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Monge Extensions of Cooperation
and Communication Structures

U. Faigle∗, M. Grabisch†, M. Heyne

(October 7, 2009)

Abstract

Cooperation structures without anya priori assumptions on the combi-
natorial structure of feasible coalitions are studied and ageneral theory for
marginal values, cores and convexity is established. The theory is based on
the notion of a Monge extension of a general characteristic function, which
is equivalent to the Lovász extension in the special situation of a classical
cooperative game. It is shown that convexity of a cooperation structure is
tantamount to the equality of the associated core and Weber set. Extending
Myerson’s graph model for game theoretic communication, general commu-
nication structures are introduced and it is shown that a notion of supermod-
ularity exists for this class that characterizes convexityand properly extends
Shapley’s convexity model for classical cooperative games.

Keywords: communication structure, convex game, cooperation structure,
Monge extension, Lovász extension, marginal value, ranking, Shapley value,
supermodularity, Weber set
AMS Classification:91A12, 91A40.

1 Introduction

The classical model of cooperative games assumes that everysubset of a
setN of agents may form a coalition to execute the game. However, many
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situations require a more refined model in which only a restricted collec-
tion F of subsets describes feasible cooperation. In Myerson’s [25] com-
munication graph model, for example, only those sets of agents are feasi-
ble for communication that induce connected subgraphs. Other examples
arise from models whereN is (partially) ordered by some dominance or
preference relation (e.g., Derks and Gilles [8], Faigle and Kern [14, 15],
Gilles et al. [17], Grabisch and Lange [18], Hsiao and Raghavan [19]). The
latter model was further relaxed and studied by Algabaet al. [3], Bilbao
et al. [2, 5] to combinatorial coalition structures of so-called antimatroids,
convex geometries and augmenting systems, and by Lange and Grabisch to
regular set systems [22]. All these generalized models for cooperation rely
on their particular combinatorial structure for the definition of Shapley-type
values, Weber sets and cores. Indeed, it appears difficult toreasonably de-
fine a notion of a ”marginal value” for cooperation models without special
structural properties. Moreover, it seems to be impossibleto extend the con-
cept ofsupermodularcharacteristic functions, and hence ofconvexgames,
to coalition systems that are not closed under union and intersection.

On the other hand, a natural notion for the core of a general cooperation
structure exists as a certain convex set in the Euclidean parameter spaceRN

(Faigle [12]), which suggests to study general cooperationfrom the point
of view of real convex analysis. For the classical model, such an approach
was indicated by Lovász [23] (see also Algabaet al. [4]). It is the purpose
of our present investigation to show that Lovász’ construction is actually a
special case of a quite general construction that is meaningful for arbitrary
cooperation structures.

The key in our analysis is the relaxation of the notion of a cooperative
game to cooperativegame instanceswith given bounds on the activity levels
of individual agents. We obtain game instances by a straightforward rule that
goes back to Monge [24] and corresponds to the well-knownnorth-west cor-
ner rulefor the construction of feasible solutions for transportation problems
(Section 3). Our rule yields theMonge extensionof the characteristic func-
tion v of the underlying cooperation structure to a functionv̂ : R

N → R.
Convexity properties of arbitrary cooperation structurescan thus be studied
via their Monge extensions.

The Monge algorithm furthermore implies a natural ranking notion for
agents and thus a framework for marginal vectors, Weber setsand Shapley
values (Section 4). In a far-reaching extension of the classical results we
find that the Monge extension of a cooperation structure is concave (a.k.a.
convex down) if and only if its core and Weber set coincide (Theorem 5.2).
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In Section 6, we introducecommunication structuresas a particular class
of cooperation structures that are union-closed in a weak sense and hence in-
clude Myerson’s communication graph model as a special case. We show
that a meaningful notion of ”supermodularity” exists for this class and char-
acterizes convexity (Theorem 6.2). Hence convex communication structures
generalize in particular Shapley’s [28] convex cooperative games. Moreover,
we show that our general model of convexity implies the notion of convexity
introduced by Bilbao and Ord́oñez [6] for games on so-calledaugmenting
systems, which form a subclass of communication structures.

We always assume that the characteristic function of a cooperation struc-
ture describes thegain a feasible coalition may achieve. As in the classical
case, our cores may equally well be interpreted as arising from associated
costgames. However, we will not explore the latter model in detail here.

2 Cooperation Structures

Let N = {1, . . . , n} be a finite set ofplayers. A cooperation structureon
N is a pairΓ = (F , v), whereF is a family of non-empty subsets ofN and
v : F → R+ is a non-negativevaluationonF . We refer to a setF ∈ F
as afeasible coalitionof Γ. In the caseF = 2N \ {∅}, i.e., when each
non-empty subset ofN constitutes a feasible coalition, we say thatΓ is a
classical cooperative game.

