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Pricing and Hedging Defaultable Claim.

Stéphane GOUTTE ∗†, Armand NGOUPEYOU ∗‡

September 21, 2011

Abstract

We study the pricing and the hedging of claim Ψ which depends of the default
times of two firms A and B. In fact, we assume that we can not buy or sell any default-
able bond from the firm B but we can trade a defaultable bond of the firm A. Since the
default times of the two firms are correlated, our aim is to find the best price and hedg-
ing of Ψ using bond of the firm A. Hence we solve this problem in two cases: first in a
Markov framework using indifference price and solving a system of Hamilton Jacobi
Bellman equation; and in a secondly in a more general framework (mean-variance
tradeoff process non deterministic) using the mean variance hedging approach and
solving backward stochastic differential equations.

Keywords Default and Credit risk; Hamilton Jacobi Bellman and Backward Differen-
tial equations; Mean variance hedging.

MSC Classification (2010): 60G48 60H10 91G40 49L20

Introduction

Models for pricing and hedging defaultable claim have generated a large debates by
academics and practitioners during the last subprime crisis. The challenge is to modelize
the expected losses of derivatives portfolio by taking account the counterparties defaults
since they have been affected by the crisis and their agreement on the derivatives contracts
can potentially vanish. In the literature, models for pricing defaultable securities have
been pioneered by Merton [18]. His approach consists of explicitly linking the risk of firm
default and the value of the firm. Although this model is a good issue to understand the
default risk, it is less useful in practical applications since it is too difficult to capture the
dynamics of the firm’s value which depends of many macroeconomics factors. In response
of these difficulties, Duffie and Singleton [5] introduced the reduced form modeling which
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has been followed by Madan and Unal [17], Jeanblanc and Rutkowski [11] and others. In
this approach, the main tool is the ”default intensity process” which describes in short
terms the instantaneous probability of default. This process combines with the recovery
rate of the firm, represent the main tools necessary to manage the default risk. However,
we should manage the default risk considering the financial market as a network where
every default can affect another one and the propagation spread as far as the connections
exist. In the literature, to deal with this correlation risk, the most popular approach is
the copula. This approach consists of defining the joint distribution of the firms on the
financial network considered given the marginal distribution of each firm on the network.
In static framework 1, Li [16] was the first to develop this approach to modelize the joint
distribution of the default times. But since, all computations are done without considering
the evolution of the survey probability given available information then we can’t describe
the dynamics of the derivatives portfolio in this framework. In response of these limits
on the static copula approach, El Karoui, Jeanblanc and Ying developped a conditional
density approach [6]. An important point, in this framework is that given this density,
we can compute explicitly the default intensity processes of firms in the financial market
considered. We will follow this approach and work without losing any generality in the
explicit case where financial network is defined only with two firms denoted by A and B.

We work on reduced form framework where the intensity process jumps when any
default occurs. This jump impacts the default of the firm and makes some correlation
between them. We assume that we can not buy or sell any defaultable bond from the
firm B but we can trade a defaultable bond of the firm A, we consider two different cases
for pricing and hedging a general defaultable claims: the indifference pricing in Markov
setting and the Mean-Variance hedging for general cases.

In the first case, our aim is to find, using the correlation between the two firms, the
indifference price of any contingent claim given the risk aversion defined by an exponen-
tial utility function. We express the indifference pricing as a optimization problem see El
Karoui and Rouge [7]and using Delbaen and Schachermayer in [2] approach. Solving the
dual problem, we find the solution of the indifference price. The characterization of the op-
timal probability for the dual optimization problem is solved by Hamilton-Jacobi-Bellman
(HJB) equations since the defaultable bond price is assumed to be a Markov process in this
framework.

In a second case, we have been interested in hedging in a general framework by Mean-
Variance approach. We assume that we work in a general setting (not necessarily Markov),
then we can not use the HJB equation to characterize the value function. Mean Variance
approach has been introduced by Schweizer in [20] and generalized by many authors
([21], [8], [14], [4], [1], [15], [9]). Most of theses papers use martingales techniques and an
important quantity in this context is the Variance Optimal Martingale Measure (VOM).
The VOM, P̄, is the solution of the dual problem of minimizing the L2-norm of the den-
sity dQ/dP, over all (signed) local martingale measure Q for the defaultable bond price
of the firm A. If we consider the case of no jump of default, then the bond A price pro-
cess is continuous; in this case Delbaen and Schachermayer in [3] prove the existence of

1The framework where we don’t consider the evolution of the survey probability given a filtration
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an equivalent VOM P̄ with respect to P. Moreover the price of any contingent claim ψ

is given by EP̄(ψ). In Laurent and Pham [14], they find explicit characterization of the
variance optimal martingale measure in terms of the value function of a suitable stochas-
tic control problem. In discontinuous case, when the so-called Mean-Variance Trade-off
process (MVT) is deterministic, Arai [1] prove the same results. Since we work in discon-
tinuous case and since the Variance Trade-off in our case is not deterministic (due to the
stochastic default intensity process), we can not apply the standards results. Hence our
work is first to characterize the value process of the Mean-Variance problem and secondly
make some links with the existence and the characterization of the VOM in some particu-
lar cases. However, we really don’t need to prove and assume this existence to solve the
problem, we solve a system of Backward Differential Equations (BSDE) and we charac-
terize the solution of the problem using BSDE’s solutions. The main contribution in this
part is the explicit characterization of the BSDE’s solutions without using the existence of
the VOM, we only use the characterization of the set of solutions via a stochastic control
problem studied by Jeanblanc and al. in [10]. Therefore, we deduce that the main BSDE
coefficient will follow a quadratic growth and since we work in discontinuous filtration
due to defaults events, using Kharroubi and Lim [12] we will split the BSDE’s with jumps
into many continuous BSDEs with quadratic growth and we conclude the existence of the
solution using the standard result of Kobylanski [13].

Hence in a first section, we will give some notations and results relative to credit risk
modelling. Secondly, we will study the case of pricing and hedging a defaultable con-
tingent claim in a Markovian framework using indifference pricing. Then in the last sec-
tion, we will study the pricing and hedging problems in a more general framework (not
Markov) using mean variance hedging approach.

1 Notations

Let T > 0 be a fixed maturity time and denote by (Ω,F := (Ft)[0,T ],P) an underlying
probability space. The filtration F is generated by a one dimensional Brownian motion W .
Let τA and τB be the two default times of firms A and B. Let define for all t ∈ [0, T ]:

HA
t = 1{τA≤t} and HB

t = 1{τB≤t} (1.1)

We define now some filtrations

GAt = Ft ∨HBt , GBt = Ft ∨HAt and Gt = Ft ∨HAt ∨HBt
where HA (resp. HB) is the natural filtration generated by HA (resp. HB). And we will
denote G := (Gt)t∈[0,T ], GA :=

(
GAt
)
t∈[0,T ]

and GB :=
(
GBt
)
t∈[0,T ]

. We assume that the
density assumption holds, then the intensity process exists and is given in Delbean and
al. [6]. For i ∈ {A,B}, let define by λi the Gi-progressively non-negative process which
represents the default intensity process of the firm i. For more convenience we work in
the enlarged filtered probability space (Ω,G := (Gt)[0,T ],P). We have that

M i
t = H i

t −
∫ t∧τ i

0
λisds
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are G-martingales. Moreover we have the Kosuoka representation Theorem which is that
for any G-martingaleM there exist G-predictable processes Z and U = (UA, UB) such that

M = Z.W + U.M

where . denotes the standard scalar product. Using this decomposition, we represent the
dynamics of the defaultable claim A in the enlarged filtration G by

dDA
t

DA
t−

= µtdt+ σAt dM
A
t + σBt dM

B
t + σtdWt (1.2)

where µ, σA, σB, σ are G-predictable bounded processes.

