to the non-convex optimization of the M-OMP, the convergence of the M-DLA towards the global minimum is not guaranteed owing to its alternating minimization. However we find a minimum, local or global, which assures the solution sparsity.

Algorithm 2: Ψ = Multivariate_DLA ({yp} P p=1 ) initialization : i = 1, Ψ 0 = {L kernels of white noise} repeat for p ← 1 to P do 1. Sparse approximation :

x i ← M-OMP (yp, Ψ i-1 )
2. Dictionary update :

Ψ i ←LM-modif (yp, x i , Ψ i-1 ) 3. i ← i + 1
until convergence

2D Rotation-Invariant case

Studying bivariate real signals, 2D movements for example, we aspire to characterize them independently of their orientations. The rotation-invariance implies introducing a θ l,τ angle rotation matrix R for each bivariate kernel ψ l (t -τ ). Equation (1) becomes :

y(t) = L l=1 τ ∈σ l x l,τ R(θ l,τ )ψ l (t -τ ) + (t) (3) 
Now, in the selection step (Algorithm 1, step 2), the aim is to find the angle θ l k max ,τ k max which maximizes the correlations C k l (τ, θ l,τ ) . A naive approach consists in sampling θ l,τ into Θ angles and to add a degree of freedom in the correlations computation (Algorithm 1, step 1). The complexity is increased by a factor of Θ with respect to the M-OMP used in the bivariate real case.

To avoid this additional cost, we transform the y signal from R N×2 to C N and we apply M-OMP : coding coefficients x are now complex. The modulus gives the coefficient amplitude and the argument gives the rotation angle. Now able to rotate, kernels are no longer learned through a particular orientation as in the previous approach said oriented (V = 2, y ∈ R N×2 ). Thus, kernels are shift and rotation-invariant, providing a non-oriented decomposition (V = 1, y ∈ C N ). This 2DRI specification of the approximation (resp. learning) method is further denoted 2DRI-OMP (resp. 2DRI-DLA).

APPLICATION DATA

Our methods are applied to the Character Trajectories signals available on the UCI database [START_REF] Frank | UCI machine learning repository[END_REF] and initially dealt with a probabilistic model and an EM learning method [START_REF] Williams | Modelling motion primitives and their timing in biologically executed movements[END_REF], but without real sparsity in the resulting decompositions. Data are composed of a hundred occurrences of 20 letters written by the same person. The temporal signals are the cartesian pen tip velocities vx and vy.

We aim at learning an adapted dictionary in order to code sparsely velocity signals. Dictionary is learned on the first 20 occurrences of each letter and the approximation method is tested on the remaining ones. Velocity signals, on which our methods are applied, are integrated only to display the associated trajectories.

RESULTS

Results are directly presented for the non-oriented case. The integrated kernels dictionary (Fig 1 ) shows that the 2DRI-DLA has successfully extracted motion primitives. Indeed, straight and curved strokes correspond to the elementary patterns of the set of handwritten signals.

To evaluate the sparse coding qualities, decompositions of 5 occurrences of the letter d on this dictionary are considered in (Fig 2) Thus, the non-oriented approach reduces the dictionary redundancy providing a kernel dictionary even more compact.

DISCUSSION

The dictionary learning allows to recover signals primitives. The resulting dictionary can be thought of as a catalog of elementary patterns dedicated to the considered application and having a physical meaning as opposed to classical dictionaries such as wavelets, curvelets, etc. Therefore, decompositions based on such a dictionary are made sparsely on the characteristic components of the studied signals set. Considering the reconstruction mean square error, the few kernels used shows the efficiency of this sparse coding approach.

The 2DRI approach reduces the dictionary size in two ways : -when the studied signals cannot rotate, like in the presented application. The non-oriented approach detects rotational invariants (vertical stroke of letters d and p for example) that reduces the dictionary size : from 12 to 9. -when the studied signals can rotate : for example, when the acquiring tablet is revolved. To provide an adapted dictionary for sparse coding, the oriented approach needs to learn motion primitives for each of possible angles as opposed to the non-oriented case. That is the noticeable reduction of the dictionary size. Thereby, shift and rotation-invariant cases provide a compact learned dictionary Ψ (Fig 1). Moreover, the non-oriented approach allows to be robust to any writing direction (tablet rotation) and to any writing inclination (intra and inter-users variabilities).

CONCLUSION

We have presented new tools : M-DLA for automatically learning the patterns characteristic of a multivariate signals set, with the dictionary update done by a ML criterion, and M-OMP for coding sparsely all signal of this set. They are specified to the 2D Rotation-Invariant case, respectively named 2DRI-DLA and 2DRI-OMP. Shift and rotation-invariant cases induce a compact learned dictionary. Their applications are dimension reduction, compression, denoising, gestures representation and analysis, and all other processing which is multivariate feature extraction based. Moreover, we apply these methods to motion signals that is new with regards to custom sparse coding applications.

The considered prospects are to compare our method with other learning methods appropriate to the shift-invariant case and to integrate a dilatation parameter to take in consideration the movement execution speed. These methods provide sparse descriptors, we also project to add a classification step to make gestures recognition.

  Fig. 1. Dictionary, learned by 2DRI-DLA, of the trajectories associated to kernels.

Fig. 2 .

 2 Fig. 2. Original (a) and reconstructed (b) velocity signals of 5 occurrences of the letter d, and their associated spikegram (c).

Fig. 3 .

 3 Fig. 3. Letter d (resp. p) : original (a) (resp. (d)), oriented reconstructed (b) (resp. (e)) and non-oriented reconstructed (c) (resp. (f)) trajectories.
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