REMARK. Strictly speaking, a classical cooperative game may include
coalitionsF with negative valuev(F ) < 0. Modifying v to a valuationv
with

v(F ) = v(F ) + κ · |F | (F ⊆ N),

whereκ > 0 is a suitably large constant, however, any classical game isseen
to be essentially equivalent to a non-negative classical game.

The next example may serve as a motivation for leaving the classical
context. (It will be taken up in Section 6.)

Example 2.1 (Myerson Games [25]) Let G = (N,E) be a graph with
node setN and edge setE with the interpretation thatx, y ∈ N may ”com-
municate” if {x, y} ∈ E. One is interested in the familyF of those non-
empty subsetsF ⊆ N that induce a connected subgraph ofG and hence al-
low communication paths among all members ofF to be established.v(F )
describes the value of the communication within the connected subgraph
with node setF .
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Throughout the paper we index the coalitions inF = {F1, . . . , Fm} so
that

(I1) Fi ⊇ Fj =⇒ i < j.

In some parts of the paper, we will suppose thatv is monotonein the sense

F ⊆ F ′ =⇒ v(F ) ≤ v(F ′).

If monotonicity holds, we can (and will) assume in addition that the indexing
of coalitions also satisfies the property

(I2) v(F1) ≥ . . . ≥ v(Fm).

2.1 Game Instances with Activity Bounds

Let c ∈ R
N be a fixed parameter vector. Ac-feasible game instanceis a

parameter vectory ∈ R
F such thatyF ≥ 0 holds for allF 6= N and

aj(y) =
∑

F∋j

yF ≤ cj for all j ∈ N.

We interpretyF as the activity level of the coalitionF ∈ F (i.e., the
activity contribution of eachj ∈ F relative toF ) in the cooperation effort.
Soaj(y) measures the total activity of the playerj with respect toy, and the
vectorc plays the role of anactivity bound. Thevalueof the game instance
y is the parameter

y(v) =
∑

F∈F

yF v(F ).

Writing yF = y+

F − y−F , wherey+

F = max{0, yF } andy−F = max{0,−yF },
we note

yF = y+

F ≥ 0 for all F 6= N .

In the caseN ∈ F , we may viewσ(y) = y−N · v(N) as thesetup cost
for the game instancey and the numbersy+

F v(F ) as the values generated by
the coalitionsF ∈ F at the activity levelsy+

F . The playersj thus respect the
activity bounds

0 ≤
∑

F∋j

y+

F ≤ cj + y−N .

In the following, we will allow for setup costs and thereforeassume

• N ∈ F (and thusF1 = N in the listingF = {F1, . . . , Fm}),

unless stated otherwise.
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3 Monge Extensions

AssumingN ∈ F , we turn our attention to the construction ofc-feasible
game instancesy in the context(F , v) according to a generalized north-
west corner rule for transportation problems. We thereforerefer to these
game instances as beingMonge. For the description of the algorithm, we
use the notation

F(X) := {F ∈ F | F ⊆ X} for anyX ⊆ N .

3.1 The Monge Algorithm

We construct sequencesµ, π and a vectory ∈ R
m as follows for any given

c ∈ R
N . As usual, ifµ, µ′ are sequences,µµ′ denotes the concatenation of

the two sequences, and� denotes the empty sequence.

Monge Algorithm (MA):

(0) SetX = N , µ = �, π = � andyi = 0 for all i = 1, . . . ,m.
Setγj = cj for all j = 1, . . . , n.

(1) Select theFs ∈ F(X) with the smallest indexs and the smallest
p ∈ Fs with γp = min{γt | t ∈ Fs}.

(2) Update µ← [µs], π ← [πp], ys ← γp, X ← [X \ p];
Update γt ← [γt − γp] for all t ∈ Fs.

(3) If F(X) = ∅ then output(µ, π, y) and stop;
Otherwise goto (1).

Let (µ, π, y) be the output of the Monge algorithm and assumeµ =
i1 . . . ik (with i1 = 1). Setting

M =M(µ) := {M1, . . . ,Mk} = {Fi1 , . . . , Fik} (i.e.,Ms = Fis),

we find

〈v, y〉 =

m
∑

i=1

yiv(Fi) =

k
∑

s=1

yisv(Ms).

