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Semiclassical asymptotics for the twisted Neumann
Laplacian with magnetic field

Nicolas Raymond

September 21, 2011

Abstract

We consider the twisted magnetic Laplacian with Neumann condition on a smooth
and bounded domain of R2 in the semiclassical limit h → 0. Under generic assump-
tions, we prove the existence of a complete asymptotics in powers of h of the lowest
eigenvalues.

1 Introduction and main results
Let Ω be an open bounded and simply connected subset of R2 with smooth boundary.
Let us consider a smooth vector potential A such that β = ∇ × A > 0 on Ω and
a a smooth and positive function on Ω. We are interested in estimating the lowest
eigenvalues λn(h) of the operator Ph,A = (ih∇ + A)a(ih∇ + A) whose domain is
given by:

Dom(Ph,A) =
{
ψ ∈ L2(Ω) : (−ih∇+ A)a(−ih∇+ A)ψ ∈ L2(Ω)

and (−ih∇+ A)ψ · ν = 0 on ∂Ω
}
.

The corresponding quadratic form denoted by Qh,A is defined on H1(Ω) by:

Qh,A(ψ) =
∫

Ω
a(x)|(−ih∇+ A)ψ|2 dx.

By gauge invariance, this is standard that the spectrum of Ph,A only depends on the
magnetic field β = ∇× A.

1.1 Motivations
Before stating our main result, we should briefly describe the context and the motiva-
tions of this paper. As much in 2D as in 3D, the magnetic Laplacian, corresponding
to the case when a = 1, appears in the theory of superconductivity when studying the
third critical field HC3 after the linearization of the Ginzburg-Landau functional (see
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for instance [16, 17] and also the book of Fournais and Helffer [11]). It turns out that
HC3 can be related to the lowest eigenvalue of the magnetic Laplacian in the regime
h → 0. In fact, the case which is mainly investigated is the case when the magnetic
field is constant. In 2D, the two term asymptotics is done in the case of the disk in
[4] (see also [5] and [9]) and is generalized in [13] to smooth and bounded domains.
The asymptotics at any order of all the lowest eigenvalues is proved in [10]. In 3D,
one can mention the celebrated paper [14] giving the two term asymptotics of the first
eigenvalue. When the magnetic field is variable (and a = 1), less results are known.
In 2D, the paper [16] provides a one term asymptotics of the lowest eigenvalue and
[19] gives the two term asymptotics under generic assumptions. In 3D, for the one
term asymptotics, one can mention [17] and for a three term asymptotics upper bound
[20].

Here we consider a twist factor a > 0. As we will see, the presence of a will
not complicate so much our analyzis. The motivation to add this term comes from [3]
where the twisted magnetic Laplacian appears after a Gamma limit of a 3D Ginzburg-
Landau functional (in a thin film limit) so that we can think to a as the memory of a
3D geometry. Moreover, we will see that the quantity to minimize to get the lowest
energy is the function aβ so that this situation reminds what happens in 3D in [17, 20]
and where the three term asymptotics is still not established.

We shall now recall basic properties of the de Gennes operator in order to state our
results.

The de Gennes operator For ξ ∈ R, we consider the Neumann realization Hξ in
L2(R+) associated with the operator

− d2

dt2
+ (t− ξ)2, Dom(Hξ) = {u ∈ B2(R+) : u′(0) = 0}. (1.1)

One knows (see [8]) that it has compact resolvent and its lowest eigenvalue is denoted
µ(ξ) ; the associated L2-normalized and positive eigenstate is denoted by uξ = u(·, ξ)
and is in the Schwartz class. The function ξ 7→ µ(ξ) admits a unique minimum in
ξ = ξ0 and we let:

Θ0 = µ(ξ0), (1.2)

C1 =
u2
ξ0

(0)
3

. (1.3)

Let us also recall identities established by [5, p. 1283-1284]. For k ∈ N∗, we let:

Mk =
∫
t>0

(t− ξ0)k|uξ0(t)|2dt.

