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Abstract: EM algorithms for obtaining maximum likelihood estimates
of parameters in finite mixture models are well-known, and normal mix-
tures are the most commonly used in this category. In fact, certain types
of constraints on the parameter space, such as the equality of variance as-
sumption, lead to well-known EM algorithms. After briefly summarizing
these well-known results, we then consider the problem of more general con-
straints on the parameter space for finite mixtures of normal components.
Surprisingly, this simple extension has not been explored in the literature.
Here, we show how the MLE problem succumbs to an EM generalization
known as an ECM algorithm. With certain types of variance constraints,
yet another generalization of EM, known as MM algorithms, is required. Af-
ter a brief explanation of these algorithmic ideas, we demonstrate how they
may be applied to the problem of parameter estimation in finite mixtures of
normal components in the presence of equality or linear constraints on the
parameters. We provide software that implements these algorithms.

Keywords: generalized EM algorithms, ECM algorithms, MM algorithms,
finite mixture.

1 Introduction

Finite mixture models give a flexible way to model a wide variety of ran-
dom observations (see, e.g., McLachlan and Peel, 2000). In such models,
we assume that n independent measurements X1, . . . , Xn are observed such
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that each Xi comes from one of m possible component distributions. Impor-
tantly, the component number, 1 though m, is not observed along with Xi.
Notationally, it is common to define the (unobserved) indicator variables

Zij = I{observation i comes from component j},

where it is assumed that, unconditional on Xi, each Zij has expectation λj .
Throughout this article, we shall assume that each component distribu-

tion has a density with respect to Lebesgue measure that is known up to
the value of a parameter. Thus, the density of each Xi may be written

gθ(x) =

m
∑

j=1

λjf(x; ξj), (1)

where θ = (λ, ξ) = (λ1, . . . , λm, ξ1, . . . , ξm) denotes the parameter, and the
λj are positive and sum to unity. (We disallow the possibility that any
λj = 0 in this context.) For simplicity and since this is the case for the
motivating example, this article will focus on the univariate normal case for
which f(x; ξj) is the normal N (µj , σ

2
j ) density.

The EM algorithm, as defined in the seminal paper of Dempster et al.
(1977), is more properly understood to be a class of algorithms, a number
of which predate even the Dempster et al. (1977) paper in the literature.
These algorithms are designed for maximum likelihood estimation in missing
data problems, and finite mixture problems are canonical examples of these
problems because the unobserved Zij give an easy interpretation of missing
data. For a comprehensive and recent account of EM algorithms, refer to
McLachlan and Krishnan (2008); here we only describe the finite-mixture
case.

If we consider (X1, Z1), . . . , (Xn, Zn) to be the complete data in a finite
mixture example where only the Xi are actually observed, the corresponding
EM algorithm consists of writing the complete data log-likelihood function

Lc(θ;x,Z) =

n
∑

i=1

m
∑

j=1

Zij log (λjf(xi; ξj)) , (2)

as well as its expectation under the assumption that the parameter governing
the random behavior of Zij at iteration t is θ(t):

Q(θ|θ(t)) = E
θ(t) [Lc(θ;x,Z) | X = x] =

n
∑

i=1

m
∑

j=1

p
(t)
ij log (λjf(xi; ξj)) , (3)
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where

p
(t)
ij = P

θ(t) (Zij = 1 | Xi = xi) =
λ

(t)
j f(xi; ξ

(t)
j )

∑m
r=1 λ

(t)
r f(xi; ξ

(t)
r )

(4)

is often called the posterior probability of individual i coming from compo-
nent j, given the current θ(t) and the observed xi.

The iteration θ(t) → θ(t+1) is defined in this general setup by

1. E-step: compute Q(θ|θ(t)) or, equivalently, compute p
(t)
ij by (4).

2. M-step: set θ(t+1) = argmaxθ Q(θ|θ(t)).

Conveniently, the M-step for finite mixture models always looks partly the
same: No matter what form f takes, the updates to the mixing proportions
are given by

λ
(t+1)
j =

1

n

n
∑

i=1

p
(t)
ij (5)

for j = 1, . . . ,m. The updates to the ξ parameters depend on the particular
form of the component densities and will be discussed later.