Notice that the selection rule (1) and the update rule (2) in MA guarantee
yi ≥ 0 for all Fi 6= N . Soy yields indeed a game instance. Moreover, we
have for allj ∈ N ,

∑

Fi∋j

yi

{

= cj if j occurs inπ
≤ cj otherwise.
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With the interpretationyFi
= yi for i = 1, . . . ,m, the Monge algorithm

thus generates ac-feasible game instance. The output sequenceπ of MA is
not necessarily a permutation ofN , i.e., not everyj ∈ N may occur inπ.
However, we observe thatπ is representative forF in the following sense:

Lemma 3.1 Let (µ, π = p1 . . . pk, y) be the output of the Monge algorithm
for somec ∈ R

n. ThenF ∩ {p1, . . . , pk} 6= ∅ holds for allF ∈ F .
⋄

Example 3.1 LetN = {1, 2, 3, 4, 5} andF = {12345, 2345, 1345, 124, 234,
345, 12, 35, 2, 5}, where ”12345” stands for {1, 2, 3, 4, 5} etc. (see Fig-
ure 1). For anyc ∈ R

N with c4 < c3 < c2 < c1 < c5, the algorithm will

∅

2

12

124

12345

5

35

345

1345

234

2345

Figure 1: Example of a family of feasible coalitions, ordered by inclusion.

produce the sequencesµ = (1, 7, 8, 10) (corresponding to the coalitions
12345, 12, 35 and5), π = (4, 2, 3, 5) and the vector

y = (c4, 0, 0, 0, 0, 0, c2 − c4, c3 − c4, c5 − c3) ∈ R
F .

3.1.1 The Greedy Algorithm

If v is monotone and the coalitions are indexed according to the rules (I1)
and (I2), the Monge algorithm may be viewed as agreedy algorithmfor the
construction of a game instance:Sequentially pick a feasible coalitionFs

of maximal valuev(Fs) and assign to the variableys the maximal possible
valueỹs without violating the individual activity boundscj .
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Viewed as a greedy algorithm, the Monge algorithm is also meaningful
in the caseN /∈ F . The output vector̃y (the so-called ”greedy solution”)
will be feasible for the linear program

max 〈v, y〉 =
∑

F∈F

v(F )yF s.t.
∑

F∋p

yF ≤ cp, ∀p ∈ N.

Moreover,ỹ will be nonnegative for any (nonnegative) inputc ≥ 0.

3.1.2 Rankings

The outputπ = p1 . . . pk of the Monge algorithm provides aranking of
the players ofN : Sequentially pick a representativep of a feasible coali-
tion Fs of maximal possible valuev(Fs) and discard the coalitions already
represented from further consideration.

3.2 The Extension Function

Notice that the output(µ, π, y) of the Monge algorithm is uniquely deter-
mined by the inputc ∈ R

n, provided the indexing of coalitions inF is
fixed. So MA yields a well-defined function

c ∈ R
n 7→ v̂(c) := 〈v, y〉 ∈ R.

We call v̂ : R
n → R theMonge extensionof the valuationv : F → R and

justify the terminology as follows.

Lemma 3.2 v̂(1F ) = v(F ) holds for allF ∈ F , where1F ∈ {0, 1}
N is

the incidence vector ofF ⊆ N (with components(1F )j = 1 if and only if
j ∈ F ).

Proof. TakeF ∈ F and considerc = 1F . SinceF ∈ F and all elements
corresponding to zeroes ofc are selected first,Ms = F at some steps. So

v̂(1F ) = v(Ms) = v(F )

follows by the definition ofy.
⋄

REMARK. In the caseF = 2N \∅, the Monge extension̂v corresponds to
the extension introduced by Lovász [23] for the set function v, which equals
the discrete Choquet integral [7] whenv is monotone. The authors show in
a companion paper [13] how the Choquet integral extends to arbitrary set
familiesF via the Monge algorithm.
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4 Core and Weber Set

Let (F , v) be a cooperation structure with a monotone valuationv. We
define thecoreof Γ = (F , v) as the closed convex set

core(v) := {x ∈ R
N | 〈c, x〉 ≥ v̂(c), ∀c ∈ R

N} ⊆ R
N .

We next give a direct characterization of the core which exhibits core(v) as
a non-negative and bounded polyhedron. As usual, we employ the notation
x(S) := 〈1S , x〉 =

∑

j∈S xj for anyx ∈ R
N andS ⊆ N .

Theorem 4.1 AssumeF ∋ N andv monotone. Then one has

core(v) = {x ∈ R
N
+ | x(N) = v(N), x(F ) ≥ v(F ), ∀F ∈ F}. (1)

Proof. Let P(v) = {x ∈ R
N
+ | x(N) = v(N), x(F ) ≥ v(F ), ∀F ∈ F}

and consider anyx ∈ core(v). Sincev is non-negative by monotonicity,
v̂(c) ≥ 0 holds for everyc ≥ 0. Lettingc = 1j be thejth unit vector inR

N ,
we obtain

xj = 〈1j, x〉 ≥ v̂(1j) ≥ 0 for all j ∈ N .

