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Monge Extensions of Cooperation
and Communication Structures

U. Faigle M. Grabisct M. Heyne
(October 7, 2009)

Abstract

Cooperation structures without aaypriori assumptions on the combi-
natorial structure of feasible coalitions are studied angémeral theory for
marginal values, cores and convexity is established. Téearyhis based on
the notion of a Monge extension of a general characterigtictfon, which
is equivalent to the Lovasz extension in the special sananf a classical
cooperative game. It is shown that convexity of a coopemasibucture is
tantamount to the equality of the associated core and WebheEgtending
Myerson’s graph model for game theoretic communicationegsd commu-
nication structures are introduced and it is shown that mnaif supermod-
ularity exists for this class that characterizes convesitg properly extends
Shapley’s convexity model for classical cooperative games

Keywords: communication structure, convex game, cooperation streict
Monge extension, Lovasz extension, marginal value, rapkshapley value,
supermodularity, Weber set

AMS Classification91A12, 91A40.

1 Introduction

The classical model of cooperative games assumes that subsgt of a
setN of agents may form a coalition to execute the game. Howevanym
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situations require a more refined model in which only a refd collec-
tion F of subsets describes feasible cooperation. In Myerso®Fd@m-
munication graph model, for example, only those sets of agare feasi-
ble for communication that induce connected subgraphs.erGthamples
arise from models wheré/ is (partially) ordered by some dominance or
preference relatione(g, Derks and Gilles [8], Faigle and Kern [14, 15],
Gilleset al.[17], Grabisch and Lange [18], Hsiao and Raghavan [19]). The
latter model was further relaxed and studied by Algabal. [3], Bilbao

et al. [2, 5] to combinatorial coalition structures of so-calleatienatroids,
convex geometries and augmenting systems, and by LangerabisGh to
regular set systems [22]. All these generalized modelsdoperation rely
on their particular combinatorial structure for the defonitof Shapley-type
values, Weber sets and cores. Indeed, it appears difficudiamonably de-
fine a notion of a "marginal value” for cooperation modelshwiit special
structural properties. Moreover, it seems to be imposs$ibéxtend the con-
cept ofsupermodularcharacteristic functions, and hencecaivexgames,
to coalition systems that are not closed under union andseté&on.

On the other hand, a natural notion for the core of a genemam@tion
structure exists as a certain convex set in the Euclideaanpeter spacR”™Y
(Faigle [12]), which suggests to study general cooperdtiom the point
of view of real convex analysis. For the classical modelhsaie approach
was indicated by Lovasz [23] (see also Algadial. [4]). It is the purpose
of our present investigation to show that Lovasz’ congtomcis actually a
special case of a quite general construction that is meanifay arbitrary
cooperation structures.

The key in our analysis is the relaxation of the notion of apavative
game to cooperativgame instancewith given bounds on the activity levels
of individual agents. We obtain game instances by a stifaighard rule that
goes back to Monge [24] and corresponds to the well-knarth-west cor-
ner rulefor the construction of feasible solutions for transpéotaproblems
(Section 3). Our rule yields thiglonge extensionf the characteristic func-
tion v of the underlying cooperation structure to a function RN — R.
Convexity properties of arbitrary cooperation structuwras thus be studied
via their Monge extensions.

The Monge algorithm furthermore implies a natural rankigion for
agents and thus a framework for marginal vectors, WeberasetsShapley
values (Section 4). In a far-reaching extension of the waksesults we
find that the Monge extension of a cooperation structure neaee (a.k.a.
convex down) if and only if its core and Weber set coincidegdiem 5.2).
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In Section 6, we introduceommunication structuress a particular class
of cooperation structures that are union-closed in a weadesand hence in-
clude Myerson’s communication graph model as a special. cA&eshow
that a meaningful notion of "supermodularity” exists foistblass and char-
acterizes convexity (Theorem 6.2). Hence convex commtiaitatructures
generalize in particular Shapley’s [28] convex coopeeagjgmes. Moreover,
we show that our general model of convexity implies the motibconvexity
introduced by Bilbao and O#diez [6] for games on so-callealigmenting
systemswhich form a subclass of communication structures.