M0 = 1, M1 = 0, M2 =
Θ0

2
, M3 =

C1

2
and

µ′′(ξ0)
2

= 3C1

√
Θ0.

(1.4)
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1.2 Main result
We will assume that

Θ0 min
∂Ω

a(x)β(x) < min
Ω
a(x)β(x). (1.5)

and that

x ∈ ∂Ω 7→ a(x)β(x) admits a unique and non degenerate minimum at x0. (1.6)

Let us state our first rough estimate:

Proposition 1.1 Under Assumptions (1.5) and (1.6), for all n ≥ 1, we have:

λn(h) = Θ0ha(x0)β(x0) +O(h5/4).

From this proposition, we see that the asymptotics of λn(h) is related to local proper-
ties of Ph,A near x0. That is why we are led to introduce a system of local coordinates
near x0.

Local coordinates (s, t) We use the local coordinates (s, t) near x0 = (0, 0),
where t(x) = d(x, ∂Ω) and s(x) is the tangential coordinate of x. We choose a
parametrization of the boundary:

γ : R/(|∂Ω|Z)→ ∂Ω.

Let ν(s) be the unit vector normal to the boundary, pointing inward at the point γ(s).
We choose the orientation of the parametrization γ to be counter-clockwise, so that:

det(γ′(s), ν(s)) = 1.

The curvature k(s) at the point γ(s) is given in this parametrization by:

γ′′(s) = k(s)ν(s).

The map Φ defined by:

Φ : R/(|∂Ω|Z)×]0, t0[→ Ω
(s, t) 7→ γ(s) + tν(s), (1.7)

is clearly a diffeomorphism, when t0 is sufficently small, with image

Φ(R/(|∂Ω|Z)×]0, t0[) = {x ∈ Ω|d(x, ∂Ω) < t0} = Ωt0 .

We let:

Ã1(s, t) = (1− tk(s))A(Φ(s, t)) · γ′(s), Ã2(s, t) = A(Φ(s, t)) · ν(s),

β̃(s, t) = β(Φ(s, t)),

3



and we get:
∂sÃ2 − ∂tÃ1 = (1− tk(s))β̃(s, t).

The quadratic form becomes:

Qh,A(ψ) =
∫
ã(1−tk(s))|(−ih∂t+Ã2)ψ|2+ã(1−tk(s))−1|(−ih∂s+Ã1)ψ|2 dsdt.

In a (simply connected) neighborhood of (0, 0), we can choose a gauge such that:

Ã1(s, t) = −
∫ t

t1

(1− t′k(s))β̃(s, t′)dt′, Ã2 = 0. (1.8)

Let us introduce some notation. We write the Taylor expansions:

ã(s, t) = a(Φ(s, t)) = 1 + a1s+ a2t+ a11s
2 + a12st+ a22t

2 +O(|s|3 + |t|3)

and

β̃ = β(Φ(s, t)) = 1 + b1s+ b2t+ b11s
2 + b12st+ b2t

2 +O(|s|3 + |t|3),

where we have assumed the normalization:

a(x0) = β(x0) = 1. (1.9)

Let us translate the generic assumptions (1.5) and (1.6). The critical point condition
becomes:

a1 = −b1 (1.10)

and the non-degeneracy property reformulates:

b11 + a1b1 + a11 = a11 + b11 − a2
1 = α > 0. (1.11)

We can now state the main result of this paper:

Theorem 1.2 We assume Assumptions (1.5), (1.6) and the normalization condition
(1.9). For all n ≥ 1, there exist a sequence (γn,j)j≥0 and h0 > 0 such that for all
h ∈ (0, h0), we have:

λn(h) ∼
h→0

h
∑
j≥0

γn,jh
j
4 .

Moreover, we have, for all n ≥ 1:

γn,0 = Θ0, γn,1 = 0,

γn,2 = C(k0, a2, b2) + (2n− 1)
(
αΘ0µ

′′(ξ0)
2

)1/2

,

with:

C(k0, a2, b2) = −C1k0 +
3C1

2
a2 +

(
C1

2
+ ξ0Θ0

)
b2.