2 Hedging defaultable claim with Markov copula

Let consider ψ ∈ GT a bounded contingent claim which depends on the default times
τA of the firm A and τB of the firm B. Our aim is to find, using the correlation between the
two firms, the best hedging and pricing of ψ.

Assumption 2.1. We assume that µ, σA, σB, σ and the intensity processes λA, λB are determin-
istic bounded functions of time and DA, HA, HB .

Remark 2.1. In this case, (DA, HA, HB) is a Markov process.

We assume that the risk aversion of investors is given by an exponential utility function
with parameter δ which is

U(x) = − exp(−δx)

Moreover we assume that there is a free bond (without default) which follows the
dynamics

dD0
t = rtD

0
t dt

Therefore, given an initial wealth x ≥ 0, if we assume that investors follow an admissible
strategies (π0, π), which are represented by a set A of predictable processes π such that∫ T

0
π2
sds < +∞, P− a.s,

then we can define the dynamics of the wealth Xx,π by

dXx,π
t = rtX

x,π
t dt+ πt

[
(µt − rt)dt+ σAt dM

A
t + σBt dM

B
t + σtdWt

]
(2.3)

Therefore, to define the indifference price or the hedging of ψ, we should solve the equa-
tion

uψ(x+ p) = u0(x),

where functions uψ and u0 are defined by:

uψ(x) = sup
π∈A

E
[
− exp(−δ(Xx,π

T − ψ))
]

and u0(x) = sup
π∈A

E
[
− exp(−δXx,π

T )
]

(2.4)
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2.1 The dual optimization formulation

To deal with the problem (2.4), we use the duality theory developped by Delbaen and
Schachermayer in [2]. In fact this theory allow us to find the optimal wealth at the hori-
zon time T and the optimal risk neutral probability Q∗. In the sequel without loose of
generality, we will assume that rt ≡ 0. Let recall now some results about the dual theory.

Theorem 2.1. [Delbaen and Schachermayer] Let U be a utility function which satisfies the stan-
dards assumptions and consider the optimization problem u(x) = supπ∈A E

[
U(Xx,π

T )
]
, then the

dual function of u defined by:

v(y) = sup
x>0
{u(x)− xy}, u(x) = inf

y>0
{v(y) + yx}

is given by

v(y) = inf
Q∈Me

E
(
V

[
y
dQ
dP

])
where V represents the dual function of U and Me represents the set of risk neutral probability
measure.

Moreover there exists an optimal martingale measure Q∗ which solves the dual problem and we
have that the optimal wealth at time T is given by:

Xx,π∗

T = I
[
νZQ∗

T

]
, where ν is defined s.t. EQ∗

[
Xx,π∗

T

]
= x.

where the function I represents the inverse function of U ′ and ZQ∗
T represents the Radon Nikodym

on GT of Q∗ with respect to P.

Now, we can apply this result to solve our optimization problem (2.4). We will resolve
only the case ψ 6= 0. Indeed the particular case ψ = 0 could be obtain by these results.

Proposition 2.1. Let Q∗ be the optimal risk neutral probability which solves the dual problem

inf
Q∈Me

[
H(Q|P)− δEQ(ψ)

]
(2.5)

then the optimal strategy π∗ ∈ A solution of the optimization problem (2.4) satisfies:

−1

δ
ln
(
ZQ∗
T

)
+ ψ = x+

1

δ
ln
(y
δ

)
+

∫ T

0
π∗t dD

A
t (2.6)

where H(Q|P) represents the entropy of Q with respect to P
(
i.e. EQ

[
log
(
dQ
dP

)])
and y is a

non negative constant.

Proof. The proof is based on the Theorem 2.1. First to match with the assumptions of this
Theorem in the case ψ 6= 0, we change the historical probability. Let define

dPψ

dP

∣∣∣
GT

=
exp(δψ)

E [exp(δψ)]
and ũψ(x) = sup

π∈A
Eψ
[
− exp(−δXx,π

T )
]
,
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then setting c = E [exp(δψ)] we have

uψ(x) = sup
π∈A

E
[
− exp(−δ(Xx,π

T − ψ))
]

= sup
π∈A

EPψ [−c exp(−δXx,π
T )

]
= sup

π∈A
EPψ

[
exp

(
−δ(−1

δ
log(c) +Xx,π

T )

)]
= sup

π∈A
EPψ

[
exp

(
−δXx− 1

δ
log(c),π

T

)]
Hence by the definition of ũψ(x) we obtain that

ũψ
(
x− 1

δ
ln(c)

)
= uψ(x)

Then using the Theorem 2.1, the dual function of ũψ is given for all y > 0 by:

ṽψ(y) = inf
Q∈Me

E
[
V

(
y
dQ
dPψ

)]
(2.7)

where
V (y) = sup

x>0
{U(x)− xy} = sup

x>0
{− exp(−δx)− xy} =

y

δ

[
ln
(y
δ

)
− 1
]

Then using this expression of V (y) into (2.7) gives after calculation an explicit expres-
sion of the dual function which is

ṽψ(y) = V (y) +
y

δ
ln(c) +

y

δ
inf

Q∈Me

[
H(Q|P)− δEQ(ψ)

]
Since Q∗ is the optimal risk neutral probability which is solution of (2.5) we deduce

that the optimal wealth at time T of the optimization problem (2.4) is given by

Xx,π∗

T = I

[
y
ZQ∗
T

ZQψ
T

]

where y is defined such that EQ∗
[
Xx,π∗

T

]
= x − 1

δ ln(c) and I is equal to −V ′ . Moreover
from Owen [19], we can deduce that there exists an optimal strategy π∗ ∈ A such that:

Xx,π∗

T = I

[
y
ZQ∗
T

ZQψ
T

]
= x− 1

δ
ln(c) +

∫ T

0
π∗t dD

A
t .

In our case, we work under the the case of exponential utility function with parameter δ.
So

I(y) := −1

δ
ln
(y
δ

)
then we finally get that

x− 1

δ
ln(c) +

∫ T

0
π∗t dD

A
t = −1

δ
ln
(y
δ

)
− 1

δ
log
(
ZQ∗
T

)
+ ψ − 1

δ
ln(c).

which conclude the proof of this proposition.
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2.2 Value function of the dual problem

In this part, we solve the dual problem (2.9) in a Markov framework. In fact, if we
consider the same problem with a different set of probability measure likeMe = Q, where
Q represents the set of all probability measure Q� P, then the value function is given by
the entropy of ψ with a parameter δ.

But since we work in a more restricted set of probabilityMe which reprensents the set
of all risk neutral probability, the value function is more difficult to precise. To characterize
the value function, we first describe the setMe.

Let Q ∈ Me and define ZQ
T be the Radon Nikodym density of Q with respect to P.

Consider the non negative martingale process ZQ
t = E

[
ZQ
T |Gt

]
and using representation

theorem imply that there exists predictable processes ρA and ρB which take their values
in C = (−1,+∞) and a predictable process ρ which takes its values in R such that for all
t ∈ [0, T ]

dZQ
t = ZQ

t−

(
ρAt dM

A
t + ρBt dM

B
t + ρtdWt

)
Since Q is in Me, it is a risk neutral probability, then ZDA is a local martingale. This
implies by Ito’s calculus the following equation:

µt + ρAt σ
A
t λ

A
t + ρBt σ

B
t λ

B
t + ρtσt = 0 (2.8)

Remark 2.2. We notice that the process ρ depends explicitly to ρA and ρB .

Therefore using equation (2.8), the latter (2.5) can be formulated as find ρA and ρB

which minimize:
inf

Q∈Me
EQ
[
ln(ZQ

T )− δψ
]

(2.9)

We make now an Assumption.

Assumption 2.2. The contingent claim ψ ∈ GT is given by

ψ = g(DA
T )1{τB>T} + f(DA

τB−
)1{τB≤T}

where g and f are two bounded continuous functions.

Proposition 2.2. The value function of the dual problem (2.9) is given by:

V (t,DA
t , H

A
t , H

B
t ) = inf

ρA,ρB∈C
EQ
[∫ T

t
j(s, ρAs , ρ

B
s , D

A
s )ds− δg(DA

T )1{τB>T}
∣∣∣DA

t , H
A
t , H

B
t

]
(2.10)

where the function j is defined by:

j(s, ρAs , ρ
B
s , D

A
s ) =

∑
i∈{A,B}

λis
[
(1 + ρis) ln(1 + ρis)− ρis

]
− δ(1 + ρBs )λBs f(DA

s ) +
1

2
ρ2
s (2.11)
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Proof. The proof is based on the Ito’s formula. We write first the dynamics of ln(ZQ) under
Q which is given by

d ln(ZQ
t ) =

∑
i∈{A,B}

ρitdM
i
t +

[
ln(1 + ρit)− ρit

]
dH i

t + ρtdWt −
1

2
ρ2
tdt

Using Girsanov theorem, the processes defined for all i ∈ {A,B} by

M̃ i
t = M i

t −
∫ t

0
ρisλ

i
sds and W̃t = Wt −

∫ t

0
ρsds

are Q-martingales. Hence we obtain that

ln(ZQ
T )− δψ =

∫ T

0

∑
i∈{A,B}

λit[(1 + ρit) ln(1 + ρit)− ρit]dt−δ
[∫ T

0
f(DA

t−)dHB
t + g(DA

T )(1−HB
T )

]
+

∫ T

0

1

2
ρ2
tdt+MQ

T

where MQ is a Q-martingale. Then we can rewrite the dual problem using the last expres-
sion:

inf
Q∈Me

EQ
[
ln(ZQ

T )− δψ
]

= inf
ρA,ρB∈C

EQ
[∫ T

0
j(s, ρAs , ρ

B
s , D

A
s )− δ(1−HB

T )g(DA
T )

]
where j is given in (2.11). Since by Remark 2.1, the process (DA, HA, HB) is a Markov
process, then the value function of the dual optimization problem is given by:

V (t,DA
t , H

A
t , H

B
t ) = inf

ρA,ρB∈C
EQ
[∫ T

t
j(s, ρAs , ρ

B
s , D

A
s )ds− δg(DA

T )1{τB>T}
∣∣∣DA

t , H
A
t , H

B
t

]
(2.12)

We need now to evaluate an explicit form of the value function.

Proposition 2.3. Let z = (x, hA, hB), the value function of the dual optimization problem is
solution of the following Hamilton-Jacobi-Bellman equation:

∂V

∂t
(t, z) +

1

2

∂V

∂x2
(t, z)σ2(t, z) + inf

ρA,ρB∈C
{LρA,ρBV (t, z) + j(t, ρAt , ρ

B
t )}, V (T, z) = g(x)(1− hB) (2.13)

where

LρA,ρBV (t, z) =
∑

i∈{A,B}

[
−∂V
∂z

(t, z)σi(t, z) +
(
V (t, zi)− V (t, z)

)]
(1 + ρit)λ

i(t, z)

zi =
(
x(1 + σi(t, z)), hA + αi, hB + 1− αi

)
where αA = 1 and αB = 0.

Moreover given the value function, the optimal strategy satisfies:

π∗t = −1

δ

(
∂V

∂x
(t, z) +

ρ̄t

DA
t−σ(t, z)

)

where the process ρ̄ is explicit given with the optimal control ρ̄i, i ∈ {A,B}, see the relation (2.8).
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Proof. From Proposition 2.2, we find the value function of the dual optimization problem
see (2.12). Using Hamilton-Jacobi-Bellman (HJB) equation we get:

V (t,DA
t , H

A
t , H

B
t ) = inf

ρA,ρB∈C
EQ
[∫ t+h

t
j(s, ρAs , ρ

B
s , D

A
s )ds+ V (t+ h,HA

t+h, H
B
t+h)

∣∣DA
t , H

A
t , H

B
t

]
Then the value function solve the HJB equation (2.13). In the next part, we find the opti-
mal strategy given the value function. Let recall that from Theorem 2.1, the optimal risk
neutral probability and the value function exist. Let define ρ̄A, ρ̄B and ρ̄ the optimal den-
sity parameters. Since ρ̄A and ρB are optimal for the HJB equation, assuming σ(t, z) 6= 0 ,
using first order condition we find for i ∈ {A,B}:[

(V (t, zi)−V (t, z))−xσi(t, z)∂V
∂x

(t, z)+ln(1 + ρ̄it)−
σi(t, z)

σ(t, z)
ρ̄t

]
λi(t, z)=δ(1− αi)f(x)λi(t, z) (2.14)

Then using the HJB equation and the relation (2.14), we find the following relation:

− 1

2
ρ̄2
t +

∑
i∈{A,B}

ρ̄itλ
i(t, z) =

∑
i∈{A,B}

(1 + ρ̄it)
σi(t, z)

σ(t, z)
ρ̄t +

1

2

∂2V

∂x2
(t, z)x2σ2(t, z) +

∂V

∂t
(t, z) (2.15)

Let recall the Ito’s decomposition of the process ln(ZQ∗):

ln(ZQ∗
T ) =

∫ T

0
[ρ̄tdW̄t +

1

2
ρ̄2
tdt] +

∫ T

0

∑
i∈{A,B}

[
ln(1 + ρ̄it)dH

i
t − ρ̄itλi(t, z)

]
Then using equations (2.15) and (2.14), we find a useful a more explicit decomposition of
the process ln(ZQ∗

T ):

ln(ZQ∗
T ) =

∫ T

0
−1

2

∂2V

∂x2
(t, zt)(D

A
t−)

2
σ2(t, zt)dt−

∫ T

0

∂V

∂t
(t, zt)dt+

∫ T

0
ρ̄tdW̄t

−
∑

i∈{A,B}

[
(V (t, zit)− V (t, zt))−DA

t−σ
i(t, zt)

∂V

∂x
(t, z)

]
dH i

t

+

∫ T

0

∑
i∈{A,B}

σi(t, zt)

σ(t, z)
ρ̄t[dH

i
t − (1 + ρ̄it)λ

i(t, zt)] +

∫ T

0
δf(DA

t−)dHB
t

where zt = (DA
t , H

A
t , H

B
t ), then using the Ito’s decomposition of V (T,DA

T , H
A
T , H

B
T ), we

find:

ln(ZQ∗
T ) =

∫ T

0

ρ̄t
σ(t, z)

σ(t, zt)dW̄t +
∑

i∈{A,B}

σi(t, zt)dM̄
i
t

+ δf(DA
τB−

)1{τB≤T}

− V (T,DA
T , H

A
T , H

B
T ) + V (0, DA

0 , H
A
0 , H

B
0 ) +

∫ T

0

∂V

∂x
(t, zt)dD

A
t

Since
V
(
T,DA

T , H
A
T , H

B
T

)
= −δg(DA

T )(1−HB
T )
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and
ψ = f(DA

τB−
)1{τB≤T} + g(DA

T )(1−HB
T )

then we get:

ln(ZQ∗
T )− δψ = V (0, DA

0 , H
A
0 , H

B
0 ) +

∫ T

0

[
ρ̄t

DA
t−σ(t, z)

+
∂V

∂x
(t, zt)

]
dDA

t

From Definition of the value function,

V (0, DA
0 , H

A
0 , H

B
0 ) = EQ∗

[
ln(ZQ∗

T )− δψ
]

using the fact that EQ∗
[
Xx,π∗

T

]
= x − 1

δ ln(c) , where Xx,π∗

T = −1
δ ln

(
1
δ
ZQ∗
T

ZPψ

)
see Theorem

2.1, we deduce that

EQ∗
[
−1

δ
ln(ZQ∗

T ) + ψ − 1

δ
ln(c)− 1

δ
ln
(y
δ

)]
= x− 1

δ
ln(c)

Hence we conclude that

V (0, DA
0 , H

A
0 , H

B
0 ) = −δx− ln

(y
δ

)
Finally, we find

−1

δ
ln(ZQ∗

T ) + ψ = x+
1

δ
ln
(y
δ

)
+

∫ T

0
−1

δ

[
ρ̄t

DA
t−σ(t, z)

+
∂V

∂x
(t, zt)

]
dDA

t

Therefore from equation (2.6), we obtain the result of the Proposition.

In conclusion, we have find that since we can characterize the optimal probability for
the dual optimization problem using the Delbaen and Schachermayer Theorem, we can
characterize the HJB equation and then this allows us to find the optimal strategy for the
primal solution for a defaultable contingent claim. Therefore we can find for ψ = 0 and
ψ 6= 0, the optimal strategy in the both cases and deduce the indifference price p of a
defaultable contingent claim solving the equation uψ(x+ p) = u0(x).

3 Generalization of the hedging in a general framework: Mean-
Variance approach

In this part, we assume that we work in a general setting (not necessarily Markov), then
we can not use the HJB equation to characterize the value function. The Mean Variance
approach is a well-known methodology to manage hedging in general case. It seems to
have been introduced in 1992 by Schweizer [20]. An important quantity in this context is
the Variance Optimal Martingale Measure (VOM). The VOM, P̄, is the solution of the dual
problem of minimizing the L2-norm of the density dQ

dP , over all (signed) local martingale
measure Q for DA. Let recall now the Mean-Variance problem:

min
π∈A

E
[
(Xx,π

T − ψ)
2
]
. (3.16)
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If we assume G = F (in the case we do not consider jump of default), the process DA is
continuous; in this case Delbean and Schachermayer [3] prove the existence of an equiv-
alent VOM P̄ with respect to P and the fact that the price of ψ is given by EP̄(ψ). In
discontinuous case, when the so-called Mean-Variance Trade-off process (MVT) is deter-
ministic, Arai [1] prove the same results. Since we work in discontinuous case and since
the Variance Trade-off is not deterministic (due to the stochastic default intensity process),
we cannot apply the standards results. In this part, our work is first to characterize the
value process of the Mean-Variance problem and secondly make some links with the exis-
tence and the characterization of the VOM in some particular cases. First, let recall some
usual spaces:
• S∞ is the Banach space of Rd-valued cadlag processes X such that there exists a

constant C satisfying

‖X‖S∞ := sup
t∈[0,T ]

|Xt| ≤ C < +∞ and
(
E
[ ∫ T

0
|Xt|2 dt

]) 1
2

< +∞

• H2 is the Hilbert space of R-valued predictable processes Z such that

‖Z‖H2 :=

(
E
[ ∫ T

0
|Zt|2 dt

]) 1
2

< +∞

• H2
λ is the Hilbert space of R2-valued predictable processes such that

‖V ‖H2
λ

:=
(
E
[ ∑
j∈{A,B}

∫ T

0
|V j
t |2λ

j
tdt
] ) 1

2
=
(
E
[ ∫ T

0
|V |2tdt

] ) 1
2
< +∞

where

|v|t :=

 ∑
j∈{A,B}

|v2
j |λ

j
t

 1
2

∈ R+ ∪ {+∞} (3.17)

for v ∈ R2 and t ∈ [0, T ].

• BMO is the space of G-adapted matingale such that for any stopping times 0 ≤ σ ≤
τ ≤ T , there exists a non negative constant c > 0 such that:

E [[M ]τ − [M ]σ− |Gσ] ≤ c.

when M = Z.W ∈ BMO, to simplify notation we write Z ∈ BMO.

Definition 3.1 (R2(P) condition). Let Z be a uniformtly integrable martingale with Z0 = 1 and
ZT > 0, we say that Z satisfies reverse Hölder R2(P) under P if there exist a constant c > 0 such
that for every stopping times σ, we have:

E

[(
Z2
T

Z2
σ

)2

|Gσ

]
≤ c.

11



3.1 Characterization of the optimal cost via BSDE

In this part, we characterize the functional cost of the Mean-Variance problem using
dynamic programming via BSDE. Given an admissible strategy π ∈ A, let define Jt(π) the
functional cost of the Mean-Variance problem at time t ∈ [0, T ]. From dynamic program-
ming, we find for any π ∈ A that J(π) is a submartingale and for the optimal strategy
π∗ ∈ A that J(π∗) is a martingale. Let recall the usual assumption:

Jt(π) = Θt(X
x,π
t − Yt)2

+ ξt (3.18)

where Θ is a non-negative G-adapted process and Y, ξ are two G-adapted processes. There-
fore using the properties of the functional cost, we find the following characterization of
the triplet (Θ, Y, ξ) using BSDE. First let give some characterizations of the process Θ.

Proposition 3.4. The process Θ is a submartingale, moreover there exists a non negative constant
δ > 0 such that Θt ≥ δ > 0.

Proof. From Theorem 1.4 of Jeanblanc and al. [10], we get that Θ is a positive submartin-
gale. To prove that there exists a non-negative constant δ such that Θ ≥ δ > 0, first
we should prove that there exists a martingale measure Q ∈ R2(P) and then we can de-
duce from Lemma 2.1 of [10] that the assertion is satisfied. Let given Q a martingale
measure and denote by ZT its Radon Nikodym density with respect to P on Gt. We de-
fine Zt = E[ZT |Gt] for t ≤ T . Therefore from representation theorem, there exist three
G-predictable processes ρA, ρB and ρ such that dZt/Zt− = ρAt dM

A
t + ρBt dM

B
t + ρtdWt.

Moreover we get µAt +σAρAt λ
A
t +σBt ρ

B
t λ

B
t = 0; then for i ∈ {A,B}, we can choose ρi > −1

such that there are bounded, then from the boundness condition of µ, σA, σB, λA and λB ,
we deduce ρ is also bound. Therefore, we deduce the stochastic logaritm L(Z) of Z is
BMO moreover there exists a non negative constant h, such that 1 + ∆L(Z) > h then from
Theorem 2.14 of Delbean and al. [4], the chosen martingale measure Q ∈ R2(P).

Proposition 3.5. There exists an optimal strategy π∗ ∈ A such that

Jt(π
∗) = Θt(X

x,π
t − Yt)2

+ ξt

is a martingale, where the triplet (θ, Y, ξ) follows the BSDEs:

dΘt

Θt−
= −g1

t (Θt, θt, βt)dt+ θt.dMt + βtdWt, Θt = 1

dYt = −g2
t (Yt, Ut, Zt)dt+ Ut.dMt + ZtdWt, YT = ψ

dξt = −g3
t (ξt, εt, Rt)dt+ εt.dMt +RtdWt, ξT = 0.

(3.19)

where θ = (θA, θB), U = (UA, UB) and ε = (εA, εB) are G-predictable processes and the martin-
gale of defaults M = (MA,MB).
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The different coefficients gj , j = {1, 2, 3} are defined by:

g1
t (Θt, θt, βt) = −

[
µt +

∑
i∈{A,B} θ

i
tσ
i
tλ
i
t + σtβt

]2

σ2
t +

∑
i∈{A,B}(1 + θit)(σ

i
t)

2
λit

g2
t (Yt, Ut, Zt) = −

[
µt +

∑
i∈{A,B} θ

i
tσ
i
tλ
i
t + σtβt

] [
σtZt +

∑
i∈{A,B}(1 + θit)σ

i
tU

i
tλ
i
t

]
σ2
t +

∑
i∈{A,B}(1 + θit)(σ

i
t)

2
λit

+
∑

i∈{A,B}

θitU
i
tλ
i
t + βtZt

g3
t (ξt, εt, Rt) = Θt−

Z2
t +

∑
i∈{A,B}

(U it )
2
(1 + θit)λ

i
t −

(
Ztσt +

∑
i∈{A,B} σ

i
tU

i
t (1 + θit)λ

i
t

)2

σ2
t +

∑
i∈{A,B}(1 + θit)(σ

i
t)

2
λit


Proof. Let π be an admissible strategy, let find the triplet (Θ, Y, ξ) such that for all t ≤ T

Jt(π) = Θt(X
x,π
t − Yt)2

+ ξt

is a submartingale. Since we know the dynamics of the wealth and the representation
of the triplet (Θ, Y, ξ) (3.19); from Ito’s formula and integration by part formula for jump
process, we find the decomposition of J(π). Let recall that for any S,L semimartingale,
we have that

d(StLt) = St−dLt + Lt−dSt + d[S,L]t

In our framework since jump comes from defaults events we get

d[S,L]t = 〈Sc, Lc〉t +
∑

i∈{A,B}

∆Sit∆L
i
tdH

i
t

Applying this results for S = L = (Xx,π − Y ) gives:

d(Xx,π − Y )2
t = 2(Xx,π

t− − Yt−)

(πtµt + g2
t )dt+

∑
i∈{A,B}

(πtσ
i
t − U it )dM i

t + (πtσt − Zt)dWt


+ (σtπt − Zt)2dt+

∑
i∈{A,B}

(πtσ
i
t − U it )

2
dH i

t

13



Secondly take S = Θ and L = (Xx,π − Y )2 , let define K := (Xx,π − Y ), we find:

d
(
ΘK2

)
t

= 2Kt−Θt−

(πtµt + g2
t )dt+

∑
i∈{A,B}

(πtσ
i
t − U it )dM i

t + (πtσt − Zt)dWt


+ Θt−(σtπt − Zt)2dt+

∑
i∈{A,B}

Θt−(πtσ
i
t − U it )

2
dH i

t −Θt−K
2
t−g

1
t dt

+ Θt−K
2
t−

 ∑
i∈{A,B}

θitdM
i
t + βtdWt

+ 2Kt−Θt−(πtσt − Zt)βtdt

+
∑

i∈{A,B}

[
(πtσ

i
t − U it )

2
+ 2Kt−(πtσ

i
t − U it )

]
θitΘt−dH

i
t

Using this decomposition, we can write explicitly the dynamics of the functional cost J(π)

for any π ∈ A, dJt(π) = dMπ
t + dV π

t :

dJt(π) = dMπ
t + Θt−

[
π2
t at + 2πt(btKt + ct) + 2Kt(g

2
t − ut)−K2

t g
1
t + vt

]
dt− g3

t dt (3.20)

where processes are defined respectively by:

at = σ2
t +

∑
i∈{A,B}

(σit)
2
(1 + θit)λ

i
t > 0, bt = µt + σtβt +

∑
i∈{A,B}

σitθ
i
tλ
i
t

ct = −σtZt −
∑

i∈{A,B}

σitU
i
t (1 + θit)λ

i
t, vt = Z2

t +
∑

i∈{A,B}

(U it )
2
(1 + θit)λ

i
t

ut = βtZt +
∑

i∈{A,B}

U itθ
i
tλ
i
t

The fact that, for any π, the process J(π) is a submartingale and the fact that there exists π∗

such that J(π∗) is a martingale imply that we should find π∗ such that the finite variation
part of J(π∗) vanishes. Then for any π , V π ≥ V π∗ = 0.

Therefore the strategy π∗ minimize the finite variation of V π. Since the coefficients
g1, g2 and g3 do not depend on π, using the first order condition (for any t ∈ [0, T ], πt → V π

t

is convex since a > 0 using Proposition 3.4), we find that

π∗t = −btKt + ct
at

, t ≤ T (3.21)

where Kt := Xx,π
t − Yt. Therefore using the explicit expression of the optimal strategy on

(3.20), we find:

dJt(π) = dMπ∗
t + Θt−

[
−(btKt + ct)

2

at
+ 2Kt(g

2
t − ut)−K2

t g
1
t + vt

]
dt− g3

t dt

= dMπ∗
t + Θt−

[
−K2

t

(
g1
t +

b2t
at

)
+ 2Kt

(
g2
t − ut −

btct
at

)]
dt+

(
(vt −

c2
t

at
)Θt− − g3

t

)
dt

then setting g1
t +

b2t
at

= 0, g2
t − ut − btct

at
= 0 and (vt − c2t

at
)Θt− − g3

t = 0. Finally we find the
expected results.
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Remark 3.3. If we find the solution of the both first BSDEs then the solution of the third is given
explicitly using representation theorem. Moreover we find:

ξt = E
[∫ T

t

(
(vs −

c2
s

as
)Θs−

)
ds
∣∣∣Gt] , t ≤ T.

In the complete market case, we have that the tracking error ξ ≡ 0 since the hedging is perfect.

3.2 Characterization of the VOM using BSDEs

We show in Proposition 3.8 that the Proposition 3.4 is equivalent to consider the triplet
( 1

Θ , θ, β) in S∞ × S∞ × BMO. This assertion leads us to construct the VOM in some com-
plete and incomplete markets. We find also that the price of the defaultable contingent
claim ψ via the VOM. We consider three different cases:

i. Complete market (where we assume G = F and G = HA)

ii. Incomplete market (where we consider only the case G = F ∨HA).

iii. Incomplete market (where we consider the case G = F ∨HA ∨HB).

We have explicit solution of the VOM with respect to the process Θ in the first two cases.

3.2.1 Complete market

If we assume that G = F (we do not consider the default impact of A and B on the asset
dynamics of the firm A) or G = HA (we don’t consider the spread of the market) then with
the usual assumptions on the assets parameters, the financial market is complete. Hence,
the VOM is the unique risk neutral probability and its dynamics can be found explicitly.
Our goal in this part is to find the solution of the triple BSDEs given the VOM P̄.

Proposition 3.6. Let P̄ be the VOM (the unique risk neutral probability) and let define Z̄T be the
Radon Nikodym density of P̄ with respect to P on GT . We denote Z̄t = E

[
Z̄T |Gt

]
, then for all

t ≤ T , we have that

Θt =
Z̄2
t

E
[
Z̄2
T |Gt

]
Moreover for all t ∈ [0, T ] we have that

Yt = Ē [ψ|Gt]

Proof. We will consider the two cases

(i) G = F

(ii) G = HA
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First case: Let consider the case where G is equal to F and let the process L defined by the
stochastic differential equation given by

dLt = Lt−ρtdWt

where ρ.W ∈ BMO, using Ito’s formula we find:

d

(
L2
t

Θt

)
=
L2
t

Θt

[
(2ρt − βt)dWt + (β2

t + g1
t − 2βtρt + ρ2

t )dt
]

=
L2
t

Θt

[
(2ρt − βt)dWt +

(
(βt − ρt)2 − (

µt
σt

+ βt)
2
)
dt

]
=
L2
t

Θt

[
(2ρt − βt)dWt +

(
(−ρt −

µt
σt

)(2βt + ρt +
µt
σt

)

)
dt

]
Then if we set for all t ≤ T that

ρt := −µt
σt

then the process L2

Θ is a true martingale using the bound condition of
(

1
Θ , µ, σ

)
and the

BMO property of β. Therefore we get:

E
(
L2
T

ΘT

∣∣∣Gt) =
L2
t

Θt
, t ≤ T

Since ΘT = 1, we find the expected result.
Moreover we obtain that L = Z̄ which is the Radon-Nikodym of the unique risk neu-

tral probability; g2
t = −µt

σt
Zt , g3

t = 0, then Yt = Ē [ψ|Gt] and ξt = 0, t ≤ T .

Second case: Let now consider the case where G is equal to H and let the process L define
by the stochastic differential equation given by

dLt = Lt−ρ
A
t dM

A
t

where ρA.MA ∈ BMO, using Ito’s formula we find:

d

(
L2
t

Θt

)
=
L2
t−

Θt−

[(
(1 + ρAt )

2

1 + θAt
− 1

)
dMA

t +

(
((θAt )

2
+ (ρAt )

2 − 2ρAt θ
A
t )λAt

1 + θAt
+ g1

t

)
dt

]

=
L2
t−

Θt−

[(
(1 + ρAt )

2

1 + θAt
− 1

)
dMA

t +
1

1 + θAt

(
(ρAt − θAt )

2 − (
µt

σAt λ
A
t

+ θAt )
2
)
λAt dt

]

=
L2
t−

Θt−

[(
(1 + ρAt )

2

1 + θAt
− 1

)
dMA

t +
1

1 + θAt

(
(ρAt +

µt

σAt λ
A
t

)(−2θAt + ρAt −
µt

σAt λ
A
t

)

)
λAt dt

]
then if we set for all t ≤ T

ρAt := − µt

λAt σ
A
t

then the process L2

Θ is a true martingale using the bound condition of Θ, µ, σA, θA. Hence
we get:

E
(
L2
T

ΘT

∣∣∣Gt) =
L2
t

Θt
, t ≤ T
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Since ΘT = 1, we find the expected result. Moreover L = Z̄ the Radon-Nikodym of
the unique risk neutral probability and g2

t = − µt
λAt
UAt , g3

t = 0, then Yt = Ē [ψ|Gt] and
ξt = 0, t ≤ T.

Remark 3.4. We can find the existence of solution of the triple BSDEs using only the explicitly
given VOM.

3.2.2 Incomplete market

In the incomplete market case the remark 3.4 doesn’t hold true. The VOM depends on
the dynamics of the triplet (Θ, θ, β). In the particular case where G = F ∨HA, we can find
that the Proposition 3.6 holds true. But in the case G = F ∨ HA ∨ HB , we can not prove
the existence of the VOM but we still characterize the process Θ with some martingale
measure.

Proposition 3.7. Let consider the incomplete market G = F∨HA, then the VOM (defiines the local
martingale measure Q which minimizes the L2-norm of ZQ), Z̄T represents the Radon Nikodym
density of P̄ with respect to P on GT and Z̄t = E

[
Z̄T |Gt

]
. We find for all t ≤ T

Θt =
Z̄2
t

E
[
Z̄2
T |Gt

]
Moreover

Yt = Ē [ψ|Gt]

In more general case, where G = F ∨ HA ∨ HB , we can only prove there exists a martingale
measure P̄ such that:

Θt =
Z̄2
t

E
[
Z̄2
T |Gt

] , t ≤ T.

and
Yt = Ē [ψ|Gt] , t ≤ T.

Proof. First step:
We consider the case where G = F∨HA. Let consider Q is a martingale measure forDA and
let define ZQ

T its Radon Nikodym density with respect to P on GT . we define the process

ZQ
t = E

[
ZQ
T |Gt

]
. Using martingale theorem representation there exists two G-predictable

processes ρA and ρ such that

dZt = Zt−
[
ρAt dM

A
t + ρtdWt

]
Using Ito’s formula, we find:

d

(
(ZQ

t )
2

Θt

)
=

(ZQ
t−)

2

Θt−

[(
(1 + ρAt )

2

1 + θAt
− 1

)
dMA

t + (2ρt − βt)dWt + jtdt

]
(3.22)

where jt = (ρt − βt)2 +
(ρAt −θAt )

2

1+θAt
λAt + g1

t . Since Q is a martingale measure for DA we get
using (2.8) that

µAt + ρAt σ
A
t λ

A
t + ρtσt = 0
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Hence using this equation we can find ρA using ρ and plotting this result on the expression
of j. We find:

jt = (ρt − βt)2 +
(µt + σtρt + σAt θ

A
t λ

A
t )

2

(1 + θAt )(σAt )
2
λAt

− (µt + βtσt + θAt σ
A
t λ

A
t )

2

(1 + θAt )(σAt )
2
λAt + σ2

t

Let now define
ρ̄t = ρt − βt, āt = σ2

t + (1 + θAt )(σAt )
2
λAt

and
b̄t = µt + σtβt + σAt θ

A
t λ

A
t

then we get:

jt =
1

(1 + θAt )(σAt )
2
λAt

[
ātρ̄t + 2ρ̄tb̄tσt +

b̄2tσ
2
t

āt

]
=

āt

(1 + θAt )(σAt )
2
λAt

(
ρ̄t +

b̄tσt
āt

)2

Then with (3.22), j ≥ 0 and the process (ZQ)
2

Θ is a submartingale (since ZQ is a martingale

and 1
Θ ∈ S

∞). We deduce E
[

(ZQ
T )

2

ΘT

]
≥ (ZQ

0 )
2

Θ0
, since ΘT = 1 and ZQ

0 = 1.

Finally we get for any martingale measure forDA that E
[
(ZQ

T )
2
]
≥ 1

Θ0
. Moreover if we

set ρ̄t = − b̄tσt
āt

, then Z̄ is a true martingale measure since (Θ, θ, β) ∈ S∞ ×S∞ ×BMO and
µ, σA, σB are bounded (the process b,a, ρ and ρA are bounded). We call P̄ the martingale
measure under this condition then E

[
Z̄2
T

]
= 1

Θ0
. We deduce P̄ is the martingale measure

which minimizes the L2-norm of Z and Θ̄t =
Z̄2
t

E[Z̄2
T |Gt]

, t ≤ T . Using the explicit expression

of ρ we find:

ρt = −σtb̄t
āt

+ βt

ρAt = −(1 + θAt )σAt b̄t
āt

+ θAt

Moreover since

g2
t =
−b̄t(σtZt + (1 + θAt )UAt σ

A
t λ

A
t )

āt
+ βtZt + UAt λ

A
t

= Zt

(
− b̄tσt
āt

+ βt

)
+ UAt

(
−(1 + θAt )σAt b̄t

āt
+ θAt

)
λAt

= Ztρt + UAt ρ
A
t λ

A
t

then we conclude that Yt = Ē [ψ|Gt]. Therefore the characterization of the price of ψ (using
Mean-Variance approach) and the VOM in this incomplete case is well defined using the
triplet (Θ, θ, β) associated to the first BSDE.
Second step:
We consider the general case where G = F ∨ HA ∨ HB . Let consider Q is a martingale
measure for DA and let define ZQ

T its Radon Nikodym density with respect to P on GT . We
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define the process ZQ
t = E

[
ZQ
T |Gt

]
. Using martingale theorem representation there exists

two G− predictable processes ρA, ρB and ρ such that

dZt = Zt−
[
ρAt dM

A
t + ρBt dM

B
t + ρtdWt

]
Using Ito’s formula, we find:

d

(
(ZQ

t )
2

Θt

)
=

(ZQ
t−)

2

Θt−

 ∑
i∈{A,B}

(
(1 + ρit)

2

1 + θit
− 1

)
dM i

t + (2ρt − βt)dWt + jtdt


where jt = (ρt − βt)2 +

∑
i∈{A,B}

(ρit−θit)
2

1+θit
λit + g1

t . Since Q a martingale measure for DA we
get by (2.8)

µAt +
∑

i∈{A,B}

ρitσ
i
tλ
i
t + ρtσt = 0

Hence using this equation, we can find ρA using ρ and ρB and plotting this result on the
expression of j. Let first recall a notation:

at = σ2
t +

∑
i∈{A,B}

(1 + θit)(σ
i
t)

2
λit and bt = µt + σtβt +

∑
i∈{A,B}

θitσ
i
tλ
i
t

then we find:

Ct :=(1 + θAt )(σAt )
2
λAt jt

= (ρt − βt)2[σ2
t + (1 + θAt )(σAt )

2
λAt ] +

(ρBt − θBt )
2

1 + θBt
λBt

 ∑
i∈{A,B}

(1 + θit)(σ
i
t)