Moreover, v̂(1N ) = v(N) and v̂(−1N ) = −v(N) immediately yields
x(N) = 〈1N , x〉 = v(N). In view of v̂(1F ) = v(F ) (Lemma 3.2), we
thus concludex ∈ P(v).

To prove the converse, observe that anyz ∈ P(v) is a feasible solution
for the linear program

min
x≥0
〈c, x〉 s.t. x(N) = v(N), x(F ) ≥ v(F ), ∀F ∈ F .

Let y be the output of the Monge algorithm with respect toc. Theny is a
feasible solution for the dual linear program

max
y
〈v, y〉 s.t.

∑

F∋j

yF ≤ cj , ∀j ∈ N, yF ≥ 0 ∀F ∈ F \ {N}.

So 〈c, z〉 ≥ 〈v, y〉 = v̂(c) and hencez ∈ core(v) follows from linear pro-
gramming duality.

⋄

REMARK. Theorem 4.1 shows that core(v) coincides with the notion of
thepositive corefor ”cooperative games with restricted cooperation” intro-
duced in Faigle [12].
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4.1 Marginal Vectors

To study marginal vectors relative to the cooperation structureΓ = (F , v),
consider the output(µ = i1 . . . ik, π = p1 . . . pk, y) of the Monge algorithm
with respect to the inputc. Note thatµ andy can be reconstructed from
the knowledge of the ranking sequenceπ = p1 . . . pk (given the fixed linear
arrangementF = {F1, . . . , Fm}). We let Π denote the collection of all
possible ranking sequences.

Recalling the notationM(µ) = {M1, . . . ,Mk}, consider the(π, µ)-
incidence matrixR = [rst] ∈ {0, 1}

k×k with the coefficients

rst =

{

1 if ps ∈Mt

0 otherwise.

R is (lower) triangular with diagonal elementsrss = 1 and hence invertible.
Let y (resp.v) andc denote the restriction ofy (resp.v) to µ and ofc to π.
Then we have

Ry = c and v̂(c) = 〈v, y〉.

PuttingxT := vT R−1, we therefore obtain

v̂(c) = vT y = xT Ry = xT c = 〈c, x〉. (2)

We extendx to the vectorxπ ∈ R
N by settingxπ

p = xp if p occurs inπ
andxπ = 0 otherwise.xπ is themarginal vectorof Γ = (F , v) associated
with c ∈ R

N .

Lemma 4.1 The marginal vectorxπ can be computed as follows:

(0) xπ
pk

= v(Mk);

(1) xπ
ps

= v(Ms)−
∑

G≺Ms
v(G), for s = 1, . . . , k − 1

(whereG ≺Ms means thatG is a maximal member of the
familyMs(µ) = {G′ ∈M(µ) \ {Ms} | G

′ ⊂Ms, }).

Moreover,xπ(Mt) = v(Mt) holds fort = 1, . . . , k.

Proof. (1) follows immediately from the relation

xπ
ps

= v(Ms)−
∑

{xpt | t > s, pt ∈Ms} (s = k − 1, k − 2, . . . , 1).

⋄

In the caseN ∈ F , we haveM1 = N and observe (from Lemma 4.1)
that xπ(N) = v(M1) = v(N) holds for any marginal vectorxπ. Note
furthermore thatΓ admits only a finite number of marginal vectors (sinceΠ
is finite).
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Example 4.1 Let us take again the communication structure of Example 3.1.
Then the corresponding(π, µ)-incidence matrix is

R =









1 0 0 0
1 1 0 0
1 0 1 0
1 0 1 1









and one obtains the solutionx = [x4, x2, x3, x5] of the system

x4 + x2 + x3 + x5 = v(12345)
x2 = v(12)

x3 + x5 = v(35)
x5 = v(5)

as x = [v(12345) − v(12) − v(35), v(12), v(35) − v(5), v(5)].

4.2 Weber Set

We associate with the cooperation structureΓ = (F , v) the convex hull
W(v) of all marginal vectorsxπ, i.e.,

W(v) := conv{xπ | π ∈ Π}

and call the polytopeW(v) ⊆ R
N theWeber setof Γ.

Theorem 4.2 AssumeN ∈ F . Thencore(v) ⊆ W(v).

Proof. Suppose that the claim of the Theorem were false and a vector
z ∈ core(v) \ W(v) existed. SinceW(v) is a closed convex set, we could
now separatez fromW(v) by a hyperplane,i.e., there would be a parameter
vectorc ∈ R

N such that

〈c, z〉 < 〈c, x〉 for all marginal vectorsx.