Remark 1.3 In particular, this theorem generalizes [19, Theorem 1.7]. Moreover, as
a consequence of the asymptotics of the eigenvalues (which are simple for h small
enough), we also get the corresponding asymptotics for the eigenfunctions. These
eigenfunctions are approximated (in the L2 sense) by the power series which we will
use as quasimodes (see (2.8)).
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1.3 Scheme of the proof
In Section 2, we perform a construction of quasimodes and quasi-eigenvalues thanks
to a formal expansion in power series of the operator. This analyzis relies on gener-
alizations of the Feynman-Hellmann formula and of the Virial theorem which were
already introduced in [20] and which are an alternative to the Grushin approach used
in [10]. Then, we use the spectral theorem to infer the existence of spectrum near
each constructed power series. In Section 3, we prove a rough lower bound for the
lowest eigenvalues and deduce Agmon estimates with respect to the variable t which
provide a localization of the lowest eigenfunctions in a neighborhood of the boundary
of size h1/2. In Section 4, we improve the lower bound of Section 3 and deduce a
localization of size h1/4 with respect to the tangential coordinate s. In Section 5, we
prove a lower bound for Qh,A thanks to the definition of ”magnetic coordinates” and
we reduce the study to a model operator (partially similar to the one studied through a
Born-Oppenheimer approximation in [6]) for which we are able to estimate the spec-
tral gap between the lowest eigenvalues.

2 Accurate construction of quasimodes
This section is devoted to the proof of the following theorem:

Theorem 2.1 For all n ≥ 1, there exists a sequence (γn,j)j≥0 such that, for all J ≥ 0,
there exist h0 > 0, C > 0 such that:

d

h J∑
j=0

γn,jh
j/4, σ(Ph,A)

 ≤ ChJ+1
4 .

Moreover, we have, for all n ≥ 1:

γn,0 = Θ0, γn,1 = 0,

γn,2 = C(k0, a2, b2) + (2n− 1)
(

(a11 + b11 − a2
1)Θ0µ

′′(ξ0)
2

)1/2

.

The proof of Theorem 2.1 is based on a construction of quasimodes for Ph,A local-
ized near x0. Near x0 and using a suitable gauge (see (1.8)), we are led to construct
quasimodes for the following the operator:

L(s,−ih∂s; t,−ih∂t) =− h2(1− tk(s))−1∂t(1− tk(s))ã∂t
+ (1− tk(s))−1(−ih∂s + Ã)(1− tk(s))−1ã(−ih∂s + Ã),

where:

Ã(s, t) = (t−ξ0h
1/2)+b1s(t−ξ0h

1/2)+(b2−k0)
t2

2
+b11s

2(t−ξ0h
1/2)+O(|t|3+|st2|).

Let us now perform the scaling:

s = h1/4σ and t = h1/2τ.
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The operator becomes:

L(h) = L(h1/4σ,−ih3/4∂σ;h1/2τ,−ih1/2∂τ ).

We can formally write L(h) as a power series:

L(h) ∼ h
∑
j≥0

Ljhj/4,

where

L0 =− ∂2
τ + (τ − ξ0)2, (2.1)

L1 =− a1σ∂
2
τ − 2i∂σ(τ − ξ0) + a1(τ − ξ0)2σ + 2b1στ(τ − ξ0) (2.2)

=a1σHξ0 − 2i∂σ(τ − ξ0) + 2b1σ(τ − ξ0)2,

L2 =− a2τ∂
2
τ − a2∂τ + k0∂τ + 2k0τ(τ − ξ0)2 + a2τ(τ − ξ0)2 (2.3)

+ (b2 − k0)τ2(τ − ξ0)− ia1(τ − ξ0)

+ σ2
(
a11Hξ0 − a2

1(τ − ξ0)2 + 2b11(τ − ξ0)2
)

− ∂2
σ − 2ia1(τ − ξ0)σ∂σ + ia1(τ − ξ0)∂σσ.

The aim is now to define good quasimodes for L(h). Before starting the construction,
we shall recall in the next subsection a few formulas coming from perturbation theory.