2
λit


+
b2t
at

[
σ2
t + (1 + θBt )(σBt )

2
λBt

]
+ 2(ρBt − θBt )(ρt − βt)σtσBt λBt

+ 2bt
[
(ρt − βt)σt + (ρBt − θBt )σBt λ

B
t

]
Then from the two first term we add and move an additional process to find the process
a, we get:

Ct =

[
(ρt − βt)2at +

b2t
at
σ2
t + 2bt(ρt − βt)σt

]
+ (1 + θBt )λBt

[(ρBt − θBt )
2

(1 + θBt )
2 at + 2btσ

B
t

ρBt − θBt
1 + θBt

+
b2t
a2
t

(σBt )
2
]

+ (1 + θBt )λBt

[
2(ρt − βt)

(ρBt − θBt )

(1 + θBt )
σtσ

B
t − (ρt − βt)2(σBt )

2 − (ρBt − θBt )
2

(1 + θBt )
2 σ2

t

]

Finally we find a more explicit expression of the coefficient j:

Ct = at

[(
(ρt − βt) +

bt
at
σt

)2

+ (1 + θBt )λBt

(
(ρBt − θBt )

1 + θBt
+
btσ

B
t

at

)2
]

−(1 + θBt )λBt (σBt )
2
(

(ρt − βt)−
σt

σBt

ρBt − θBt
1 + θBt

)2
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It follows that if we set ρt−βt := − bt
at
σt and ρBt − θBt := −(1 + θBt )σBt

bt
at

, then we find j = 0

and ρAt − θAt = −σAt bt
at

.
Since ( 1

Θ , θ, β) ∈ S∞×S∞×BMO and µ, σA, σB and σ are bounded then the processes
b, a, ρ, ρA and ρB are bounded. Therefore, we deduce there exists a martingale measure P̄
such that

δ ≤ Θt =
Z̄2
t

E
[
Z̄2
T |Gt

] , t ≤ T.

Moreover we find for all t ≤ T that

g2
t = Ztρt +

∑
i∈{A,B}

U itρ
i
tλ
i
t

then Yt = Ē [ψ|Gt].
To identify that P̄ is the VOM in this case, we should prove that j ≥ 0 as in the first

case; but from the last expression of j, we can’t prove that this condition holds true. We
remark that the assertion of VOM will be justify if one of the following equality is satisfied:

σBt (ρt − βt) = σt
ρBt − θBt
1 + θBt

, σAt
ρBt − θBt
1 + θBt

= σBt
ρAt − θAt
1 + θAt

and σAt (ρt − βt) = σt
ρAt − θAt
1 + θAt

.

3.3 Existence of BSDE’s solution

We prove in this part the existence of the triplet (Θ, θ, β). Note that to prove the exis-
tence of the triple, we dont need the assumption that the VOM exists and should satisfied
the R2(P) condition (this assumption implies the Radon-Nikodym of the VOM P̄ with re-
spect to P on GT is non-negative). Proving that the triple exists justify from Proposition 3.7
that the VOM exists. Moreover if the triple is defined such that Z̄ is non negative implies
that P̄ satisfies the R2(P) condition.

Proposition 3.8. The process ( 1
Θ , θ, β) ∈ S∞ × S∞ × BMO. Moreover there exists δ such that:

δ ≤ Θt ≤ 1, t ∈ [0, T ].

Proof. The proof is a consequence of Proposition 3.4 and Proposition 3.7. Indeed from
Proposition 3.7 , we deduce 1

Θ ∈ S
∞. Moreover since Θ > 0 and from the equation:

Θt = ΘT +

∫ T

t
Θs−g

1
s(Θs, θs, βs)ds−

∫ T

t
Θs−θs.dMs −

∫ T

t
Θs−βsdWs.

we conclude δ ≤ Θt ≤ E [ΘT |Gt] ≤ 1. We can remark that we find the same conclusion
(Θ ≤ 1) as Jeanblanc and al. [10]. Actually, since the process Θ is bounded, from Lemma
3.1 in Appendix we conclude that the process (Θt−θt)t≤T is bounded. Therefore since
Θ ≥ δ > 0, we find that the process θ is bounded too. To prove that β ∈ BMO, we use Ito
formula to:∫ T

τ
Θ2
tβ

2
t dt+

∫ T

τ
Θ2
t

∑
i∈{A,B}

(θit)
2
λitdt ≤ Θ2

T − θ2
τ +

∫ T

τ
2Θt−g

1
t dt+MT −Mτ .
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where τ is a G-stopping times and M is a martingale (from Doob’s decomposition of the
submartinagle Θ), since g1 < 0 and 0 < δ ≤ Θ ≤ 1 then taking the conditional expectation
we find:

E
[∫ T

τ
β2
t dt
∣∣∣Gτ] ≤ 1

δ2
(1− δ2)

We conclude β.W ∈ BMO (for simplify notation β ∈ BMO).

Actually we can prove the existence of the triple BSDEs since we have more informa-
tions on the space of solution.

Theorem 3.2. There exists a triplet (Θ, θ, β) ∈ S∞ × S∞ × BMO solution of the BSDE

dΘt

Θt−
= −g1

t (Θt, θt, βt)dt+ θt.dMt + βtdWt, ΘT = 1.

Moreover given the triplet (Θ, θ, β), we can prove the existence of solutions of the two BSDEs
(g2, ψ) and (g3, 0).

Proof. The proof is divided in two parts. In the first part, we give a general bound for the
coefficient of the first BSDE and in the second part we deal with splitting technics to deal
with the existence of the BSDE.
First step: Let define ḡt = Θt−g

1
t , θ̄it = Θt−θ

i
t for i ∈ {A,B} and β̄t = Θt−βt, t ≤ T and let

define the BSDE (ḡ,ΘT ):
dΘt = −ḡtdt+ θ̄t.dMt + β̄tdWt.

Let define some properties of ḡ:

|ḡt(Θt, θt, βt)| = Θt−

[
µt +

∑
i∈{A,B} θ

i
tσ
i
tλ
i
t + σtβt

]2

σ2
t +

∑
i∈{A,B}(1 + θit)(σ

i
t)

2
λit

≤ 3Θt−

µ2
t

σ2
t

+

(∑
i∈{A,B} θ

i
tσ
i
tλ
i
t

)2

∑
i∈{A,B}(1 + θit)(σ

i
t)

2
λit

+ β2
t


≤ 6Θt−

[
µ2
t

σ2
t

+ β2
t + (1 + θAt )λAt + (1 + θBt )λBt

]
since the process µ, σ and Θ are bounded then there exists a non negative constant C > 0

such that:

|ḡt(Θt, θt, βt)| ≤ C

1 + Θt−β
2
t +

∑
i∈{A,B}

(1 + Θt−θ
i
t)λ

i
t


Since the processes (Θt−θ

i
t)t≤T and λi, i ∈ {A,B} are bounded then there exists a non-

negative constant C such that:

|ḡt(Θt, θ̄t, β̄t)| ≤ C

(
1 +
|β̄t|

2

δ

)
. (3.23)
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We can split the BSDE on different continuous BSDE (see Kharroubi and Lim [12]) and
since the bound of the coefficient does not depend on the jump process then the different
coefficients of the splitting BSDEs will satisfy a quadratic growth.
Second step: (The splitting of the jump BSDE):
First we define τ1 = τA ∧ τB , τ2 = τA ∨ τB and

∆k = {(l1, · · · lk) ∈ (R+)
k

: l1 ≤ · · · lk}, 1 ≤ k ≤ 2.

Since we work with the same assumption (density assumption) and notation as in [12]
then we can decomposed ΘT and ḡ such that:

ΘT = γ01{{0≤T≤τ1}} + γ1({τ1})1{τ1≤T≤τ2} + γ2(τ1, τ2)1{τ2>T}

and

ḡt(Θt, θ̄t, β̄) = ḡ0
t (Θ, θ̄, β̄)1{0≤T≤τ1} + ḡ1

t (Θ, θ̄, β̄, τ
1)1{τ1≤T≤τ2} + ḡ2

t (Θ, θ̄, β̄, τ
1, τ2)1{T>τ2}

where γ0 is FT -measurable, γk is FT ⊗ B(∆k)-measurable for k = 1, 2 and ḡ0 is P(F) ⊗
B(R) ⊗ B(R)-measurable, ḡk is P(F) ⊗ B(R) ⊗ B(R) ⊗ B(∆k). Moreover the variables
γk ∈ (0, 1) for k = {0, 1, 2} since ΘT ∈ (0, 1) (see proposition 3.1 in Kharroubi and Lim
[12]).

Let now give the main result of splitting BSDE which is a first step to prove the exis-
tence of the triplet (Θ, θ̄, β̄). Let l ∈ ∆2 and let assume the following BSDEs:

dΘ2
t (l) = −ḡ2

t (Θ
2
t (l), 0, βt(l))dt+ βt(l)dWt, Θ2

T (l) = γ2(l). (3.24)

admits a solution (Θ2
t (l), βt(l)) ∈ S∞([l2 ∧ T, T ])×H2[l2 ∧ T, T ] and for k = {0, 1}

dΘk
t (l(k)) = −ḡkt

[
Θk+1
t (l(k)), (Θ

k
t −Θk−1

t )(l(k)), β̄t(l(k))
]
dt+ β̄t(l(k))dWt, Θk

T (l(k)) = γk(l(k)).

(3.25)

admits a solution
(
Θk(l(k), β̄

k(l(k))
)
∈ S∞([lk∧T, T ])×H2[lk∧T, T ]. where l(k) = (l1, · · · lk)

then the triple (Θ, θ̄, β̄) is given by:

Θt = Θ0
t 1{t<τ1} + Θ1

t (τ
1)1{τ1≤t≤τ2} + Θ2

t (τ
1, τ2)1{τ2<t}

β̄t = β̄0
t 1{t<τ1} + β̄1

t (τ1)1{τ1≤t≤τ2} + β̄2
t (τ1, τ2)1{τ2<t}

θ̄t = θ̄0
t 1{t<τ1} + θ̄1

t (τ
1)1{τ1≤t≤τ2}

(3.26)

where θ̄t(τ(k)) = Θk+1
t (τ(k), t)−Θk

t (τ(k)) and τ(k) = (τ1, · · · τk), for k = {0, 1}.
Therefore, to prove the existence of the triple (Θ, θ, β) we should prove the existence

of the BSDEs (3.24) and (3.25). Firstly, let remark for k = {0, 1, 2}, γk ∈ (0, 1) and 0 ≤
Θk(l(k)) ≤ 1. Secondly, from the boundness of ḡ from (3.23) we deduce using the same
arguments of [12](proof of Proposition 3.1 step 2) that there exists a non negative constant
such that:

|ḡkt (y, z, u, l(k))| ≤ C
(
1 + |z|2

)
.
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To resume, to prove the existence of the BSDEs (3.24) and (3.25) it is sufficient to prove the
existence of the BSDE:

dxt = −ft(xt, zt) + ztdWt, xT = γ ∈ (0, 1) (3.27)

where |ft(x, z)| ≤ C
(
1 + |z|2

)
. From Kobylanski result see [13], there exist a pair (X,Z) ∈

S∞ × BMO maximal solution, then for k = {0, 1, 2}, there exists a solution (Θk, Zk) asso-
ciated to (gk, γk). Therefore we conclude the existence of the triple (Θ, θ̄, β̄) ∈ S∞ × S∞ ×
BMO using (3.26).

3.4 Special case and explicit solution of the BSDE

We assume G = F ∨ HA and that the parameters of the asset’s dynamics are constant
before and after the default time τA. Moreover, we assume that the intensity process is
given by λt = λ(1 − HA

t ). Using theses assumptions, we find an explicit solution of the
BSDE associated to (ḡ,ΘT ) using the splitting approach.

Assumption 3.3. The processes µ, σ, σA, λ in (1.2) satisfy the following sassumptions:

µt = µ(Ht) = µ(0)1{τA>t} + µ(1)1{τA≤t},

σt = σ(Ht) = σ(0)1{τA>t} + σ(1)1{τA≤t},

σAt = σA(Ht) = κ1{τA>t},

λt = λ(Ht) = λ1{τA>t}.

such that µ(0)κ = σ(0)2 + κ2λ.

Proposition 3.9. Under Assumption 3.3, there exists a solution of the BSDE associated to (ḡ,Θ)

given by:

Θt = exp

[
−µ(0)

κ
(T − t)

]
1{τA>t} + exp

[
−
(
µ(1)

σ(1)

)2

(T − t)

]
1{τA≤t}, t ≤ T.

Proof. To prove Proposition 3.9, let first recall that using the splitting approach developped
by [12], we can write the BSDE before and after the default. Let recall that in our case:

Θt = Θ0
t 1{t<τA} + Θ1

t (τ
A)1{τA≤t}

g1
t = g1,0

t 1{t<τA} + g1,1
t 1{τA≤t}

where Θ0 and Θ1 satisfy the following dynamics:

− dΘ0
t

Θ0
t

= g1,0
t (Θ0

t , θ
A
t , β

0
t )dt− β0

t dWt + λθAt dt, Θ0
T = 1,

− dΘ1
t (l)

Θ1
t (l)

= g1,1
t (Θ1

t (l), 0, β
1
t (l))dt− β1

t (l)dWt, Θ1
T (l) = 1
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with

g1,0
t (Θ0

t , θ
A
t , β

0
t ) = −

[
µ(0) + θAt κλ+ σ(0)β0

t

]2
σ(0)2 + (1 + θAt )κ2λ

and g1,1
t (Θ1

t (l), 0, β
1
t (l)) = −

[
µ(1) + σ(1)β1

t (l)
]2

σ(1)2

where l ∈ ∆1 and Θ1
t (t) − Θ0

t = θAt Θ0
t , see proof of Theorem 3.2 for more details. Using

Assumption 3.3, we set β1(l) = 0 and we find g1,1
t (Θ1

t , 0, β
1
t (l)) = −

(
µ(1)
σ(1)

)2
, since Θ1

T (l) =

1, then Θ1(l) = Θ1, we get:

Θ1
t = exp

[
−
(
µ(1)

σ(1)

)2

(T − t)

]
, t ≤ T.

To find the solution of the first one, we set β0 = 0 and from Assumption 3.3

µ(0)κ = σ(0)2 + κ2λ

we deduce g1,0
t (Θ0

t , θ
A
t , β

0
t ) = −µ(0)

κ −θ
A
t λ. Therefore we find that Θ0 satisfies the dynamics:

−dΘ0
t

Θ0
t

= −µ(0)

κ
dt, Θ0

T = 1.

we get Θ0
t = exp

[
−µ(0)

κ (T − t)
]

and we find the expected result.

Appendix

Lemma 3.1. Let consider X and Y two G-predictable processes such that for i ∈ {A,B}, Yτi =

Xτi . Then, Xt = Yt on (τi ≥ t) a.s. Moreover, if Xτi ≤ Yτi , then Xt ≤ Yt a.s on (τi ≥ t).

Proof. Assume that X and Y are bounded. If Xτi = Yτi , then
∫∞

0 |Xt − Yt|dH i
t = 0 and

0 = E
(∫ ∞

0
|Xt − Yt|dH i

t

)
= E

[∫ ∞
0
|Xt − Yt|λitdt

]
.

Therefore, we haveXt = Yt on (τ i ≥ t). Moreover, ifXτi ≤ Yτi , we consider the predictable
process V defined as Vt = Yt1{Xt≤Yt}. Then Vτ i = Yτ i and by using the first part of the
proof, we obtain Vt = Yt on (τ i ≥ t). The general case follows.
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