But then the marginal vectorxπ ∈ W(v) associated withc would yield a
contradiction:

〈c, z) ≥ v̂(c) = 〈c, xπ〉.

⋄

REMARK. For the classical caseF = 2N \ ∅, Theorem 4.2 is due to
Weber [30].
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4.2.1 Shapley Value

It appears natural to define the ”Shapley value”Φ(v) of a cooperation struc-
ture as the average of its marginal vectors:

Φ(v) :=
1

|Π|

∑

π∈Π

xπ ∈ W(v), (3)

whereΠ is the collection of all possible rankingsπ produced by the Monge
algorithm. In the classical caseΓ = (2N \ ∅, v), Φ(v) coincides with the
value introduced by Shapley [27].

5 Convexity

We say that cooperation structureΓ = (F , v) is convex(or simply, thatv
is convex) if its Monge extension̂v : R

N → R is a concave (a.k.a.convex
down) function, i.e., satisfies for all parameter vectorsc, d ∈ R

N and real
scalars0 < t < 1,

tv̂(c) + (1− t)v̂(d) ≤ v̂(tc + (1− t)d).

Theorem 5.1 AssumeN ∈ F and v is monotone. ThenΓ = (F , v) is
convex if and only if for allc ∈ R

N ,

v̂(c) = min{〈c, x〉 | x ∈ core(v)}

= max{〈v, y〉 | yF ≥ 0, ∀F ∈ F \ {N},
∑

F∋j

yF ≤ cj , ∀j ∈ N}.

Proof. It is straightforward to check in the Monge algorithm thatv̂ is
positively homogeneousin the sense

v̂(λc) = λv̂(c) for all c ∈ R
N and real scalarsλ ≥ 0.

A well-known result from convex analysis (see,e.g., Rockafellar [26]) there-
fore asserts that the concavity ofv̂ is equivalent witĥv being the lower sup-
port function of its core, which is the first equality claimed.

The second equality follows from linear programming duality with re-
spect to the core representation (1) of Theorem 4.1.

⋄

For the proof of an alternative characterization in Theorem5.2, we need
a technical fact.
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Lemma 5.1 Letπ = p1 . . . pk ∈ Π be an arbitrary ranking sequence. Then
there exists somẽc ∈ R

N such that the Monge algorithm produces the output
(µ, π, ỹ) with the properties:

(i) ỹMs > 0 for all s = 1, . . . , k.

(ii)
∑

F∋j

ỹF < c̃j for eachj /∈ π.

Proof. Let c ∈ R
N be a parameter vector so that the Monge algorithm

produces the output(µ, π, y). We now modifyc to a weightingc̃ ∈ R
N as

follows.

We choose somec0 > max{|cp| | p ∈ N} and replace eachcp by
c′p = cp + c0 ≥ 0. Relative toc′, the Monge algorithm then clearly produces
the output(µ, π, y′) with y′ ≥ 0.

Each componentc′ps
with ps ∈ π is now replaced bỹcps = c′ps

+ 2s for
s = 1, . . . , k. Each of the remaining componentsc′j with j /∈ π is replaced
by a large positive constantK ≫ 0 (e.g., K > 2c0 + 2n).

It is straightforward to verify that̃c produces the same ranking sequence
π asc′ and therefore asc. Moreover, the latter modification ensures property
(ii) to hold while the former modification guarantees (i).

⋄

Theorem 5.2 AssumeN ∈ F andv monotone. ThenΓ = (F , v) is convex
if and only if xπ ∈ core(v) holds for each marginal vectorxπ, i.e., if and
only if

core(v) =W(v).

Proof. Assume firstW(v) ⊆ core(v) and consider an arbitraryc ∈ R
N

with associated marginal vectorxπ ∈ W(v). Then we have

v̂(c) ≥ min{〈c, x〉 | x ∈ core(v)}

= max{〈v, y〉 | yF ≥ 0, ∀F ∈ F \N,
∑

F∋j

yF ≤ cj , ∀j ∈ N}

≥ v̂(c).

So equality holds throughout and exhibitsΓ as convex by Theorem 5.1.

Conversely, consider the marginal vectorxπ. By Lemma 5.1,xπ arises
from the MA-output(µ, π = p1 . . . pk, ỹ) relative to some inputc such that

12



(i) ỹMs > 0 for all s = 1, . . . , k.

(ii)
∑

F∋j ỹF < cj for eachj /∈ π.

If Γ is convex,ỹ is an optimal solution for the linear program

max{〈v, y〉 | yF ≥ 0, ∀F ∈ F \N,
∑

F∋j

yF ≤ cj , ∀j ∈ N}.

Let x̃ be an optimal solution for the dual linear program

min{〈c, x〉 | x ≥ 0, x(N) = v(N), x(F ) ≥ v(F ), ∀F ∈ F}.

Being optimal,x̃ and ỹ must satisfy the complementary slackness condi-
tions:

ỹMs > 0 =⇒ x̃(Ms) = v(Ms) (Ms 6= N)

x̃j > 0 =⇒
∑

F∋j

ỹF = cj .

By (ii), the latter conditions implỹxj = 0 if j /∈ π. Becausẽx(N) = v(N)
is true for the core vectors̃x, we conclude from (i) and the former conditions
that x̃ is identical to the marginal vectorxπ, which meansxπ ∈ core(v) in
particular. Since core(v) is a convex subset ofRN , we therefore find in view
of Theorem 4.2:

W(c) = conv{xπ | π ∈ Π} ⊆ core(v) ⊆ W(v).

⋄

REMARK. For the special case of classical cooperative games, Theo-
rem 5.1 was observed by Schmeidler [29], while Theorem 5.2 isdue to
Lovász [23].

6 Communication Structures

We say that the cooperation structureΓ = (F , v) (with possiblyN /∈ F) is
acommunication structureif F is weakly union-closed, i.e., satisfies

(WU) F ∪ F ′ ∈ F for all F,F ′ ∈ F with F ∩ F ′ 6= ∅.

Note that the set systemsF with property (WU) coincide with theunion-
stablesystems investigated by Algabaet al. [1].
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Example 6.1 Let G = (N,E) a graph with node setN and edge setE.
Consider any non-empty node setsF and F ′ that induce connected sub-
graphs ofG. ThenF ∪ F ′ induces a connected subgraph ifF ∩ F ′ 6= ∅
holds. So the Myerson games on graphs (cf. Ex. 2.1) form a special class of
communication structures.

It follows from (WU) that the maximal feasible coalitions ofa commu-
nication structure are pairwise disjoint. Hence a communication structure
naturally decomposes into pairwise disjoint communication structures, each
of them exhibiting a unique maximal feasible coalition. Without loss of
generality, we therefore assumeN ∈ F in our subsequent analysis of com-
munication structures.

A special case of a communication structure is given whenF is closed
under arbitrary unions. Examples arise from cooperative games under prece-
dence constraints (Faigle and Kern [14]), games with permission structure
(Gilles et al. [17]), or antimatroids, which are the complements of discrete
convex geometries (see,e.g., Korte et al. [21]). In view ofF0 = 2N , every
classical cooperative game can be understood as a union closed communi-
cation structure.

REMARK. Algabaet al.[1] have proposed a ”Myerson value” for union-
stable structures as the (classical) Shapley value of an associated classical
cooperative game. This value, however, doesnot coincide with the Shapley
value (3) that arises naturally from the Monge algorithm forthis class. The
notion of games onregular set systemsintroduced by Lange and Grabisch
(see [22], where a Shapley-like value is proposed) is also closely related to
Myerson games.

Example 6.2 A communication structure(F , v) is an augmenting system
in the sense of Bilbao [5] if it satisfies for allF,G ∈ F with F ⊆ G,

G \ F 6= ∅ =⇒ F ∪ {i} ∈ F for somei ∈ G \ F.

The class of union-closed augmenting systems is exactly theclass of antima-
troids.

6.1 Greedy Communication Structures

We want to characterize convex communication structures (with N ∈ F).
To this end, we relax the definition and call an arbitrary communication
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structureΓ = (F = {F1, . . . , Fm}, v) greedy if the Monge algorithm
(viewed as a greedy algorithm) is guaranteed to produce an optimal solu-
tion for the linear program

max
y≥0

〈v, y〉 s.t.
∑

F∋p

yF ≤ cp, ∀p ∈ N (4)

for any (non-negative)c ≥ 0. Hence a convex communication structure
(F , v) is necessarily greedy (cf. Theorem 5.1).

We call the valuationv : F → R+ strongly monotoneif it satisfies for
any F ∈ F and pairwise disjoint feasible setsG1, . . . , Gf ∈ F(F ) the
inequality

f
∑

ℓ=1

v(Gℓ) ≤ v(F ).

Note thatf = 1 exhibits every strongly monotonev to be also monotone in
the usual sense.

Example 6.3 Assume thatF is closed under taking arbitrary unions. Then
v : F → R+ is strongly monotone if and only ifv is monotone and superad-
ditive.

Lemma 6.1 If the communication structure(F , v) is greedy, thenv is nec-
essarily strongly monotone.