2.1 Feynman-Hellmann and Virial formulas
For ρ > 0 and ξ ∈ R, let us introduce the Neumann realization on R+ of:

Hρ,ξ = −ρ−1∂2
τ + (ρ1/2τ − ξ)2.

By scaling, we observe that Hρ,ξ is unitarily equivalent to Hξ and that H1,ξ = Hξ

(the corresponding eigenfunction is u1,ξ = uξ). The form domain of Hρ,ξ is B1(R+)
and is independent from ρ and ξ so that the family (Hρ,ξ)ρ>0,ξ∈R is an holomorphic
family of type (B) (see [15, p. 395]). The lowest eigenvalue of Hρ,ξ is µ(ξ) and we
will denote by uρ,ξ the corresponding normalized eigenfunction:

uρ,ξ(τ) = ρ1/4uξ(ρ1/2τ).

Since uξ satisfies the Neumann condition, we observe that ∂mρ ∂
n
ξ uρ,ξ also satisfies it.

In order to lighten the notation and when it is not ambiguous we will writeH forHρ,ξ,
u for uρ,ξ and µ for µ(ξ).

The main idea is now to take derivatives of:

Hu = µu (2.4)

with respect to ρ and ξ. Taking the derivative with respect to ρ and ξ, we get the
proposition:
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Proposition 2.2 We have:

(H − µ)∂ξu = 2(ρ1/2τ − ξ)u+ µ′(ξ)u (2.5)

and

(H − µ)∂ρu = −ρ−2∂2
τ − ξρ−1(ρ1/2τ − ξ)− ρ−1τ(ρ1/2τ − ξ)2. (2.6)

Moreover, we get:
(H − µ)(Su) = Xu, (2.7)

where
X = −ξ

2
µ′(ξ) + ρ−1∂2

τ + (ρ1/2τ − ξ)2

and
S = −ξ

2
∂ξ − ρ∂ρ.

Proof: Taking the derivatives with respect to ξ and ρ of (2.4), we get:

(H − µ)∂ξu = µ′(ξ)u− ∂ξHu

and
(H − µ)∂ρu = −∂ρH.

We have: ∂ξH = −2(ρ1/2τ − ξ) and ∂ρH = ρ−2∂2
ρ + ρ−1/2τ(ρ1/2τ − ξ). �

Taking ρ = 1 and ξ = ξ0 in (2.5), we deduce, with the Fredholm alternative:

Corollary 2.3 We have:

(Hξ0 − µ(ξ0))vξ0 = 2(t− ξ0)uξ0 ,

with:
vξ0 = (∂ξuξ)|ξ=ξ0 .

Moreover, we have: ∫
τ>0

(τ − ξ0)u2
ξ0 dσdτ = 0.

Corollary 2.4 We have, for all ρ > 0:∫
τ>0

(ρ1/2τ − ξ0)u2
ρ,ξ0 dσdτ = 0

and: ∫
τ>0

(τ − ξ0) (∂ρu)ρ=1,ξ=ξ0
u dσdτ = −ξ0

4
.
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Corollary 2.5 We have:

(Hξ0 − µ(ξ0))S0u =
(
∂2
τ + (τ − ξ0)2

)
uξ0 ,

where:
S0u = − (∂ρuρ,ξ)|ρ=1,ξ=ξ0

− ξ0

2
vξ0 .

Moreover, we have:

‖∂τuξ0‖2 = ‖(τ − ξ0)uξ0‖2 =
Θ0

2
.

The next three propositions deal with the second derivatives of (2.4) with respect to ξ
and ρ.

Proposition 2.6 We have:

(Hξ − µ(ξ))wξ0 = 4(τ − ξ0)vξ0 + (µ′′(ξ0)− 2)uξ0 ,

with
wξ0 =

(
∂2
ξuξ
)
|ξ=ξ0

.

Moreover, we have: ∫
τ>0

(τ − ξ0)vξ0uξ0 dσdτ =
2− µ′′(ξ0)

4
.