The remainder of this article is organized as follows: Section 2 discusses
the main idea of the paper, which is estimation in the presence of constraints
on the space of parameters in the finite mixture of normal distributions.
In so doing, this section describes a very commonly used constraint and a
more unusual constraint that is motivated by a question from psychometrics.
Section 3 shows how an EM algorithm may be modified to handle a general
class of constraints. Section 4 revisits the motivating example of Section 2
by presenting a simulation study in the spirit of the psychology dataset, and
Section 5 summarizes the article.

2 Constraints on the parameter space

In the case of normal component densities, which will be the sole topic of
the remainder of this article, the density f(x; ξj) of Equation (1) is simply
the normal density with parameters ξj = (µj , σ

2
j )

⊤. As it happens, if we
do not restrict the ξ parameters in any way, the likelihood resulting from
a sample x1, . . . , xn is unbounded. This well-known problem (McLachlan
and Peel, 2000) implies that no maximum likelihood estimator exists in the
unconstrained problem. Various remedies are suggested in the literature, but
perhaps the easiest, when it may be justified, is to impose the restriction
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that all σj are equal. It is straightforward to derive the EM algorithm for
this equal-variances case; we leave this exercise to the interested reader.

We now consider an example that leads to different parameter con-
straints. Thomas et al. (2011) describe an extension to the theory of re-
liability of repeated measurements in psychometrics. Here, “reliability” has
nothing to do with statistical survival data analysis; it refers to the study of
aggreement between similar psychometric tests given on two or more occa-
sions to the same sample of individuals. In a typical application, two score
results are recorded on each of a sample of n individuals from a population
of study, where the observed value Yk,i for individual i on test k is assumed
to be the sum of an unobservable true score (T ) and some independent
measurement error (E):

Yk,i = Tk,i + Ek,i, k = 1, 2, i = 1, . . . , n.

A typical assumption is that the true scores for an individual are perfectly
correlated. More precisely, the tau equivalent model stipulates that there
exists a constant α such that T2i = T1i + α for all i, whereas the parallel
test model is the special case of the tau equivalent model in which α = 0.
The reliability coefficient is simply the correlation ρ(Y1, Y2) = σ2

T /(σ2
T +σ2

E),
where σ2

T and σ2
E are the variances of the true scores and errors.

Thomas et al. (2011) propose a 3-component mixture model in which one
component consists of stable individuals who follow the traditional parallel
test model (or the tau equivalent model, if α 6= 0 is desired). By contrast,
the other two components consist of unstable individuals. In terms of the
observed differences

Di = Y1,i − Y2,i = (T1,i − T2,i) + (E1,i − E2,i), (6)

we postulate the mixture model

Di ∼ λ1N (0, 2σ2
E) + λ2N (µδ, σ

2) + λ3N (−µδ, σ
2). (7)

Here, we define ∆i = T1,i − T2,i so that the individual distributions of the
Tk are not of interest; only the differences ∆ and errors E are considered.
It is always assumed there that E ∼ N (0, σ2

E) and that ∆ is normal, with
nonzero mean, for the unstable individuals. Because instability is assumed
to result in both positive and negative effects, at least m = 3 components
are needed to describe the population. The authors also assume that the two
subgroups of the unstable population have means of equal magnitude but
opposite signs and that their normal distributions have the same variance,
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given by σ2 = 2σ2
E + σ2

∆. All of these facts except the necessary inequality
σ2 ≥ σ2

E are summarized by equation (7), and the parallel test model from
Thomas et al. (2011) amounts to a 3-component normal mixture with the
following constraints:

µ1 = 0, µ3 = −µ2, σ3 = σ2 > σ1. (8)

Thomas et al. (2011) also handle the tau equivalent model, where T2 −
T1 = α 6= 0. The mixture model then satisfies the following constraints on
the mean vector µ = (µ1, µ2, µ3):

µj =







α if j = 1
α + δ if j = 2
α − δ if j = 3.