We always assume that the characteristic function of a eatipa struc-
ture describes thgain a feasible coalition may achieve. As in the classical
case, our cores may equally well be interpreted as arismg &issociated
costgames. However, we will not explore the latter model in détaie.

2 Cooperation Structures

Let N = {1,...,n} be a finite set oplayers A cooperation structuren

N is apairl’ = (F,v), whereF is a family of non-empty subsets &f and

v : F — R, is a non-negativealuationon F. We refer to a sef” € F

as afeasible coalitionof I'. In the caseF = 2V \ {0}, i.e, when each
non-empty subset aV constitutes a feasible coalition, we say thais a

classical cooperative game

REMARK. Strictly speaking, a classical cooperative game may delu
coalitions F' with negative value)(F') < 0. Modifying v to a valuationo
with

o(F) =v(F)+r-|F| (FCN),

wherex > 0 is a suitably large constant, however, any classical gasexis
to be essentially equivalent to a non-negative classiaakga

The next example may serve as a motivation for leaving thesidal
context. (It will be taken up in Section 6.)

Example 2.1 (Myerson Games[25]) Let G = (N, E) be a graph with
node setV and edge sek with the interpretation that, y € N may "com-
municate” if {z,y} € E. One is interested in the famil§ of those non-
empty subset8' C N that induce a connected subgraph@fnd hence al-
low communication paths among all memberg"ab be establishedv(F')
describes the value of the communication within the comestbgraph
with node sef'.



Throughout the paper we index the coalitionsAn= {Fi,..., F,,} so
that
() F2F = i<j.
In some parts of the paper, we will suppose th& monotonen the sense

FCF = wuF)<uF).

If monotonicity holds, we can (and will) assume in additibattthe indexing
of coalitions also satisfies the property

(|2) ’U(Fl) > ... > U(Fm)

2.1 Gamelnstanceswith Activity Bounds

Let c € RY be a fixed parameter vector. Afeasible game instands a
parameter vectay € R” such thaty» > 0 holds for all ' # N and

aj(y) =Y yr < ¢ forallje N,
F>j

We interpretyr as the activity level of the coalitio” € F (i.e, the
activity contribution of each € F' relative toF)) in the cooperation effort.
Soa;(y) measures the total activity of the playewith respect tay, and the
vectorc plays the role of amctivity bound Thevalue of the game instance
y is the parameter

y(w) = 3 yro(P).

Writing yp = y; — Y wherey} = max{0, yr} andy, = max{0, —yr},
we note
yF:y}'ZO forall F # N.

In the caseV € F, we may viewo(y) = y, - v(IN) as thesetup cost
for the game instancgand the numbergj;v(F) as the values generated by
the coalitionsF' € F at the activity IeveIs;/;:. The playerg thus respect the
activity bounds

0 <> uf < ¢i+uy
F>j

In the following, we will allow for setup costs and theref@esume

e N € F (andthusFy = N inthe listingF = {F1,..., Fiu}),

unless stated otherwise.



3 Monge Extensions

AssumingN € F, we turn our attention to the construction @feasible
game instanceg in the context(F,v) according to a generalized north-
west corner rule for transportation problems. We therefefer to these
game instances as beiMpnge For the description of the algorithm, we
use the notation

F(X)={FeF|FCX} foranyX C N.

3.1 TheMongeAlgorithm

We construct sequencesw and a vectory € R™ as follows for any given
c € RN, As usual, ifu, i/ are sequenceg,’ denotes the concatenation of
the two sequences, afdldenotes the empty sequence.

Monge Algorithm (MA):
(0) SetX = N,u=0,7r=0andy; =0foralli=1,...,m.
Sety; =cjforallj =1,...,n.

(1) Select theF; € F(X) with the smallest index and the smallest
p € Fs with v, = min{~; | t € F}.

(2) Update pu — [us], m — [mp], ys < 7p, X « [X \ p];
Update ; < [y — v, forall ¢t € Fj.

(3) If F(X) = 0 then output(i1, 7, y) and stop;
Otherwise goto (1).

Let (u,m,y) be the output of the Monge algorithm and assume-
i1 ...1 (with iy = 1). Setting

M= ./\/l(,u) = {Ml, . ,Mk} = {Fil, . ,sz} (i.e.,Ms = F’is),
we find

m k
(v,y) = ZyiU(Fz‘) = ZyiSU(Ms)'
=1 s=1

Notice that the selection rule (1) and the update rule (2) Advarantee
y; > 0 forall F; # N. Soy yields indeed a game instance. Moreover, we
have for allj € N,

=¢; if joccurs inm
Yi 7 i
Z, ! <c¢; otherwise.

F;3j
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With the interpretatioryr, = y; fori = 1,...,m, the Monge algorithm
thus generates @feasible game instance. The output sequencéMA is
not necessarily a permutation of, i.e., not every; € N may occur inr.
However, we observe thatis representative faf in the following sense:

Lemma3.1l Let(u, 7 =p;...pk,y) be the output of the Monge algorithm
for somec € R™. ThenF N {p1,...,pr} # 0 holds for all F € F.
<o

Example3.1 LetN = {1,2,3,4,5} andF = {12345, 2345, 1345, 124, 234,
345,12,35,2,5}, where "12345” stands for {1,2,3,4,5} etc. (see Fig-
ure 1). For anyc € RV with ¢y < ¢35 < ¢2 < ¢1 < ¢s, the algorithm will

12345
@)

O 1345

345

35

Figure 1: Example of a family of feasible coalitions, ordkbg inclusion.

produce the sequences = (1,7,8,10) (corresponding to the coalitions
12345, 12, 35 and5), = = (4,2, 3,5) and the vector

y = (4,0,0,0,0,0,co — cq,¢3 — c4,¢5 — c3) € R

3.1.1 The Greedy Algorithm

If v is monotone and the coalitions are indexed according toutes t(k)
and (b), the Monge algorithm may be viewed agredy algorithnfor the
construction of a game instanc8equentially pick a feasible coalitiof;
of maximal valuey(Fy) and assign to the variablg, the maximal possible
valuey, without violating the individual activity bounds.



Viewed as a greedy algorithm, the Monge algorithm is alsorimggul
in the caseNV ¢ F. The output vectoy (the so-called "greedy solution”)
will be feasible for the linear program

max (v,y) = Z v(F)yr St Z yr < ¢y, Vp € N.
FeF F>p

Moreover,j will be nonnegative for any (nonnegative) input 0.

3.1.2 Rankings

The outputr = p;...p, of the Monge algorithm provides mnking of
the players ofNV: Sequentially pick a representatiyeof a feasible coali-
tion F; of maximal possible value( F) and discard the coalitions already
represented from further consideration.

3.2 TheExtension Function

Notice that the outputu, 7, y) of the Monge algorithm is uniquely deter-
mined by the inputt € R"”, provided the indexing of coalitions ifF is
fixed. So MA yields a well-defined function

ceR" — v(c) := (v,y) € R.

We calls : R® — R theMonge extensioof the valuatiorv : 7 — R and
justify the terminology as follows.

Lemma3.2 (1) = v(F) holds for all I € F, wherely € {0,1}" is
the incidence vector af' C N (with component$l); = 1 if and only if
jeFr).

Proof. Takel' € F and considet = 1. SinceF' € F and all elements
corresponding to zeroes ofare selected first}/; = F' at some step. So

0(1p) = v(Ms) = v(F)

follows by the definition ofy.
(o

REMARK. In the caseF = 2/V\ (}, the Monge extension corresponds to
the extension introduced by Lovasz [23] for the set funrctipwhich equals
the discrete Choquet integral [7] whens monotone. The authors show in
a companion paper [13] how the Choquet integral extendshitrary set
families F via the Monge algorithm.
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4 Coreand Weber Set

Let (F,v) be a cooperation structure with a monotone valuationWe
define thecoreof I' = (F,v) as the closed convex set

corgv) := {z € RY | (¢, z) > 0(c), Ve € RV} C RV,

We next give a direct characterization of the core which eiihicordv) as
a non-negative and bounded polyhedron. As usual, we emipéogdtation
2(S) := (lg,2) = Y. ;g x; foranyz € RV andS C N.

Theorem 4.1 AssumeF > N andv monotone. Then one has

corgv) = {x € RY | z(N) = v(N),z(F) > v(F), VF € F}. (1)

Proof. LetP(v) = {z € RY | 2(N) = v(N),z(F) > v(F), VF € F}
and consider any: € corgv). Sincev is non-negative by monotonicity,
d(e) > 0 holds for every: > 0. Lettingc = 1, be thejth unit vector inR*,
we obtain

r; = (1j,2) >0(1;) >0 forallje N.

Moreover,v(1y) = v(N) ando(—1y) = —v(N) immediately yields
z(N) = (1y,z) = v(N). Inview of 5(1r) = v(F) (Lemma 3.2), we
thus concluder € P(v).

To prove the converse, observe that ang P(v) is a feasible solution
for the linear program
m>1161 (c,z) st z(N)=wv(N),z(F)>v(F), VF € F.

Lety be the output of the Monge algorithm with respectitorheny is a
feasible solution for the dual linear program

max (v,y) S.t EyFSCj, VjE€N, yp > 0VF € F\{N}.
y
F>j

So(c,z) > (v,7) = (c) and hence: € corgv) follows from linear pro-
gramming duality.
<o

REMARK. Theorem 4.1 shows that c@te coincides with the notion of
the positive corefor "cooperative games with restricted cooperation” intro
duced in Faigle [12].



4.1 Marginal Vectors

To study marginal vectors relative to the cooperation smed” = (F,v),
consider the outpuf = ¢y ...4, ™ = p1 ... pg, y) Of the Monge algorithm
with respect to the input. Note thaty andy can be reconstructed from
the knowledge of the ranking sequence-= p, ... p; (given the fixed linear
arrangementr = {Fy,..., F,}). We letIIl denote the collection of all
possible ranking sequences.

Recalling the notationM () = {My,..., My}, consider the(r, u)-
incidence matrixk = [ry] € {0, 1}¥** with the coefficients

- 1 if ps € M,
s = 1 0 otherwise.

R is (lower) triangular with diagonal elementg, = 1 and hence invertible.
Lety (resp.v) andc denote the restriction af (resp.v) to i and ofc to .
Then we have
Ry=t¢ and 9(c) = (7,7).
Puttingz! := 77 R~!, we therefore obtain
o(c) =0y =T ' Ry=7'¢ = (¢,T). (2)

We extendz to the vectorr™ € RY by settingz; = 7, if p occurs int
andz™ = 0 otherwise.z™ is themarginal vectorof I' = (F,v) associated
with ¢ € RV,

Lemma4.1 The marginal vector™ can be computed as follows:
(O) xgk = U(Mk);
(1) 2, =v(Ms) = > qp, v(G), fors=1,... k-1

(whereG < M, means that7 is a maximal member of the
family M (p) = {G" € M(u) \ {M} | G" € My, }).

Moreover,z™(M;) = v(M;) holds fort = 1,..., k.

Proof. (1) follows immediately from the relation

xy :v(Ms)—Z{Ept\t>s,pteMs} (s=k—-1,k—2,...,1).

Ps
o

In the caseV € F, we haveM; = N and observe (from Lemma 4.1)
that 2™ (N) = v(M;) = v(N) holds for any marginal vectart™. Note
furthermore that® admits only a finite number of marginal vectors (sifite
is finite).



Example 4.1 Let us take again the communication structure of Example 3.1
Then the correspondingr, 11)-incidence matrix is

10 00
1100
R_1010
1 011

and one obtains the solutioh= [Z4, T3, T3, T5] Of the system

x4 + x2 + w3 + w5 = v(12345)
) = ’U(12)
r3 + Ty = 1)(35)
x5 = v(b)

as T = [v(12345) — v(12) — v(35),v(12),v(35) — v(5), v(5)].