Proof: Taking the derivative of (2.5) with respect to ξ (with ρ = 1), we get:

(Hξ − µ(ξ))∂2
ξuξ = 2µ′(ξ)∂ξuξ + 4(τ − ξ)∂ξuξ + (µ′′(ξ)− 2)uξ.

It remains to take ξ = ξ0 and to write the Fredholm alternative. �

Proposition 2.7 We have:

(H − µ)
(
∂2
ρu
)
ρ=1,ξ=ξ0

=− 2(∂2
τ + (τ − ξ0)2) (∂ρu)ρ=1,ξ=ξ0

− 2ξ0(τ − ξ0) (∂ρu)ρ=1,ξ=ξ0
+ (2∂2

τ −
ξ0τ

2
)uξ0

and:
〈(∂2

τ + (τ − ξ0)2)(∂ρu)ρ=1,ξ=ξ0 , uξ0〉 = −Θ0

2
.

Proof: We just have to take the derivative of (2.6) with respect to ρ and ρ = 1,
ξ = ξ0. To get the second identity, we use the Fredholm alternative, Corollary 2.4 and
Corollary 2.5. �

Taking the derivative of (2.7) with respect to ρ, we find:

Lemma 2.8 We have:

(H − µ)(∂ρSu)ρ=1,ξ=ξ0 =(−∂2
τ + τ(τ − ξ0))uξ0 − (∂ρH)ρ=1,ξ=ξ0(S0u)

+ (∂2
τ + (τ − ξ0)2)(∂ρu)ρ=1,ξ=ξ0

and
〈(∂ρH)ρ=1,ξ=ξ0(S0u), u〉 =

Θ0

2
.
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Lemma 2.9 We have:

〈(τ − ξ0)S0u, uξ0〉 =
ξ0

8
µ′′(ξ0).

Proof: We have:

µ′(ξ) = −2
∫
τ>0

(ρ1/2τ − ξ)u2
ρ,ξ dσdτ

and:

S0µ
′ = −2

∫
τ>0

S0(ρ1/2τ − ξ)u2
ξ0 dσdτ − 4

∫
τ>0

(τ − ξ0)S0uuξ0 dσdτ.

�

Combining Lemmas 2.8 and 2.9, we deduce:

Proposition 2.10 We have:

〈(−∂2
τ − (τ − ξ0)2)S0u, uξ0〉 = −Θ0

2
+

Θ0

8
µ′′(ξ0).

Proposition 2.11 We have:

〈(∂2
τ + (τ − ξ0)2)vξ0 , uξ0〉 =

ξ0µ
′′(ξ0)
4

.

Proof: We take the derivative of (2.5) with respect to ρ (after having fixed ξ = ξ0):

(H − µ) (∂ξu)ξ=ξ0 = 2(ρ1/2τ − ξ0)uρ,ξ0 .

We deduce:

(H − µ)(∂ρ∂ξu)ρ=1,ξ=ξ0 = −(∂ρH)ρ=1,ξ=ξ0vξ0 + τuξ0 + 2(τ − ξ0)(∂ρu)ρ=1,ξ=ξ0 .

The Fredholm alternative provides:

〈(∂2
τ + τ(τ − ξ0))vξ0 , uξ0〉 = ξ0 + 2〈(τ − ξ0)(∂ρu)ρ=1,ξ=ξ0 , uξ0〉 =

ξ0

2
,

where we have used Corollary 2.4. �

We have now the elements to perform an accurate construction of quasimodes.

2.2 Construction
We look for quasimodes expressed as power series:

ψ ∼
∑
j≥0

ψjh
j/4

and eigenvalues:
λ ∼ h

∑
j≥0

λjh
j/4

so that, in the sense of formal series:

L(h)ψ ∼ λψ.
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Term in h We consider the equation:

(L0 − λ0)ψ0 = 0.

We are led to take λ0 = Θ0 and ψ0(σ, τ) = f0(σ)uξ0(τ).

Term in h5/4 We want to solve the equation:

(L0 −Θ0)ψ1 = λ1ψ0 − L1ψ0.

We have, by using that b1 = −a1 and Proposition 2.2:

(L0 −Θ0)(ψ1 − if ′0(σ)vξ0 − a1σf0(σ)S0u) = λ1uξ0 .

This implies that λ1 = 0 and we take:

ψ1(σ, τ) = if ′0(σ)vξ0 + a1σf0(σ)S0u+ f1(σ)uξ0(τ),

f0 and f1 being to determine.

Term in h3/2 We consider the equation:

(L0 −Θ0)ψ2 = λ2ψ0 − L1ψ1 − L2ψ0.

Let us rewrite this equation by using the expression of ψ1:

(L0 −Θ0)ψ2 = λ2ψ0 − L1

(
if ′0(σ)vξ0 + a1σf0(σ)S0u

)
− L1 (f1(σ)uξ0)− L2ψ0.

With Proposition 2.2, we deduce:

(L0 −Θ0)(ψ2 − if ′1(σ)vξ0 − a1σf1(σ)S0u)
= λ2ψ0 − L1

(
if ′0(σ)vξ0 + a1σf0(σ)S0u

)
− L2ψ0.

We take the partial scalar product (with respect to τ ) of the r.h.s. with uξ0 and we get
the equation:

〈L1

(
if ′0(σ)vξ0 + a1σf0(σ)S0u

)
+ L2ψ0, uξ0〉τ = λ2f0.

This equation can be written in the form:(
AD2

σ +B1σDσ +B2Dσσ + Cσ2 +D
)
f0 = λ2f0.

Terms in D2
σ Let us first analyze 〈L2uξ0 , uξ0〉. This is easy to see that this terms is

1. Let us then analyze 〈L1ψ1, uξ0〉. With Proposition 2.6, we deduce that this term is
−2〈(τ − ξ0)vξ0uξ0〉 = µ′′(ξ0)

2 − 1. We get: A = µ′′(ξ0)
2 > 0.
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Terms in σ2 Let us collect the terms of 〈L2uξ0 , uξ0〉. We get:

Θ0a11 + 2b11〈(τ − ξ0)2uξ0 , uξ0〉 − a2
1〈(τ − ξ0)2uξ0 , uξ0〉.

With Corollary 2.5, this term is equal to:

Θ0a11 + Θ0b11 −
Θ0

2
a2

1.

Let us analyze the terms coming from 〈L1ψ1, uξ0〉. We obtain the term:

a2
1〈(−∂2

τ − (τ − ξ0)2)S0u, uξ0〉 = −Θ0

2
a2

1 + Θ0
µ′′(ξ0)

8
a2

1,

where we have used Proposition 2.10. Thus, we have:

C = Θ0a11 + Θ0b11 −Θ0a
2
1 +

Θ0

8
µ′′(ξ0)a2

1 > 0.

Terms in σDσ This term only comes from 〈L1ψ1, uξ0〉. It is equal to:

a1〈(∂2
τ + (τ − ξ0)2)vξ0 , uξ0〉 = a1

ξ0µ
′′(ξ0)
4

,

where we have used Proposition 2.11.

Terms in Dσσ This term is:

2a1〈(τ − ξ0)S0u, uξ0〉 = a1
ξ0µ
′′(ξ0)
4

,

where we have applied Lemma 2.9.

Value of D We have:

D =〈
(
−a2τ∂

2
τ − a2∂τ + k0∂τ + 2k0τ(τ − ξ0)2 + a2τ(τ − ξ0)2

)
uξ0 , uξ0〉

+ 〈
(
(b2 − k0)τ2(τ − ξ0)− ia1(τ − ξ0)

)
uξ0 , uξ0〉.

Using the relations (1.4) and the definition of C1 given in (1.3), we get:

D = C(k0, a2, b2).

Let us introduce the quadratic form which is fundamental in the analyzis. We let:

Q(σ, η) =
µ′′(ξ0)

2
η2 + a1

ξ0µ
′′(ξ0)
4

ησ + a1
ξ0µ
′′(ξ0)
4

ση

+ Θ0

(
a11 + b11 − a2

1 + a2
1

µ′′(ξ0)
8

)
σ2.

Lemma 2.12 Q is definite and positive.
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Proof: We notice that µ′′(ξ0) > 0 and a11 +b11−a2
1 +a2

1
µ′′(ξ0)

8 > 0. The determinant
is given by:

Θ0
µ′′(ξ0)

2

(
a11 + b11 − a2

1 + a2
1

µ′′(ξ0)
8

)
− a2

1

Θ0µ
′′(ξ0)2

16

=
Θ0µ

′′(ξ0)
2

(
a11 + b11 − a2

1

)
> 0.

�

We immediately deduce that Q(σ,−i∂σ) is unitarily equivalent to an harmonic oscil-
lator and that the increasing sequence of its eigenvalues is given by{

(2n+ 1)
(

Θ0µ
′′(ξ0)
2

(
a11 + b11 − a2

1

))1/2
}
n∈N

.

The compatibility equation becomes:

Q(σ,Dσ)f0 = (λ2 −D)f0.

Thus, we choose λ2 such that λ2 −D is in the spectrum of Q(σ,Dσ) and we take for
f0 the corresponding normalized eigenfunction (which is in the Schwartz class). For
that choice of f0, we can consider the unique solution ψ⊥2 (which is in the Schwartz
class) of:

(L0 −Θ0)ψ⊥2 = λ2ψ0 − L1

(
if ′0(σ)vξ0 + a1σf0(σ)S0u

)
− L2ψ0

satisfying 〈ψ⊥2 , uξ0〉 = 0. It follows that ψ2 is in the form:

ψ2 = ψ⊥2 (σ, τ) + if ′1(σ)vξ0 + a1σf1(σ)S0u+ f2(σ)uξ0 ,

where f1 and f2 are still to be determined.

Higher order terms Let N ≥ 2. Let us assume that, for 0 ≤ j ≤ N − 2, the
functions ψj are determined and belong to the Schwartz class. Moreover, let us also
assume that, for j = N − 1, N , we can write:

ψj(σ, τ) = ψ⊥j (σ, τ) + if ′j−1(σ)vξ0 + a1σfj−1(σ)S0u+ fj(σ)uξ0 ,

where the
(
ψ⊥j

)
j=N−1,N

and fN−2 are determined functions in the Schwartz class

and where the (fj)j=N−1,N are not determined. Finally, we also assume that the
(λj)0≤j≤N are determined. We notice that this recursion assumption is satisfied for
N = 2. Let us write the equation of order N + 1:

(L0 −Θ0)ψN+1 =λN+1ψ0 − L1ψN + (λ2 − L2)ψN−1

− LN+1ψ0 +
N−2∑
j=1

(λN+1−j − LN+1−j)ψj .
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This equation takes the form:

(L0 −Θ0)ψN+1 = λN+1ψ0 − L1ψN + (λ2 − L2)ψN−1 + FN (σ, τ),

where FN is a determined function in the Schwartz class by recursion assumption.
Using Proposition 2.2, we can rewrite:

(L0 −Θ0)
(
ψN+1 − if ′N (σ)vξ0 − a1σfN (σ)S0u

)
=λN+1ψ0 − L1

(
ψ⊥N (σ, τ) + if ′N−1(σ)vξ0 + a1σfN−1(σ)S0u

)
+ (λ2 − L2)ψN−1

+ FN (σ, τ)
=λN+1ψ0 − L1

(
if ′N−1(σ)vξ0 + a1σfN−1(σ)S0u

)
+ (λ2 − L2) (fN−1uξ0)

+GN (σ, τ),

whereGN is a determined function of the Schwartz class. We now write the Fredholm
condition. The same computation as previously leads to an equation in the form:

Q(σ,−i∂σ)fN−1 = (λ2 − C(a2, b2, k0))fN−1 + λN+1f0 + gN (σ),

with gN = 〈GN , uξ0〉τ . This can be rewritten as:

(Q(σ,−i∂σ)− (λ2 − C(a2, b2, k0))) fN−1 = gN (σ) + λN+1f0.

The Fredholm condition applied to this equation provides: λN+1 = −〈gN , f0〉σ and a
unique solution fN−1 in the Schwartz class such that 〈fN−1, f0〉σ = 0. For this choice
of fN−1 and λN+1, we can consider the unique solution ψ⊥N+1 (in the Schwartz class)
such that:

(L0 −Θ0)ψ⊥N+1

=λN+1ψ0 − L1

(
ψ⊥N (σ, τ) + if ′N−1(σ)vξ0 + a1σfN−1(σ)S0u

)
+ (λ2 − L2)ψN−1

+ FN (σ, τ).

This leads to take:

ψN+1 = ψ⊥N+1 + if ′N (σ)vξ0 + a1σfN (σ)S0u+ fN+1uξ0 .

This ends the proof of the recursion. Thus, we have constructed two sequences (λj)j
and (ψj)j which depend on n (through the choice of f0). Let us write λn,j for λj and
ψn,j for ψj to emphasize this dependence.

Conclusion: proof of Theorem 2.1 Let us consider a smooth cutoff function χ0

near x0. For n ≥ 1 and J ≥ 0, we let:

ψ
[n,J ]
h (x) = χ0(x)

J∑
j=0

ψn,j(h−1/4s(x), h−1/2t(x))hj/4 (2.8)

13



and:

λ
[n,J ]
h =

J∑
j=0

λn,jh
j/4.

Using the fact that the ψj are in the Schwartz class, we get:

‖
(
Ph,A − λ

[n,J ]
h

)
ψ

[n,J ]
h ‖ ≤ C(n, J)h

J+1
4 ‖ψ[n,J ]

h ‖.

Thanks to the spectral theorem, we deduce Theorem 2.1.

3 Rough lower bound and consequence
This section is devoted to establish a rough lower bound for λn(h). In particular,
we give the first term of the asymptotics and deduce the so-called normal Agmon
estimates.

3.1 A first lower bound
We now aim at proving a lower bound:

Proposition 3.1 We have:

λn(h) ≥ Θ0ha(x0)β(x0)− Ch5/4.

Proof: We use a partition of unity with balls Dj of size hρ and satisfying:∑
j

χ2
j = 1 and

∑
j

‖∇χj‖2 ≤ Ch−2ρ.

The so-called IMS formula (cf. [7]) provides:

Qh,A(ψ) =
∑
j

Qh,A(χjψ)− h2
∑
j

∫
Ω
a‖∇χj‖2|ψ|2 dx

and thus:
Qh,A(ψ) ≥

∑
j

Qh,A(χjψ)− Ch2−2ρ‖ψ‖2.

In each ball, we approximate a by a constant:

Qh,A(χjψ) ≥ (a(xj)− Chρ)‖(−ih∇+ A)(χjψ)‖2.

If Dj does not intersect the boundary, then:

‖(−ih∇+ A)(χjψ)‖2 ≥ h
∫

Ω
β(x)|χjψ|2 dx.

We deduce:
Qh,A(χjψ) ≥ (a(xj)β(xj)h− Ch1+ρ)‖χjψ‖2.
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If Dj intersects the boundary, we can assume that its center is on the boundary and we
write in the local coordinates (up to a change of gauge):

Qh,A(χjψ) ≥ (1− Chρ)
∫
ã
(
h2|∂t(χjψ)|2 + |(−ih∂s + Ã1)(χjψ)|2

)
dsdt.

We deduce:

Qh,A(χjψ) ≥ (1−Chρ)(a(xj)−Chρ)
∫
h2|∂t(χjψ)|2+|(−ih∂s+Ã1)(χjψ)|2dsdt.

We approximate A1 by its linear approximation Alin
1 and we have:∫

h2|∂t(χjψ)|2 + |(−ih∂s + Ã1)(χjψ)|2dsdt

≥ (1− ε)
∫
h2|∂t(χjψ)|2 + |(−ih∂s + Ãlin

1 )(χjψ)|2dsdt− