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Abstract: EM algorithms for obtaining maximum likelihood estimates
of parameters in finite normal mixture models are well-known, and certain
types of constraints on the parameter space, such as the equality of variance
assumption, are very common. Here, we consider more general constraints
on the parameter space for finite mixtures of normal components. Sur-
prisingly, these simple extensions have not been explored in the literature.
We show how the MLE problem yields to an EM generalization known as
an ECM algorithm. For certain types of variance constraints, yet another
generalization of EM, known as MM algorithms, is required. After a brief
explanation of these algorithmic ideas, we demonstrate how they may be
applied to parameter estimation and hypothesis testing in finite mixtures
of normal components in the presence of linear constraints on both mean
and variance parameters. We provide implementations of these algorithms
in the mixtools package for the R statistical software.

Keywords: generalized EM algorithms, ECM algorithms, MM algorithms,
finite mixture, Likelihood ratio tests.

1 Introduction

Finite mixture models give a flexible way to model a wide variety of ran-
dom observations (see, e.g., McLachlan and Peel, 2000). In such models,
we assume that n independent measurements X1, . . . , Xn are observed such
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that each Xi comes from one of m possible component distributions. Impor-
tantly, the component number, 1 though m, is not observed along with Xi.
Notationally, it is common to define the (unobserved) indicator variables

Zij = I{observation i comes from component j},

where it is assumed that, unconditional on Xi, each Zij has expectation λj .
Throughout this article, we shall assume that each component distribu-

tion has a density with respect to Lebesgue measure that is known up to
the value of a parameter. Thus, the density of each Xi may be written

gθ(x) =
m
∑

j=1

λjf(x; ξj), (1)

where θ = (λ, ξ) = (λ1, . . . , λm, ξ1, . . . , ξm) denotes the parameter, and
the λj are positive and sum to unity. (We disallow the possibility that any
λj = 0 in this context.) For simplicity this article will focus on the univariate
normal case for which f(x; ξj) is the normal N (µj , σ

2
j ) density.

The EM algorithm, as defined in the seminal paper of Dempster et al.
(1977), is more properly understood to be a class of algorithms, a number
of which predate even the Dempster et al. (1977) paper in the literature.
These algorithms are designed for maximum likelihood estimation in missing
data problems, and finite mixture problems are canonical examples of these
problems because the unobserved Zij give an easy interpretation of missing
data. For a comprehensive and recent account of EM algorithms, refer to
McLachlan and Krishnan (2008).

If we consider (X1, Z1), . . . , (Xn, Zn) to be the complete data in a finite
mixture example where only the Xi are actually observed, the corresponding
EM algorithm consists of writing the complete data log-likelihood function

Lc(θ;x,Z) =

n
∑

i=1

m
∑

j=1

Zij log (λjf(xi; ξj)) , (2)

as well as its expectation under the assumption that the parameter governing
the random behavior of Zij at iteration t is θ(t):

Q(θ|θ(t)) = E
θ(t) [Lc(θ;x,Z) | X = x] =

n
∑

i=1

m
∑

j=1

p
(t)
ij log (λjf(xi; ξj)) , (3)

where

p
(t)
ij = P

θ(t) (Zij = 1 | Xi = xi) =
λ

(t)
j f(xi; ξ

(t)
j )

∑m
r=1 λ

(t)
r f(xi; ξ

(t)
r )

(4)
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is often called the posterior probability of individual i coming from compo-
nent j, given the current θ(t) and the observed xi.

The iteration θ(t) → θ(t+1) is defined in this general setup by

1. E-step: compute Q(θ|θ(t)) or, equivalently, compute p
(t)
ij by (4).

2. M-step: set θ(t+1) = argmaxθ Q(θ|θ(t)).

Conveniently, the M-step for finite mixture models always looks partly the
same: No matter what form f takes, the updates to the mixing proportions
are given by

λ
(t+1)
j =

1

n

n
∑

i=1

p
(t)
ij (5)

for j = 1, . . . ,m. The updates to the ξ parameters depend on the particular
form of the component densities and will be discussed later.

The remainder of this article is organized as follows: Section 2 discusses
the main idea of the paper, which is estimation in the presence of vari-
ous constraints on the space of parameters in the finite mixture of normal
distributions. Section 3 shows how an EM algorithm may be modified to
handle a general class of constraints. In Section 4 we address the inferential
question of the statistical test for a null hypothesis H0 : “constraints hold”
by a standard Likelihood Ratio Test (LRT) approach. Section 5 presents a
simulation study in the spirit of a model from psychometrics and Section 6
summarizes the article.

2 Constraints on the parameter space

The case of normal component densities will be the sole topic of the re-
mainder of this article, but extensions to any parametric family with mean
and/or variance parameters should allow for similar ideas. In the present
normal case, the density f(x; ξj) of Equation (1) is simply the normal den-
sity with parameters ξj = (µj , σ

2
j )

⊤. As it happens, if we do not restrict the
ξ parameters in any way, the likelihood resulting from a sample x1, . . . , xn is
unbounded. This well-known problem (McLachlan and Peel, 2000) implies
that no maximum likelihood estimator exists in the unconstrained problem.
Various remedies are suggested in the literature, but perhaps the easiest,
when it may be justified, is to impose the restriction that all σj are equal. It
is straightforward to derive the EM algorithm for this equal-variances case.
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Constrained EM in the literature To the best of our knowledge, mul-
tiple proportional constraints have not been handled specifically for para-
metric mixture models as we do here. In their recent book, McLachlan and
Krishnan (2008, Section 3.5.4) give a brief account of what has been done so
far. Constraints in mixture models have mostly been introduced to handle
the difficulty of unboundedness of the likelihood function. Constraints such
as σi = cijσj in normal mixture models have been considered in Quandt
and Ramsey (1978), but their approach was not connected to the EM al-
gorithm. Hathaway (1985) and Hathaway (1986) reformulate the normal
mixture problem into a constrained maximum-likelihood formulation (and
EM algorithm) with similar constraints on the variances, in a way to exclude
the points of degeneracy of the likelihood function. Nettleton (1999) studies
convergence of the EM algorithm in parameter space with various inequality
constraints, in a general framework. Kim and Taylor (1995) propose an EM
algorithm under linear restrictions on the parameters, for general missing
data models, using Newton-Raphson iterations within each M-step. In the
same vein, Shi et al. (2005) consider linear constraints in a linear regres-
sion model with missing data. Equality and fixed-value constraints in the
spirit of ours has been considered in Mooijaart and van der Heijden (1992),
but for the case of categorical variables with latent class, using a Lagrange
multiplier in the M-step.

In the multivariate normal case, there is a large literature on finite mix-
ture models in which the covariance matrices satisfy various types of con-
straints. Following Banfield and Raftery (1993), several related papers such
as Bensmail and Celeux (1996) and Fraley and Raftery (2002) use an eigen-
value decomposition of the component covariance matrices in which various
pieces of the decomposition (e.g., the eigenvalues or eigenvector matrices)
may be constrained in some way. In contrast, McNicholas et al. (2010) use a
factor analysis decomposition, through which constraints may be imposed.
In the univariate case that we consider, these decompositions do not apply
since our covariances are not matrices but scalars.

2.1 Two definitions of constraints

Linear constraints for the mean vector µ = (µ1, . . . , µm)⊤ can be written

µ = Mβ + C (6)

for some unknown p-vector β = (β1, . . . , βp)
⊤ with p ≤ m, and known m×p

matrix M and fixed m-vector of constants C. These sorts of constraints
may appear to be straightforward to implement in a normal-mixture EM
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algorithm. However, it turns out that these constraints are sometimes han-
dled incorrectly. The most illustrative example of this phenomenon occurs
in the model in which it is assumed that the means µ1 = · · · = µm are
equal, yet the variances are not all the same. In this case, the M-step does
not consist of estimating µ1 by the sample mean x̄ =

∑n
i=1 xi/n at each

iteration, despite the fact that µ1 = Egθ
(X). We explain in Section 3.1 why

this is incorrect. Similar linear constraints for the variance parameters are
discussed in Section 3.3.

Note that equation (6) is equivalent to a standard linear constraints of
the form Aµ = b, where A and b are known matrix and vector of adequate
dimensions, but the expression of equation (6) with β as the parameter of
interest is preferable for deriving the appropriate ECM algorithm.

Multiple proportionality constraints Certain linear constraints, such
as those of equation (6), lead to intractable EM algorithms, depending on
the parameters to estimate. This is also the case for linear constraints on
the variance parameters, as we discuss in Section 3.1. For simpler situa-
tions we can define a less general setup, which we call “multiple propor-
tionality” constraints, that result in straightforward closed-form M-steps
within true EM algorithms (or ECM algorithms, in some cases). Basically,
we shall designate, among m scalar component parameters (e.g., means),
subsets of parameters that are related by known multiplicative constants
(as in Quandt and Ramsey (1978), see Section 2). To set multiple pro-
portionality constraints among, say, the mean parameters µ, we define a
subset Jµ ⊆ {1, . . . ,m}, known constants aµ = (aµ

j , j ∈ Jµ), and one par-
ticular element j0 of Jµ, such that aµ

j0
= 1, and µj = aµ

j µj0 for j ∈ Jµ.
Hence, j0 plays the arbitrary role of labelling which one of the means in
{µj , j ∈ Jµ} will formally be in the model parameter that is then restricted
to θ =

(

λ, µj0 , (µj , j /∈ Jµ),σ2
)

. For instance, a 3-component normal mix-
ture with simple mean constraints µ3 = −µ2 on the second and third compo-
nents is defined by Jµ = {2, 3} and aµ = (1,−1). Several disjoint sets J may
be similarly defined if there exist distinct sets of proportionally constrained
parameters.

3 Gaussian generalized EM algorithms for con-

strained parameters

We begin by recalling the well-known M-step for the mean and variance
parameters in the normal case (see, e.g., McLachlan and Krishnan, 2008):
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For simplicity of notation, we will also denote the variances vj instead of σ2
j ,

so that the jth component parameter is ξj = (µj , vj).

M-step for ξ = (µ,v) in the normal case

µ
(t+1)
j =

∑n
i=1 p

(t)
ij xi

∑n
i=1 p

(t)
ij

, for j = 1, . . . ,m, (7)

vj
(t+1) =

∑n
i=1 p

(t)
ij (xi − µ

(t+1)
j )2

∑n
i=1 p

(t)
ij

, for j = 1, . . . ,m. (8)

Unfortunately, in the presence of constraints such as those in Section 2,
the M-step can be rather complicated and typically it has no closed form.
However, it is often easier to compute the M-step conditionally on some
of the parameters. We thus propose to use an extension of the EM algo-
rithm, known as the ECM, or Expectation-Conditional Maximization, algo-
rithm, a class of algorithms introduced by Meng and Rubin (1993) (see also
McLachlan and Krishnan, 2008, Chapter 5). An ECM algorithm replaces a
complicated M-step with several computationally simpler CM-steps. Some-
times, even an ECM algorithm does not lead to tractability. We show in
Section 3.3 how this problem may be overcome using yet another general-
ization of EM algorithms, the class of so-called Minorization-Maximization,
or MM algorithms (Hunter and Lange, 2004).

The standard normal EM as well as the constrained EM, ECM, and MM
algorithms that are defined in this paper are implemented in the mixtools

package (Young et al. (2011) and Benaglia et al. (2009)) for the R statistical
software (R Core Team, 2012). We choose here to handle only the normal
case, but extensions to any parametric family with mean and/or variance
parameters are often straightforward.

3.1 Multiple proportional constraints

The estimates of the parameters are straightforward in this case, for both
means and variances. For constraints on the means, set as in section 2.1 a
subset Jµ ⊆ {1, . . . ,m}, constants aµ = (aµ

j , j ∈ Jµ), and a fixed j0 ∈ Jµ

such that aµ
j0

= 1 and µj = aµ
j µj0 for j ∈ Jµ. The model parameter is

restricted to θ = (λ, µj0 , (µj , j /∈ Jµ),v). Maximization with respect to all
the parameters except µj0 is unchanged, and maximizing Q(θ|θ(t)) with
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respect to µj0 gives

µ
(t+1)
j0

=





n
∑

i=1

∑

j∈Jµ

p
(t)
ij

v
(t)
j

aµ
j xi









n
∑

i=1

∑

j∈Jµ

p
(t)
ij

v
(t)
j

(aµ
j )2





−1

. (9)

This update is conditional on v = v(t), so an ECM algorithm is required
here as well.

Note that in the particular case of the scale model, i.e. when all µj ’s are
equal, all aµ

j = 1 and the parameter is restricted to θ = (λ, µ,v). Then
equation (9) reduces to

µ(t+1) =





n
∑

i=1

m
∑

j=1

p
(t)
ij

v
(t)
j

xi









n
∑

i=1

m
∑

j=1

p
(t)
ij

v
(t)
j





−1

, (10)

which is different than the a priori intuitive sample mean, since it takes into
account the variances of the observations coming from each component.

Constraints on the variances Define similarly a subset Jv ⊆ {1, . . . ,m},
known constants av = (av

j , j ∈ Jv), and one fixed j0 ∈ Jv such that
av

j0
= 1 and vj = av

jvj0 , j ∈ Jv. The parameter is now restricted to
θ = (λ, µ, vj0 , (vj , j /∈ Jv)). As before, maximization with respect to all the
parameters except vj0 is unchanged, and maximizing Q(θ|θ(t)) with respect
to vj0 gives

v
(t+1)
j0

=







n
∑

i=1

∑

j∈Jv

p
(t+1/2)
ij

(

xi − µ
(t+1)
j

)2

av
j











n
∑

i=1

∑

j∈Jv

p
(t+1/2)
ij





−1

. (11)

If we do not also have constraints on the µ parameters, then there is no
need for an ECM algorithm, since the maximization steps (5) for λ and (7)
for µ do not depend on v. In this case, the intermediate E-step (15) is

unnecessary and so p
(t+1/2)
ij should be replaced by p

(t)
ij in equation (11).

3.2 Linear constraints on the means and ECM algorithms

The expected complete-data loglikelihood is

Q(θ|θ(t)) =

n
∑

i=1

m
∑

j=1

p
(t)
ij

[

log λj −
1

2
log vj −

1

2

(xi − µj)

vj

]

. (12)
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We assume that the vector of component means satisfies µ = Mβ + C

as in (6). In the ECM framework, maximization is done conditionally on

the v parameters; i.e., we take vj = v
(t)
j in (12). We focus only on the

portion of the CM-step in which we fix the v parameters and update the
β parameters. Differentiating (12) with respect to βℓ for 1 ≤ ℓ ≤ p, then
setting these derivatives equal to zero, gives, in matrix form,

M⊤d(t) = M⊤B(t)µ,

where d(t) is an m-vector defined by

d
(t)
j =

1

v
(t)
j

n
∑

i=1

p
(t)
ij xi

and B(t) is an m × m diagonal matrix with jth diagonal term

B
(t)
jj =

1

v
(t)
j

n
∑

i=1

p
(t)
ij .

Thus,
M⊤d(t) = M⊤B(t)(Mβ + C), (13)

and the update for β is given in closed form by

β(t+1) =
(

M⊤B(t)M
)−1

M⊤

(

d(t) − B(t)C
)

The update for µ at iteration t + 1 is thus

µ(t+1) = Mβ(t+1) + C, (14)

which is used in the CM-step (8) for updating v.
A typical iteration of an ECM algorithm consists of multiple sub-iterations:

The CM-steps maximize first with respect to one subset of the parameters,
then another, and so on until the full parameter vector has been updated.
In between each pair of CM-steps is another E-step. Equation (14), for ex-
ample, only describes a single CM-step, which updates the µ parameters.
We may also use equation 5 to update the λ parameters in the same CM-
step, since the λ update does not affect the µ parameters. However, after
updating λ and µ using equations (5) and (14), it is necessary to interject
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a second E-step before updating σ. This extra E-step consists of defining
Q(λ, µ,v | λ(t+1),µ(t+1),v(t)), as in equation (3), and

p
(t+1/2)
ij =

λ
(t+1)
j f

(

xi;µ
(t+1)
j , v

(t)
j

)

∑m
r=1 λ

(t+1)
r f

(

xi; µ
(t+1)
r , v

(t)
r

) (15)

before updating the v parameters in the next CM-step. If there are no
constraints on the v parameters, one may simply use equation (8) with

p
(t+1/2)
ij in place of p

(t)
ij . We discuss the case where constraints are placed on

v in Sections 3.1 and 3.3.

3.3 Linear constraints on the variances and MM algorithms

If linear constraints such as those in Section 3.2 are desired for the variance
parameters, the approach used in that section will not work for constructing
a CM-step because there is no closed-form maximizer of the Q function
with respect to the constrained v parameters. Of course, one could use a
numerical maximization technique in this case, but here we demonstrate an
alternative that admits a closed form.

We first reparameterize by letting πj = 1/vj for 1 ≤ j ≤ m. Then,
assume that the constraints are given by π = Aγ, where A is a known m×q
matrix with nonnegative entries and γ is the q-vector of the (unknown)
parameters of interest, with q ≤ m. The parameter γ will be guaranteed to
have positive coordinates by the algorithm we derive as equation (17).

Assuming that λ and µ have already been updated in the first half of
an ECM iteration, we wish to calculate the expected loglikelihood for the
complete data, Q(θ|θ(t+1/2)). The part of this function that depends on the
π parameters is

1

2

n
∑

i=1

m
∑

j=1

p
(t+1/2)
ij log πj −

1

2

n
∑

i=1

m
∑

j=1

p
(t+1/2)
ij πj

(

xi − µ
(t+1)
j

)2
, (16)

which does not admit a closed-form maximizer. Therefore, we shall rely
instead on a so-called MM, or minorization-maximization, algorithm. These
algorithms have a long history in the statistical literature, a history that far
predates the use of the initials MM; details may be found in Hunter and
Lange (2004).

Since π = Aγ, we may express the jth component of π as

πj = Ajγ =

q
∑

k=1

Ajkγk,
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where Aj is the jth row of A. The essential MM idea is this: Since the
logarithm function is a concave function, we may use inequality (10) in
Hunter and Lange (2004) to prove that

log πj ≥

q
∑

k=1

Ajkγ
(t)
k

π
(t)
j

log

(

π
(t)
j γk

γ
(t)
k

)

,

with equality when γ = γ(t). We conclude that the function defined by

1

2

n
∑

i=1

m
∑

j=1

q
∑

k=1

p
(t+1/2)
ij

Ajkγ
(t)
k

π
(t)
j

log

(

π
(t)
j γk

γ
(t)
k

)

−
1

2

n
∑

i=1

m
∑

j=1

q
∑

k=1

p
(t+1/2)
ij Ajkγk(xi − µ

(t+1)
j )2

has the property that it is bounded above by (16), with equality when θ =
θ(t+1/2). Thus, maximizing this function will result in an increase in the
value of Q(θ|θ(t+1/2)), which in turn means that this MM algorithm is an
example of GEM in the sense of Dempster et al. (1977) and it increases the
observed data likelihood.

Setting the partial derivatives with respect to γℓ equal to zero for 1 ≤
ℓ ≤ q, we obtain

γ
(t+1)
ℓ = γ

(t)
ℓ















n
∑

i=1

m
∑

j=1

(

p
(t+1/2)
ij Ajℓ

π
(t)
j

)

n
∑

i=1

m
∑

j=1

p
(t+1/2)
ij Ajℓ

(

xi − µ
(t+1)
j

)2















. (17)

Since A has nonnegative entries, the requirement that γ(t+1) ≥ 0 is auto-
matically enforced by this algorithm.

4 Hypothesis testing for constraints

Testing and model selection methods generally require estimation algorithms
for their implementation, and the algorithms we present here can serve this
purpose. The general model parameter space in the present case of univari-
ate Gaussian mixture is

Θ = {(λ,µ,v) ∈ [0, 1]m−1 × R
m × (R+

∗ )m},
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with dimension d = dim(Θ) = 3m − 1, whereas the parameter space under,
say, linear constraints for both means and variances is

Θ0 = {(λ, Mβ + C, Aγ),λ ∈ [0, 1]m−1,β ∈ R
p,γ ∈ (R+

∗ )q}

with dimension d0 = dim(Θ0) = m + p + q − 1, p < m, q < m (since the
cases p = q = m are merely reparametrization).

Since the constrained model is a special case of (is nested in) the uncon-
strained one, a null hypothesis such as “the constraints hold”, that is H0 :
“θ ∈ Θ0” can be tested by a standard Likelihood Ratio Test (LRT), with
statistic

Λn = 2 log
supθ∈Θ L(θ;x)

supθ0∈Θ0
L(θ0;x)

, (18)

where L(θ;x) is the observed likelihood of the model, Θ0 is the parameter
space of the null model satisfying the constraint, and Θ is the full model
parameter space. Denote θ̂ and θ̂0 the unconstrained and constrained (under
H0) maximum likelihood estimators of θ, respectively. The plain EM and
the ECM or EC-MM algorithms presented in this paper can be used at this
point to estimate θ̂ and θ̂0, respectively. Then Λn = 2(ℓ(θ̂;x) − ℓ(θ̂0;x)) is
asymptotically χ2(d − d0)-distributed, where ℓ() is the log-likelihood of the
model (see, e.g., van der Vaart, 1998).

5 Examples and simulation studies

Here we compare plain (i.e., without constraints) EM algorithms against
our constrained ECM and “EC-MM” algorithms. All examples are run
using version 1.0 of the mixtools package (Benaglia et al., 2009) for the R

statistical software (R Core Team, 2012), which is publicly available on the
Comprehensive R Archive Network (CRAN) at cran.r-project.org.

We have ignored the “label-switching” issue up to now. This issue arises
because the particular ordering of the subscripts j = 1, . . . ,m in equation (1)
is arbitrary: A rearrangement of these subscripts gives exactly the same den-
sity function even though technically the elements of the parameter vector
θ have been permuted. Thus, this “label-switching” possibility destroys the
usual parameter identifiability assumption that underlies statistical infer-
ence, whereby the distribution of the data uniquely determines the param-
eter values. In practice, since we are only concerned with finding a single
maximum likelihood estimator of θ here, this lack of identifiability causes
no problems as long as we keep in mind that the best we can do is to es-
timate the parameters up to a permutation of the labels. However, in a
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simulation study based on Monte-Carlo replications, this issue can lead to
flawed average estimates because there is no guarantee that only estimates
from the “same” component are averaged together. For a fuller account of
the label-switching issue, see McLachlan and Peel (2000).

As is typically the case for EM-related algorithms, the choice of initial
starting parameter values is important. In these tests, we started the algo-
rithms from the true parameter values to prevent label-switching as much
as possible. Of course, the true values are not known in practice; however,
one would typically use multiple different random starting values, then take
as a final estimator the solution yielding the highest likelihood. This result
typically is the same as what one observes in a simulation study starting at
the true parameter values.

We declare convergence using a simplistic lack-of-progress criterion that
considers only the change in log-likelihood value from one iteration to the
next, stopping the algorithm when the difference is smaller than 10−8. As
McNicholas et al. (2010) point out, a criterion based on Aitken acceleration
may also be used here; indeed, these authors argue that the more sophisti-
cated Aitken criterion is superior. However, we do not consider this question
in the current article.

5.1 Examples of EM with constrained parameters

We consider as an example requiring some parameter constraints, a model
from Thomas et al. (2011) used for assessing reliability of repeated mea-
surements in psychometrics. Briefly, these authors end up with two possible
m = 3 components Gaussian mixtures with constained parameters.

Parallel test models This first model is expressed by

λ1N (0, v1) + λ2N (µ2, v1 + σ2) + λ3N (−µ2, v1 + σ2), (19)

i.e. a 3-component normal mixture with constraints

µ1 = 0, µ3 = −µ2, v3 = v2 > v1. (20)

The rather simple constraint for the means can be handled by our multiple
proportionality scheme, so that we will use the corresponding algorithm and
code in this case. With the reparametrization πj = 1/vj from Section 3.3,
the constraints on the variances are expressed by

π = Aγ, with A =





1 1
1 0
1 0



 , γ =

(

γ1

γ2

)

(21)
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and the inequality constraint in (20) is satisfied as well since the γj ’s are
positive, π2 = π3 = γ1 < π1 = γ1 + γ2.
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Figure 1: True and estimated mixture densities for plain Gaussian EM and
constrained EC-MM algorithms on a sample of size n = 100 for the parallel
test synthetic model (left) and the tau equivalent model (right).

We define such a synthetic parallel test model with: λ = (0.5, 0.3, 0.2)⊤,
µ = (0, 4,−4)⊤, and σ = (1, 3, 3)⊤. The true parameters have been chosen
to assure a unimodal, overlapping mixture density, as depicted in Fig. 1
(left). In this situation, the constraints on the parameter space play a
more prominent role in the EM estimation than if the components were
well-separated. Fig. 1 (left) also shows some EM and constrained EC-MM
estimates on a small sample (n = 100), illustrating the good behavior of
the constrained version. Mean squared errors are provided in Table 1 to
compare the behavior of the plain (unconstrained) EM and the constrained
version of the Gaussian EC-MM algorithm on the basis of 300 replications.
It is clear for both small (n = 100) and large (n = 1000) sample sizes that
constraining the parameter space helps both in terms of bias and MSE.

We also investigate the frequency of label-switching in our algorithm. For
n = 100 and the unconstrained EM version, we actually observed 15% of the
300 replications for which λ̂1 < λ̂2, which suggests that label-switching has
occurred despite our choice of starting values. However, further investigation
reveals that the mean and variance parameter estimates did not appear to be
switched in these cases; thus, they evidently merely represent poor estimates
of λ1 and λ2. For the 18% of replications of the constrained versions for
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which we got λ̂1 < λ̂2, this was even more obvious due to the constraints
on the means and variances that give less flexibility in the parameters. For
n = 1000 we observed similar behavior among the 4% of the plain EM
replications for which λ̂1 < λ̂2, and no such inversion for the constrained
version.

component j = 1 j = 2 j = 3
algorithm U C U C U C

λ 0.0196 0.0182 0.0266 0.0142 0.0244 0.0069
n = 100 µ 0.0499 3.9226 1.89 6.2823 1.89

σ 0.0828 0.068 1.1505 0.641 1.6178 0.641

λ 0.0022 0.0020 0.0052 0.00095 0.0045 0.0005
n = 1000 µ 0.0048 0.7055 0.180 1.2222 0.180

σ 0.00521 0.0051 0.16407 0.06179 0.27833 0.0618

Table 1: Estimated Mean Squared Errors from 300 replications of
Unconstrained Gaussian EM (U) and Constrained EC-MM (C) algorithms
started from the true parameters, for the parallel test synthetic model, and
two sample sizes n.

Tau equivalent model Thomas et al. (2011) also consider a more general
model, that is a 3-component normal mixture satisfying the same constraints
on the variances as before and, for the mean, a linear constraint that can be
expressed as in (6) with C = 0, µ1 = β1, µ2 = β1 + β2, and µ3 = β1 − β2.
We simulate a synthetic model with true parameters λ = (0.6, 0.3, 0.1) and
β = (1, 5) so that µ = (1, 6,−4), and σ = (1, 3, 3). The three components of
this example are more separated than those of the previous model, but the
weight of the “unstable negative individuals” is assumed to be smaller (10%
of the population), and hence this component is more difficult to estimate
precisely from a small sample.

The true density, together with sample estimators, is depicted in the
right panel of Fig. 1. Results in terms of the MSE’s are in Table 2. As for
the parallel test model, we did observe some inversions of the λ estimates
(i.e., where λ̂1 < λ̂2) though there was no label switching here. These
inversions only occurred for the n = 100 case.

5.2 Examples of hypothesis testing

We applied the Likelihood Ratio test detailed in Section 4 for H0 :“the
constraints hold” to each of the above examples, for which the full model
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component j = 1 j = 2 j = 3
algorithm U C U C U C

λ 0.0125 0.00941 0.0127 0.0093 0.0116 0.002
n = 100 µ 0.0702 0.0308 2.5847 1.6136 7.0203 1.5063

σ 0.0959 0.0411 0.8583 0.5297 2.2135 0.5297

λ 0.0009 0.0008 0.00129 0.0006 0.0007 0.0001
n = 1000 µ 0.0025 0.0022 0.2311 0.1216 1.0290 0.1100

σ 0.0026 0.0024 0.0858 0.0442 0.2957 0.0442

Table 2: Estimated Mean Squared Errors from 300 replications of
Unconstrained Gaussian EM (U) and Constrained EC-MM (C) algorithms
started from the true parameters, for the tau equivalent synthetic model,
and two sample sizes n.

has 3m − 1 = 8 parameters. For the Parallel test model, Θ0 is given
by (19) and (20), and the LRT statistics is theoretically asymptotically
χ2(3)-distributed, since the constrained model reduces the parameters to
2 proportions, p = 1 mean (µ2) and q = 2 (inverse) variances. For the
tau equivalent model, the LRT statistics is asymptotically χ2(2)-distributed
since p = q = 2.

The parameters of the simulated models under H0 has been set as in the
preceding section, and for each of the two models, two alternative hypothesis
Hj

1 , j = 1, 2 have been simulated, with same λ and means and variances
given in Table 5.2 below for all the situations. Empirical levels and powers
for a nominal 5% level test, both based on 500 replications, asymptotic
distributions and increasing sample sizes are displayed in Fig. 2.

µ v

H0 0 4 -4 1 9 9
parallel H1

1 0.5 5 -4 1 8 9
H2

1 0.2 5 -4 1 8 9

H0 1 6 -4 1 9 9
tau eq. H1

1 3 7 -4 2 8 9
H2

1 0 6 -5 1 8 9

Table 3: Parameters for the simulated models under H0 and two choices for
the alternative hypothesis, for each of the two models.
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Figure 2: LRT empirical levels (solid) and powers (dashed) for a nominal 5%
level for the parallel test model (left) and tau equivalent (right). Alternative
hypothesis Hj

1 , j = 1, 2 are as given by Table 5.2. Results are based on 500
replications and asymptotic distribution χ2(3) (left) and χ2(2) (right).

6 Discussion

The algorithms we propose in this article extend the well-known EM algo-
rithm for finite mixture models to the case with various linear constraints
on the space of parameters. We show that in the presence of such con-
straints, the M-step typically has no closed form, but ECM and sometimes
“EC-MM” (i.e., conditional MM-steps) extensions of the EM algorithm with
closed-form implementations can be defined. Note that all the extensions
we develop here share with genuine EM algorithms the same essential ascent
property of the observed likelihood function.

Our simulations show that constraints on the parameter space can im-
prove the estimation in terms of mean squared error relative to estimates
calculated without assuming constraints. Hypothesing testing for null hy-
pothesis such as “constraints hold” can also been tested by a standard Like-
lihood Ratio Test (LRT) and we have shown the behavior of such test in
some examples.

We also choose in this article to handle only the mixture-of-Gaussian-
components case, but extensions to any parametric family with mean and/or
variance parameters, or more generally to components with likelihood lead-
ing to closed-form maximization, should allow for similar ideas.

16



Finally, we reiterate that the algorithms presented in this article are
implemented in the R package called mixtools (Benaglia et al., 2009) for the
R statistical software (R Core Team, 2012), which is publicly available on
the Comprehensive R Archive Network (CRAN) at cran.r-project.org.
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