(9)

In what follows, we will deal with both sets of constraints. Each of these two
models includes an inequality constraint on the variances, namely σ2 = σ3 >
σ1. We demonstrate in Section 3.4 that this constraint may be reformulated
using equality constraints so that it may be handled using the techniques of
this article.

Constrained EM in the literature To the best of our knowledge, mul-
tiple proportional constraints have not been handled specifically for para-
metric mixture models as we do here. In their recent book, McLachlan and
Krishnan (2008, Section 3.5.4) give a brief account of what has been done
so far. It seems that constraints in mixture models have mostly been intro-
duced to handle the difficulty of unboundedness of the likelihood function.
Constraints such as σi = cijσj in normal mixture models have been consid-
ered in Quandt and Ramsey (1978), but their approach was not connected to
the EM algorithm. Hathaway (1985) and Hathaway (1986) reformulate the
normal mixture problem into a constrained maximum-likelihood formulation
(and EM algorithm) with similar constraints on the variances, in a way to
exclude the points of degeneracy of the likelihood function. Nettleton (1999)
studies convergence of the EM algorithm in parameter space with various
inequality constraints, in a general framework. Kim and Taylord (1995)
propose an EM algorithm under linear restrictions on the parameters, for
general missing data models, using Newton-Raphson iterations within each
M-step. In the same vein, Shi et al. (2005) consider linear constraints in
a linear regression model with missing data. Equality and fixed-value con-
straints in the spirit of ours has been considered in Mooijaart and van der
Heijden (1992), but for the case of categorical variables with latent class,
using a Lagrange multiplier in the M-step.
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2.1 Two definitions of constraints

Let us consider the mean constraints in equations (8) and (9). One way of
denoting these constraints generally is to write

µ =





µ1
...

µm



 = Mβ + C = M





β1
...

βp



+





C1
...

Cm



 (10)

for some known m × p matrix M , some unknown p-vector β, with p ≤ m,
and a known fixed m-vector of constants C. In the parallel test model (8),
and with the notation of the previous section, we have p = 1 and

β = µ2, M =





0
1
−1



 , C =





0
0
0



 .

For the tau equivalent model (9), we have

β =

(

α
δ

)

, M =





1 0
1 1
1 −1



 , C =





0
0
0



 .

These sorts of constraints may appear to be straightforward to imple-
ment in a normal-mixture EM algorithm. However, it turns out that these
constraints are sometimes handled incorrectly. The most illustrative exam-
ple of this phenomenon occurs in the model in which it is assumed that the
means µ1 = · · · = µm are equal, yet the variances are not all the same. In
this case, the M-step does not consist of estimating µ1 by the sample mean
x̄ =

∑n
i=1 xi/n at each iteration, despite the fact that µ1 = Egθ

(X). We
explain in Section 3.2 why this is incorrect.

Multiple proportionality constraints Certain linear constraints, such
as those of equation (10), lead to intractable EM algorithms, depending on
the parameters to estimate. This is also the case for linear constraints on
the variance parameters, as we discuss in Section 3.3. For such situations
we can define a less general setup, which we call “multiple proportionality”
constraints, that result in closed-form M-steps within true EM algorithms
(or ECM algorithms, in some cases). Basically, we shall designate, among
the m scalar component parameters (e.g., means), subsets of parameters
that are related by known multiplicative constants.
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Let us consider a multiple proportionality constraint among the mean
parameters µ. We define a subset Jµ ⊆ {1, . . . ,m} and known constants
aµ = (aµ

j , j ∈ Jµ), such that

for j0 ∈ Jµ, aµ
j0

= 1, and µj = aµ
j µj0 , j ∈ Jµ.