4.2 Weber Set

We associate with the cooperation structlire= (F,v) the convex hull
W(v) of all marginal vectors:™, i.e,,

W(v) :=confz" | m € IT}

and call the polytopaV(v) C RY theWeber sebf I
Theorem 4.2 AssumeV € F. Thencorgv) € W(v).

Proof. Suppose that the claim of the Theorem were false and a vector
z € corg(v) \ W(v) existed. SincéV(v) is a closed convex set, we could
now separate from W (v) by a hyperplane,e., there would be a parameter
vectorc € RY such that

(¢,z) < {c,xz) forall marginal vectors:.

But then the marginal vectar™ € W(v) associated witle would yield a
contradiction:
(¢,2) = 0(c) = (¢, 7).

O

REMARK. For the classical casé = 2V \ ), Theorem 4.2 is due to
Weber [30].
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4.2.1 Shapley Value

It appears natural to define the "Shapley valdé®) of a cooperation struc-
ture as the average of its marginal vectors:

o(v) == ﬁ Z z" € W(v), (3)

wherell is the collection of all possible rankingsproduced by the Monge
algorithm. In the classical cade = (2" \ 0, v), ®(v) coincides with the
value introduced by Shapley [27].

5 Convexity

We say that cooperation structure= (F,v) is convex(or simply, thatv
is convex) if its Monge extensiof : RV — R is a concave (a.k.aonvex
down) function, i.e., satisfies for all parameter vectarsd € R and real
scalard) < ¢t < 1,

ti(c) + (1 — 1)o(d) < d(te+ (1 —t)d).

Theorem 5.1 AssumeN € F andv is monotone. Thel’ = (F,v) is
convex if and only if for alt € RY,
0(c¢) = min{(c,z) | z € corgv)}

= max{(v,y) | yr >0, VF € F\{N},> yr <¢;, Vj € N}.

F>j

Proof. It is straightforward to check in the Monge algorithm thais
positively homogeneous the sense

d(Ac) = Mo(c) forall c € RN and real scalars > 0.

A well-known result from convex analysis (s&eg, Rockafellar [26]) there-
fore asserts that the concavity dfs equivalent witho being the lower sup-
port function of its core, which is the first equality claimed

The second equality follows from linear programming dyatiith re-
spect to the core representation (1) of Theorem 4.1.
<&

For the proof of an alternative characterization in Theobegn we need
a technical fact.
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Lemmab.1l Letw = p; ... pg € II be an arbitrary ranking sequence. Then
there exists somee R” such that the Monge algorithm produces the output
(u, m, ) with the properties:

() gp, >0 foralls=1,... k.

(i) Y gr < ¢ foreachj ¢ .
F3;

Proof. Let ¢ € RY be a parameter vector so that the Monge algorithm
produces the outpuju, 7, ). We now modifyc to a weightingé € RV as
follows.

We choose some;, > max{|c,| | p € N} and replace each, by
¢, = ¢p+co > 0. Relative tac’, the Monge algorithm then clearly produces
the output(y, 7, y') with ¢/ > 0.

Each component, with p, € 7 is now replaced by, = ¢, + 2° for
s =1,...,k. Each of the remaining compone@swith j ¢ mis replaced
by a large positive constaif > 0 (e.g, K > 2¢g + 2").

It is straightforward to verify that produces the same ranking sequence
m asc and therefore as Moreover, the latter modification ensures property
(ii) to hold while the former modification guarantees (i).
(o

Theorem 5.2 AssumeV € F andv monotone. Thel = (F,v) is convex
if and only if2™ € corgv) holds for each marginal vector™, i.e., if and
only if

corgv) = W(v).

Proof. Assume firsbV(v) C corgv) and consider an arbitrary € RY
with associated marginal vectof € W(v). Then we have
0(c¢) > min{{c,z) | z € corgv)}
= max{(v,y} | yr > 07 VFGf\N7ZyF < Cj, vj € N}
F3j
> 9(c).
So equality holds throughout and exhibitas convex by Theorem 5.1.

Conversely, consider the marginal vecidr. By Lemma 5.1x™ arises
from the MA-output(u, 7 = p1 ... p, §) relative to some input such that

12



() gp, >0 foralls=1,... k.
(i) ZFBj yr < c; foreachj ¢ 7.
If T"is convex,y is an optimal solution for the linear program
max{(v,y) | yr >0, VF € F\N,> yr <¢j, Vj € N}.
F3j
Let Z be an optimal solution for the dual linear program

min{{c,z) | x > 0,2(N) =v(N),z(F) > v(F), VF € F}.

Being optimal,z and § must satisfy the complementary slackness condi-
tions:
gm, >0 = (M) =v(Ms) (Ms#N)
i‘j>0 - Z:&F:Cj.

F>j

By (ii), the latter conditions implyt; = 0 if j ¢ 7. Becauser(N) = v(N)

is true for the core vectors, we conclude from (i) and the former conditions
that 7 is identical to the marginal vectar™, which means:™ € corg(v) in
particular. Since coi@) is a convex subset @&, we therefore find in view
of Theorem 4.2:

W(c) = con{z" | m € II} C corglv) C W(v).

o

REMARK. For the special case of classical cooperative games, Theo-
rem 5.1 was observed by Schmeidler [29], while Theorem 5.@uis to
Lovasz [23].

6 Communication Structures

We say that the cooperation structlire= (F, v) (with possiblyN ¢ F) is
acommunication structurg F is weakly union-closed.e., satisfies

(WU) FUF' € F forall F, F' € Fwith F N F' # 0.

Note that the set systenfSwith property (WU) coincide with thanion-
stablesystems investigated by Algakaal.[1].
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Example6.1 LetG = (N, F) a graph with node selv and edge sef.
Consider any non-empty node sdtsand I that induce connected sub-
graphs ofG. ThenF U F’ induces a connected subgraphffn F’ # ()
holds. So the Myerson games on graptfs Ex. 2.1) form a special class of
communication structures.

It follows from (WU) that the maximal feasible coalitions afcommu-
nication structure are pairwise disjoint. Hence a commnatioa structure
naturally decomposes into pairwise disjoint communicatibuctures, each
of them exhibiting a unique maximal feasible coalition. N@itit loss of
generality, we therefore assumé < F in our subsequent analysis of com-
munication structures.

A special case of a communication structure is given wfes closed
under arbitrary unions. Examples arise from cooperativeegaunder prece-
dence constraints (Faigle and Kern [14]), games with pesiorisstructure
(Gilles et al.[17]), or antimatroids, which are the complements of di&cre
convex geometries (see.,g, Korte et al.[21]). In view of Fy = 2V, every
classical cooperative game can be understood as a unicedatosnmuni-
cation structure.

REMARK. Algabaet al.[1] have proposed a "Myerson value” for union-
stable structures as the (classical) Shapley value of atiassd classical
cooperative game. This value, however, doescoincide with the Shapley
value (3) that arises naturally from the Monge algorithmtfas class. The
notion of games omegular set systemisitroduced by Lange and Grabisch
(see [22], where a Shapley-like value is proposed) is alssety related to
Myerson games.

Example 6.2 A communication structuréF,v) is anaugmenting system
in the sense of Bilbao [5] if it satisfies for all, G € F with F' C G,

G\F#0) = Fu{i}eF forsomeiecG\F.

The class of union-closed augmenting systems is exacttyats®e of antima-
troids.

6.1 Greedy Communication Structures

We want to characterize convex communication structuréth (N € F).
To this end, we relax the definition and call an arbitrary camioation

14



structureI’ = (F = {F,...,F,},v) greedyif the Monge algorithm
(viewed as a greedy algorithm) is guaranteed to produce timalpsolu-
tion for the linear program

max (v, S.t. <cy, VpEN 4
nax (v,y) FZB:pyF py VP 4)

for any (non-negativey > 0. Hence a convex communication structure
(F,v) is necessarily greedgf Theorem 5.1).

We call the valuationy : F — R strongly monotond it satisfies for
any F' € F and pairwise disjoint feasible sets;,..., Gy € F(F) the
inequality

f
> w(Gy) < v(F).
=1
Note thatf = 1 exhibits every strongly monotoneto be also monotone in
the usual sense.

Example 6.3 Assume thaf is closed under taking arbitrary unions. Then
v : F — Ry is strongly monotone if and onlyqifis monotone and superad-
ditive.

Lemma6.1 If the communication structureF, v) is greedy, them is nec-
essarily strongly monotone.

Proof. Take ' € F and suppose that(F) < Zgzlv(Gg) holds. Take
¢ = 1p andy the output of the Monge algorithm, whose only non-zero
component igjr = 1. Theny’ defined by

vp = 0
Ve, = =Yg, = yr=1
Yo = yg = 0otherwise

is feasible but(v,y’) > (v,y), a contradiction to the fact thatis optimal
for (4). o

For the next definition, it is convenient to augment the farfilto 7y =
{Fy,..., Fy, Fpne1} with 1 = 0 and to sew(() = 0.

Let F, F' € F beintersectingi.e, FNF # (. ThenFUF' € F
follows from the weak union property (WU), while' N F’ ¢ F may be

15



possible. Nevertheless, (WU) implies that the maximal sethe family
Fo(FNF')=F(FnNF')uU{d} are pairwise disjoint. So we arrive at the
well-defined parameter

v(FNF) =) {v(G) | G € Fo(F N F') maximal. (5)

Example 6.4 Assume thaf is closed under arbitrary unions. Then for any
F, F’ € F, there is a unigue maximal feasible set

F/\F/:U{GEfo‘GgFﬁF/}Efo

andv(F N F') =v(F A F') follows for any intersectindg”, F’ € F.

We now say that the communication structusg, v) is supermodular
(or simply,v is supermodular) if for any intersecting feasible $et§” € F
the following inequality holds:

v(FUF)+o(FNF') >vo(F)+v(F), (6)

wherev(F N F') is understood as in (5) " N F’ ¢ F holds.

Lemma6.2 If the communication structurgF, v) is greedy, themw is nec-
essarily supermodular.

Proof. Let ', F’ € F be intersecting. Then the supermodular inequality
is trivial if ' C F’ or F/ C F holds. We thus assume that neither is the case
and consider the nonnegative parameter vecter 1p,p + 1pap. The
greedy solutiory for (4) yields

(v,9) =v(FUF')+v(FNF.
On the other hand, the vectgre R” with the components
1/2 fGe{FUF' FF'}
Yo =1 1/2 if G maximal inF(F NF’)
0 otherwise

is also a feasible solution with the objective value
1
(v,7) = §[U(F UF")+o(F)+o(F') +v(FNF).
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Sog can only be optimal if the supermodular inequality holds.
<o

We now investigate sufficient conditions and first recalt the support
of a vectory € R” is defined as the set

supfy) = {F € F | yr # 0}.

Lemma6.3 Assumingthat? = {Fy,..., F,,},v) is a supermodular com-
munication structure, ley* be the lexicographically maximal optimal solu-
tion for the linear program (4). Thesupfy*) is a nested familyi.e., one
has for anyF;, F; € supfy*) withi < j,

either ;N F; =0 or F; D Fj.

Proof. SupposeF;, F; € supfy*) are intersecting anfly = F; U F}. If
s < i were true, we could modify* to the vectofy with the components

ye+e ifG=F,
_ Y& + ¢ if Glis maximal inF(F; N F})
Yo i —¢ ifG=FyorG=F
Yo, otherwise

and obtain a feasible solution that is lexicographicaliic8y larger thany*.
Moreover,

(0,7) = (v,y") + e(v(F; U Fj) +v(F; N F) — v(F;) — v(F)).

Supermodularity of implies that alsg must be optimal and we arrive at a
contradiction to the choice of*. Sos = i and hencé+; O F; must hold.
<o

Theorem 6.1 The communication structuié= (F = {Fi,..., F,},v)is
greedy if and only if the valuation : 7 — R, is strongly monotone and
supermodular.

Proof. The necessity of the conditions follows from Lemma 6.1 and
Lemma 6.2. We prove sufficiency by induction on the nunmj#grof feasi-
ble coalitions.

Let y be the greedy solution and denote fythe (with respect to the
index order ofF) lexicographically maximal optimal solution.
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CLAM: yp, = yp, -

Now yr, > y7, is a direct consequence of the Monge algorithm. So
it suffices to show that strict dominange, > yr, is impossible. Recall-
ing from Lemma 6.3 that sugp*) is a nested family, lefG1, Gs, ..., G}
be the collection of (inclusion-wise) maximal proper subsgf F; in the
support supfy*). So theG;s are pairwise disjoint.

Lete = min{yr, — Y5, Y5, - ,ygk} > 0 and defingj by

U = Yp te€
Uo, = Yo, — & i=1,...k
Ja = y¢ otherwise

Theny is a feasible solution and satisfies

(0, 7) = (0,y") +e(vV) =Y _v(Gy)) = (v,y7)

i=1

by the strong monotonicity af. Hence als@; is optimal and lexicographi-
cally maximal, which implieg/ = y* and hence = 0, as claimed.

To finish the proof, consider the representagiyec F; chosen by the
Monge algorithm. Because @f. = yr, = ¢;, = min{c, | p € F1}, we
find:

yr =yr holds forallF" € F with p; € F. )

Let 7 = {F € F | p1 ¢ F}. ThenF' is weakly union closed. More-
over, the Monge algorithm produces the value
> ypo(F) < > yio(F)

FeF’ FeF’

on F'. On the other hand,F’| < |F| — 1 holds. So we know by induction
that the Monge algorithm is optimal ai’. Taking (7) into account, we
therefore conclude

> yio(F) <> ypo(F) <Y yio(F)
FeF FeF FeF
and hence optimality of.

REMARK. Theorem 6.1 generalizes Theorem 4 in [13].
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6.2 Convex Communication Structures

Theorem 6.1 allows us to characterize convex communicativttures as
follows.

Theorem 6.2 AssumeN < F. Then the communication structufe =
(F,v) is convex if and only if is strongly monotone and supermodular.

Proof. If T" is convex, ther" is greedy. Hence (by Theorem 6.1) the
conditions are necessary. Conversely, we show that a goeedsnunication
structure is convex itV € F holds. It suffices to argue that the greedy
algorithm is optimal for the linear program

max (v,y) St yp>0VF #N, Zngcp, Vp € N. (8)
F>p

Indeed, let”' > 0 be a large constant and modifyto the vector with
componentg; = c; +C > 0. Then the greedy solutiofis optimal relative
to¢. On the other hand we have

<C7 y> = <an> - CU(N)

for each feasible solutiop for (8). SinceC'v(NN) is constant, we conclude
thaty is also optimal fore.
<

Corollary 6.1 (cf. [6]) Let (F,v) be an augmenting system with a mono-
tone characteristic function : 7y — R. Then(F,v) is convex if and only
if v is supermodular.

Proof. Any monotone functiorv on an augmenting systeff is neces-
sarily strongly monotone.
<

REMARK. Convexity of augmenting systems is defined without refer-
ence to any Monge-type extensions and relative to a diftenemlel for We-
ber sets in [6]. Our Corollary 6.1 shows that the two notiohsamvexity
coincide on this special class.

Classical Cooperative Games. AssumeF, = 2V, ie, (F,v) is a
classical cooperative game. Thé&j is the union- and intersection-stable
Boolean lattice of all subsets @ with the operationd” A F/ = F N F’
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andF'Vv F' = FUF'. In this context, the supermodular inequality (6) is the
defining property for "convex games” in the sense of Sha@28y.[

The equivalence ofi being supermodular and cdre containing all
marginal vectors was first realized in the classical cortigxEdmonds [10]
(see also Faigle [11] and Ichiishi [20]). It is easy to sed th&lassical
non-negative supermodular function is necessarily moreto

REMARK. We do not know of a characterization of general convex co-
operation structure&F, v) in terms of an appropriately generalized notion
of "supermodularity”. (For some sufficient conditions, seg, Faigle and
Peis [16].)
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