Proof. TakeF ∈ F and suppose thatv(F ) <
∑f

ℓ=1
v(Gℓ) holds. Take

c = 1F and y the output of the Monge algorithm, whose only non-zero
component isyF = 1. Theny′ defined by

y′F := 0

y′G1
= · · · = y′Gf

:= yF = 1

y′G := yG = 0 otherwise

is feasible but〈v, y′〉 > 〈v, y〉, a contradiction to the fact thaty is optimal
for (4). ⋄

For the next definition, it is convenient to augment the family F toF0 =
{F1, . . . , Fm, Fm+1} with Fm+1 = ∅ and to setv(∅) = 0.

Let F,F ′ ∈ F be intersecting, i.e., F ∩ F ′ 6= ∅. ThenF ∪ F ′ ∈ F
follows from the weak union property (WU), whileF ∩ F ′ /∈ F may be
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possible. Nevertheless, (WU) implies that the maximal setsin the family
F0(F ∩ F ′) = F(F ∩ F ′) ∪ {∅} are pairwise disjoint. So we arrive at the
well-defined parameter

v(F ∩ F ′) :=
∑

{v(G) | G ∈ F0(F ∩ F ′) maximal}. (5)

Example 6.4 Assume thatF is closed under arbitrary unions. Then for any
F,F ′ ∈ F , there is a unique maximal feasible set

F ∧ F ′ = ∪{G ∈ F0 | G ⊆ F ∩ F ′} ∈ F0

andv(F ∩ F ′) = v(F ∧ F ′) follows for any intersectingF,F ′ ∈ F .

We now say that the communication structure(F , v) is supermodular
(or simply,v is supermodular) if for any intersecting feasible setsF,F ′ ∈ F
the following inequality holds:

v(F ∪ F ′) + v(F ∩ F ′) ≥ v(F ) + v(F ′), (6)

wherev(F ∩ F ′) is understood as in (5) ifF ∩ F ′ /∈ F holds.

Lemma 6.2 If the communication structure(F , v) is greedy, thenv is nec-
essarily supermodular.

Proof. Let F,F ′ ∈ F be intersecting. Then the supermodular inequality
is trivial if F ⊂ F ′ or F ′ ⊂ F holds. We thus assume that neither is the case
and consider the nonnegative parameter vectorc = 1F∪F ′ + 1F∩F ′ . The
greedy solutioñy for (4) yields

〈v, ỹ〉 = v(F ∪ F ′) + v(F ∩ F ′).

On the other hand, the vectory ∈ R
F with the components

yG =







1/2 if G ∈ {F ∪ F ′, F, F ′}
1/2 if G maximal inF(F ∩ F ′)
0 otherwise

is also a feasible solution with the objective value

〈v, y〉 =
1

2
[v(F ∪ F ′) + v(F ) + v(F ′) + v(F ∩ F ′)].
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Soỹ can only be optimal if the supermodular inequality holds.
⋄

We now investigate sufficient conditions and first recall that thesupport
of a vectory ∈ R

F is defined as the set

supp(y) = {F ∈ F | yF 6= 0}.

Lemma 6.3 Assuming that(F = {F1, . . . , Fm}, v) is a supermodular com-
munication structure, lety∗ be the lexicographically maximal optimal solu-
tion for the linear program (4). Thensupp(y∗) is a nested family, i.e., one
has for anyFi, Fj ∈ supp(y∗) with i < j,

either Fi ∩ Fj = ∅ or Fi ⊃ Fj .

Proof. SupposeFi, Fj ∈ supp(y∗) are intersecting andFs = Fi ∪ Fj . If
s < i were true, we could modifyy∗ to the vectory with the components

yG =















y∗G + ε if G = Fs

y∗G + ε if G is maximal inF(Fi ∩ Fj)
y∗G − ε if G = Fi or G = Fj

y∗G otherwise

and obtain a feasible solution that is lexicographically strictly larger thany∗.
Moreover,

〈v, y〉 = 〈v, y∗〉+ ε
(

v(Fi ∪ Fj) + v(Fi ∩ Fj)− v(Fi)− v(Fj)
)

.

Supermodularity ofv implies that alsoy must be optimal and we arrive at a
contradiction to the choice ofy∗. Sos = i and henceFi ⊃ Fj must hold.

⋄

Theorem 6.1 The communication structureΓ = (F = {F1, . . . , Fm}, v) is
greedy if and only if the valuationv : F → R+ is strongly monotone and
supermodular.

Proof. The necessity of the conditions follows from Lemma 6.1 and
Lemma 6.2. We prove sufficiency by induction on the number|F| of feasi-
ble coalitions.

Let y be the greedy solution and denote byy∗ the (with respect to the
index order ofF) lexicographically maximal optimal solution.
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CLAIM : yF1
= y∗F1

.

Now yF1
≥ y∗F1

is a direct consequence of the Monge algorithm. So
it suffices to show that strict dominanceyF1

> y∗F1
is impossible. Recall-

ing from Lemma 6.3 that supp(y∗) is a nested family, let{G1, G2, . . . , Gk}
be the collection of (inclusion-wise) maximal proper subsets of F1 in the
support supp(y∗). So theGis are pairwise disjoint.

Let ε = min{yF1
− y∗F1

, y∗G1
, . . . , y∗Gk

} ≥ 0 and definey by

yF1
= y∗F1

+ ε

yGi
= y∗Gi

− ε, i = 1, . . . , k

yG = y∗G otherwise.

Theny is a feasible solution and satisfies

〈v, y〉 = 〈v, y∗〉+ ε
(

v(N) −
ℓ

∑

i=1

v(Gi)
)

≥ 〈v, y∗〉

by the strong monotonicity ofv. Hence alsoy is optimal and lexicographi-
cally maximal, which impliesy = y∗ and henceε = 0, as claimed.

To finish the proof, consider the representativep1 ∈ F1 chosen by the
Monge algorithm. Because ofy∗F1

= yF1
= cp1

= min{cp | p ∈ F1}, we
find:

y∗F = yF holds for allF ∈ F with p1 ∈ F . (7)

Let F ′ = {F ∈ F | p1 /∈ F}. ThenF ′ is weakly union closed. More-
over, the Monge algorithm produces the value

∑

F∈F ′

yF v(F ) ≤
∑

F∈F ′

y∗F v(F )

onF ′. On the other hand,|F ′| ≤ |F| − 1 holds. So we know by induction
that the Monge algorithm is optimal onF ′. Taking (7) into account, we
therefore conclude

∑

F∈F

y∗F v(F ) ≤
∑

F∈F

yF v(F ) ≤
∑

F∈F

y∗F v(F )

and hence optimality ofy.
⋄

REMARK. Theorem 6.1 generalizes Theorem 4 in [13].
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6.2 Convex Communication Structures

Theorem 6.1 allows us to characterize convex communicationstructures as
follows.

Theorem 6.2 AssumeN ∈ F . Then the communication structureΓ =
(F , v) is convex if and only ifv is strongly monotone and supermodular.

Proof. If Γ is convex, thenΓ is greedy. Hence (by Theorem 6.1) the
conditions are necessary. Conversely, we show that a greedycommunication
structure is convex ifN ∈ F holds. It suffices to argue that the greedy
algorithm is optimal for the linear program

max 〈v, y〉 s.t. yF ≥ 0 ∀F 6= N,
∑

F∋p

yF ≤ cp, ∀p ∈ N. (8)

Indeed, letC ≫ 0 be a large constant and modifyc to the vectorc with
componentscj = cj +C > 0. Then the greedy solutioñy is optimal relative
to c. On the other hand we have

〈c, y〉 = 〈c, y〉 − Cv(N).

for each feasible solutiony for (8). SinceCv(N) is constant, we conclude
that ỹ is also optimal forc.

⋄

Corollary 6.1 (cf. [6]) Let (F , v) be an augmenting system with a mono-
tone characteristic functionv : F0 → R. Then(F , v) is convex if and only
if v is supermodular.

Proof. Any monotone functionv on an augmenting systemF is neces-
sarily strongly monotone.

⋄

REMARK. Convexity of augmenting systems is defined without refer-
ence to any Monge-type extensions and relative to a different model for We-
ber sets in [6]. Our Corollary 6.1 shows that the two notions of convexity
coincide on this special class.

Classical Cooperative Games. AssumeF0 = 2N , i.e., (F , v) is a
classical cooperative game. ThenF0 is the union- and intersection-stable
Boolean lattice of all subsets ofN with the operationsF ∧ F ′ = F ∩ F ′
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andF ∨F ′ = F ∪F ′. In this context, the supermodular inequality (6) is the
defining property for ”convex games” in the sense of Shapley [28].

The equivalence ofv being supermodular and core(v) containing all
marginal vectors was first realized in the classical contextby Edmonds [10]
(see also Faigle [11] and Ichiishi [20]). It is easy to see that a classical
non-negative supermodular function is necessarily monotone.

REMARK. We do not know of a characterization of general convex co-
operation structures(F , v) in terms of an appropriately generalized notion
of ”supermodularity”. (For some sufficient conditions, see, e.g., Faigle and
Peis [16].)

Acknowledgment. The authors are grateful to the reviewers for their
careful reading of the manuscript, which improved the presentation.

References

[1] E. Algaba, J.M Bilbao, P. Borm and J.J. López:The Myerson value for
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