Here, j0 plays the arbitrary role of labelling which one of the mean param-
eters will be estimated in the EM algorithm. For instance, the constraint
on the means in the parallel test model (8) is Jµ = {2, 3} and aµ = (1,−1).
Several disjoint sets J may be similarly defined if there exist distinct sets of
proportionally constrained parameters.

3 Gaussian generalized EM algorithms for con-

strained parameters

We begin by recalling the well-known M-step for the mean and variance
parameters in the normal case (see, e.g., McLachlan and Krishnan, 2008):
For simplicity of notation, we will also denote the variances vj instead of σ2

j ,
so that the jth component parameter is ξj = (µj , vj).

M-step for ξ = (µ,v) in the normal case

µ
(t+1)
j =

∑n
i=1 p

(t)
ij xi

∑n
i=1 p

(t)
ij

, for j = 1, . . . ,m, (11)

vj
(t+1) =

∑n
i=1 p

(t)
ij (xi − µ

(t+1)
j )2

∑n
i=1 p

(t)
ij

, for j = 1, . . . ,m. (12)

Unfortunately, in the presence of constraints such as those in Section 2,
the M-step can be rather complicated and typically it has no closed form.
However, it is often easier to compute the M-step conditionally on some of
the parameters. We thus propose to use an extension of the EM algorithm,
known as the ECM, or Expectation-Conditional Maximization, algorithm, a
class of algorithms introduced by Meng and Rubin (1993) (see also McLach-
lan and Krishnan, 2008, Chapter 5). An ECM algorithm replaces a compli-
cated M-step with several computationally simpler CM-steps. Sometimes,
even an ECM algorithm does not lead to tractability. We show in Section 3.4
how this problem may be overcome using yet another generalization of EM
algorithms, the class of so-called MM algorithms (Hunter and Lange, 2004).
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The standard normal EM as well as the constrained EM, ECM, and MM
algorithms that are defined in this paper are implemented in the mixtools

package (Young et al. (2009) and Benaglia et al. (2009)) for the R statistical
software (R Development Core Team, 2010). We choose here to handle only
the normal case, but extensions to any parametric family with mean and/or
variance parameters are often straightforward.

3.1 Linear constraints on the means and ECM algorithms

The expected complete-data loglikelihood is

Q(θ|θ(t)) =
n
∑

i=1

m
∑

j=1

p
(t)
ij

[

log λj −
1

2
log vj −

1

2

(xi − µj)

vj

]

. (13)

We assume that the vector of component means satisfies µ = Mβ + C as
in (10). In the ECM framework, maximization is done conditionally on

the v parameters; i.e., we take vj = v
(t)
j in (13). We focus only on the

portion of the CM-step in which we fix the v parameters and update the
β parameters. Differentiating (13) with respect to βℓ for 1 ≤ ℓ ≤ p, then
setting these derivatives equal to zero, gives, in matrix form,

M⊤d(t) = M⊤B(t)µ,

where d(t) is an m-vector defined by

d
(t)
j =

1

v
(t)
j

n
∑

i=1

p
(t)
ij xi

and B(t) is an m × m diagonal matrix with jth diagonal term

B
(t)
jj =

1

v
(t)
j

n
∑

i=1

p
(t)
ij .

Thus,
M⊤d(t) = M⊤B(t)(Mβ + C), (14)

and the update for β is given in closed form by

β(t+1) =
(

M⊤B(t)M
)−1

M⊤

(

d(t) − B(t)C
)

The update for µ at iteration t + 1 is thus

µ(t+1) = Mβ(t+1) + C, (15)
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which is used in the CM-step (12) for updating v.
A typical iteration of an ECM algorithm consists of multiple sub-iterations:

The CM-steps maximize first with respect to one subset of the parameters,
then another, and so on until the full parameter vector has been updated.
In between each pair of CM-steps is another E-step. Equation (15), for ex-
ample, only describes a single CM-step, which updates the µ parameters.
We may also use equation 5 to update the λ parameters in the same CM-
step, since the λ update does not affect the µ parameters. However, after
updating λ and µ using equations (5) and (15), it is necessary to interject
a second E-step before updating σ. This extra E-step consists of defining
Q(λ,µ,v | λ(t+1), µ(t+1),v(t)), as in equation (3), and

p
(t+1/2)
ij =

λ
(t+1)
j f

(

xi;µ
(t+1)
j , v

(t)
j

)

∑m
r=1 λ

(t+1)
r f

(

xi;µ
(t+1)
r , v

(t)
r

) (16)

before updating the v parameters in the next CM-step. If there are no
constraints on the v parameters, one may simply use equation (12) with

p
(t+1/2)
ij in place of p

(t)
ij . We discuss the case where constraints are placed on

v in Sections 3.3 and 3.4.

3.2 Multiple proportional constraints on the means

The estimates of the means are simplest in the case of multiple proportion-
ality constraints, stipulated as in section 2.1 by a subset (or several subsets)
Jµ ⊆ {1, . . . ,m}, constants aµ = (aµ

j , j ∈ Jµ), and j0 ∈ Jµ such that aµ
j0

= 1
and µj = aµ

j µj0 for j ∈ Jµ. The model parameter is restricted to

θ = (λ, µj0 , (µj , j /∈ Jµ),v) .

Maximization with respect to all the parameters except µj0 is unchanged,
and maximizing Q(θ|θ(t)) with respect to µj0 gives

µ
(t+1)
j0

=





n
∑

i=1

∑

j∈Jµ

p
(t)
ij

v
(t)
j

aµ
j xi









n
∑

i=1

∑

j∈Jµ

p
(t)
ij

v
(t)
j

(aµ
j )2





−1

. (17)

This update is conditional on v = v(t), so an ECM algorithm is required
here as well.
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A particular case: the scale model In this case all µj are equal, which
means that all aµ

j = 1 and the parameter is restricted to θ = (λ, µ,v). Thus,
equation (17) reduces to

µ(t+1) =





n
∑

i=1

m
∑

j=1

p
(t)
ij

v
(t)
j

xi









n
∑

i=1

m
∑

j=1

p
(t)
ij

v
(t)
j





−1

, (18)

which is different than the a priori intuitive sample mean, since it takes into
account the variances of the observations coming from each component.

3.3 Multiple proportional constraints on the variances

Constraints on the variances are simplest in the case of multiple proportion-
ality, so we start with this situation. As in 3.2, we assume a set of multiple
proportionality constraints defined by a subset Jv ⊆ {1, . . . ,m}, known con-
stants av = (av

j , j ∈ Jv), and j0 ∈ Jv such that av
j0

= 1 and vj = av
jvj0 ,

j ∈ Jv. The parameter is now restricted to

θ = (λ, µ, vj0 , (vj , j /∈ Jv)) .

As before, maximization with respect to all the parameters except vj0 is
unchanged, and maximizing Q(θ|θ(t)) with respect to vj0 gives

v
(t+1)
j0

=







n
∑

i=1

∑

j∈Jv

p
(t+1/2)
ij

(

xi − µ
(t+1)
j

)2

av
j











n
∑

i=1

∑

j∈Jv

p
(t+1/2)
ij





−1

. (19)

If in this case we do not also have constraints on the µ parameters, then there
is no need for an ECM algorithm, since the maximization steps (5) for λ

and (11) for µ do not depend on v. In this case, the intermediate E-step (16)

is unnecessary and so p
(t+1/2)
ij should be replaced by p

(t)
ij in equation (19).

3.4 Linear constraints on the variances and MM algorithms

If constraints such as those in Section 3.1 exist for the variance parameters,
the approach used in that section will not work for constructing a CM-step
because there is no closed-form maximizer of the Q function with respect
to the constrained v parameters. Of course, one could use a numerical
maximization technique in this case, but here we demonstrate an alternative
that admits a closed form.

10



We first reparameterize by letting πj = 1/vj for 1 ≤ j ≤ m. Then,
assume that the constraints are given by π = Aγ, where A is a known m×q
matrix with nonnegative entries and γ is the q-vector of the (unknown)
parameters of interest, with q ≤ m.

For instance, we can define in this setup the constraint on the variances
needed for both the parallel test and tau equivalent models of Section 2,
which include the inequality constraint v2 = v3 > v1, using

A =





1 1
1 0
1 0



 , γ =

(

γ1

γ2

)

so that π2 = π3 = γ1 < π1 = γ1 + γ2, where γ will be guaranteed to have
positive coordinates by the algorithm we derive as equation (21).

Assuming that λ and µ have already been updated in the first half of
an ECM iteration, we wish to calculate the expected loglikelihood for the
complete data, Q(θ|θ(t+1/2)). The part of this function that depends on the
π parameters is

1

2

n
∑

i=1

m
∑

j=1

p
(t+1/2)
ij log πj −

1

2

n
∑

i=1

m
∑

j=1

p
(t+1/2)
ij πj

(

xi − µ
(t+1)
j

)2
, (20)

which does not admit a closed-form maximizer. Therefore, we shall rely
instead on a so-called MM, or minorization-maximization, algorithm. These
algorithms have a long history in the statistical literature, a history that far
predates the use of the initials MM; details may be found in Hunter and
Lange (2004).

Since π = Aγ, we may express the jth component of π as

πj = Ajγ =

q
∑

k=1

Ajkγk,

where Aj is the jth row of A. The essential MM idea is this: Since the
logarithm function is a concave function, we may use inequality (10) in
Hunter and Lange (2004) to prove that

log πj ≥

q
∑

k=1

Ajkγ
(t)
k

π
(t)
j

log

(

π
(t)
j γk

γ
(t)
k

)

,

with equality when γ = γ(t). We conclude that the function defined by

1

2

n
∑

i=1

m
∑

j=1

q
∑

k=1

p
(t+1/2)
ij

Ajkγ
(t)
k

π
(t)
j

log

(

π
(t)
j γk

γ
(t)
k

)
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−
1

2

n
∑

i=1

m
∑

j=1

q
∑

k=1

p
(t+1/2)
ij Ajkγk(xi − µ

(t+1)
j )2

has the property that it is bounded above by (20),with equality when θ =
θ(t+1/2). Thus, maximizing this function will result in an increase in the
value of Q(θ|θ(t+1/2)), which in turn increases the observed data likelihood.
Setting the partial derivatives with respect to γℓ equal to zero for 1 ≤ ℓ ≤ q,
we obtain

γ
(t+1)
ℓ = γ

(t)
ℓ















n
∑

i=1

m
∑

j=1

(

p
(t+1/2)
ij Ajℓ

π
(t)
j

)

n
∑

i=1

m
∑

j=1

p
(t+1/2)
ij Ajℓ

(

xi − µ
(t+1)
j

)2















. (21)

Since A has nonnegative entries, the requirement that γ(t+1) ≥ 0 is auto-
matically enforced by this algorithm.

4 Simulation studies

Here we compare plain (i.e., without constraints) EM algorithms against
our constrained ECM and “EC-MM” versions. All examples are run using
version 1.0 of the mixtools package (Benaglia et al., 2009) for the R statistical
software (R Development Core Team, 2010), which is publicly available on
the Comprehensive R Archive Network (CRAN) at cran.r-project.org.
We focus here on synthetic and actual data corresponding to the motivating
situation detailed in Section 2, namely, reliability of repeated mesurements
in psychometrics. The specific study that motivated this algorithm involves
infant habituation. Thomas et al. (2011) introduce and analyze this study
using our constrained EM algorithm from the mixtools package. Though
they do not enforce the inequality constraint σ3 = σ2 > σ1, as we describe
in Section 3.4, their solution does result in σ̂3 = σ̂2 > σ̂1. Thus, we refer the
interested reader to Thomas et al. (2011) for a full account of this example,
including R code to perform the analyses; this dataset can be loaded within
mixtools by using the command data(Habituationdata). Instead, we focus
here on simulation studies.

Remark: We have ignored the “label-switching” issue up to now. This
issue arises because the particular ordering of the subscripts j = 1, . . . ,m in
equation (1) is arbitrary: A rearrangement of these subscripts gives exactly
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the same density function even though technically the elements of the param-
eter vector θ have been permuted. Thus, this “label-switching” possibility
destroys the usual parameter identifiability assumption that underlies sta-
tistical inference, whereby the distribution of the data uniquely determines
the parameter values. In practice, since we are only concerned with finding
a single maximum likelihood estimator of θ here, this lack of identifiability
causes no problems as long as we keep in mind that the best we can do is
to estimate the parameters up to a permutation of the labels. However, in
a simulation study based on Monte-Carlo replications, this issue can lead to
flawed average estimates because there is no guarantee that only estimates
from the “same” component are averaged together. For a fuller account of
the label-switching issue, see McLachlan and Peel (2000).

4.1 Parallel test models

The parallel test model of Section 2 corresponds to a 3-component Gaussian
mixture with simple (multiplicative and fixed) constraints on the means and
linear constraints on the variances; see Section 2 and Thomas et al. (2011).
In particular,

µ1 = 0, µ3 = −µ2, σ3 = σ2 > σ1,

the constraints on σ being expressed in terms of the inverse variances π by

π = Aγ, A =





1 1
1 0
1 0



 , (22)

where the γi are positive by construction; see Equation (21). We choose first
a synthetic model: λ = (0.5, 0.3, 0.2)⊤, µ = (0, 4,−4)⊤, and σ = (1, 3, 3)⊤.
The true parameters have been chosen to assure a unimodal, overlapping
mixture density, as depicted in Fig. 1 (left). In this situation, the constraints
on the parameter space play a more prominent role in the EM estimation
than if the components were well-separated.

Fig. 1 (left) also shows some EM and constrained EC-MM estimates on
a small sample (n = 100), illustrating the good behavior of the constrained
version. Boxplots in Fig. 2 and mean squared errors in Table 1 are pro-
vided to compare the behavior of the plain (unconstrained) EM and the
constrained version of the Gaussian EC-MM algorithm on the basis of 300
replications. It is clear for both small (n = 100) and large (n = 1000) sample
sizes that constraining the parameter space helps both in terms of bias and
MSE.
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Figure 1: True and estimated mixture densities for plain Gaussian EM and
constrained EC-MM algorithms on a sample of size n = 100 for the parallel
test synthetic model (left) and the tau equivalent model (right).

As is typically the case for EM-related algorithms, the choice of initial
starting parameter values is important. In these tests, we started the algo-
rithms from the true parameter values to prevent label-switching as much
as possible. For n = 100 and the unconstrained EM version, we actually
observed 15% of the 300 replications for which λ̂1 < λ̂2, which suggests that
label-switching has occurred despite our choice of starting values. However,
further investigation reveals that the mean and variance parameter estimates
did not appear to be switched in these cases; thus, they evidently merely
represent poor estimates of λ1 and λ2. For the 18% of replications of the
constrained versions for which we got λ̂1 < λ̂2, this was even more obvious
due to the constraints on the means and variances that give less flexibility
in the parameters. For n = 1000 we observed similar behavior among the
4% of the plain EM replications for which λ̂1 < λ̂2, and no such inversion
for the constrained version.
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Figure 2: Boxplots of parameter estimates from 300 replications of plain
unconstrained EM and constrained EC-MM algorithms on samples of size
n = 100 for the parallel test synthetic model; horizontal dashed lines are true
values.

4.2 Tau equivalent model

The tau equivalent model described in Section 2 corresponds to µ = Mβ

and π = Aγ, where

M =





1 0
1 1
1 −1



 , β =

(

β1

β2

)

, A =





1 1
1 0
1 0



 .

That is, the linear variance constraints coincide with those of the parallel
test model (22), whereas the (linear) mean constraints are new. We simulate
a model with true parameters λ = (0.6, 0.3, 0.1) and β = (1, 5) so that
µ = (1, 6,−4), and σ = (1, 3, 3). The three components of this example
are more separated than those of the example in Section 4.1, but the weight
of the “unstable negative individuals” is assumed to be smaller (10% of the
population), and hence this component is more difficult to estimate precisely
from a small sample.

The true density, together with sample estimators, is depicted in the
right panel of Fig. 1. Results here are very similar to those of the parallel
test model of Section 4.1, so we display only the MSEs in Table 2 for the sake
of brevity. As for the parallel test model, we did observe some inversions of
the λ estimates (i.e., where λ̂1 < λ̂2) though there was no label switching
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plain Gaussian EM constrained EC-MM
n j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

λ 0.0196 0.0266 0.0244 0.0182 0.0142 0.0069
100 µ 0.0499 3.9226 6.2823 1.89 1.89

σ 0.0828 1.1505 1.6178 0.068 0.641 0.641

λ 0.0022 0.0052 0.0045 0.0020 0.00095 0.0005
1000 µ 0.0048 0.7055 1.2222 0.180 0.180

σ 0.00521 0.16407 0.27833 0.00507 0.06179 0.0618

Table 1: Estimated Mean Squared Errors from 300 replications of plain
Gaussian EM and constrained EC-MM algorithms started from the true
parameters, for the parallel test synthetic model, and two sample sizes.

here. These inversions only occurred for the n = 100 case.

plain Gaussian EM constrained EC-MM
n j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

λ 0.0125 0.0127 0.0116 0.00941 0.0093 0.002
100 µ 0.0702 2.5847 7.0203 0.0308 1.6136 1.5063

σ 0.0959 0.8583 2.2135 0.0411 0.5297 0.5297

λ 0.0009 0.00129 0.0007 0.0008 0.0006 0.0001
1000 µ 0.0025 0.2311 1.0290 0.0022 0.1216 0.1100

σ 0.0026 0.0858 0.2957 0.0024 0.0442 0.0442

Table 2: Estimated Mean Squared Errors from 300 replications of plain
Gaussian EM and constrained EC-MM algorithms for the tau equivalent
synthetic model, and two sample sizes.

5 Discussion

The algorithms we propose in this article extend the well-known EM algo-
rithm for finite mixture models to the case with various linear constraints
on the space of parameters. We show that in the presence of such con-
straints, the M-step typically has no closed form, but ECM and sometimes
“EC-MM” (i.e., conditional MM-steps) extensions of the EM algorithm with
closed-form implementations can be defined. Note that all the extensions
we develop here share with genuine EM algorithms the same essential ascent
property of the observed likelihood function.
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Our simulations show that constraints on the parameter space can im-
prove the estimation in terms of mean squared error relative to estimates
calculated without assuming constraints. Scientifically, however, we had a
reason—from the psychometric example motivating this article—to place
the constraints on the parameter space in any case. For this reason, we
do not consider the question here of any type of hypothesis test of a null
hypothesis such as “the constraints hold”, and we compare estimates only
on the basis of their mean squared errors rather than, say, BIC or AIC.
However, testing and model selection methods generally require estimation
algorithms for their implementation, and the algorithms we present could
certainly serve this purpose if future work were to address these additional
issues.

We also choose in this article to handle only the mixture of Gaussian
components case, but extensions to any parametric family with mean and/or
variance parameters, or more generally to components with likelihood lead-
ing to closed-form maximization, should allow for similar ideas.

Finally, we reiterate that algorithms presented in this article are im-
plemented in the R package called mixtools (Benaglia et al., 2009) for the
R statistical software (R Development Core Team, 2010), which is pub-
licly available on the Comprehensive R Archive Network (CRAN) at cran.
r-project.org.
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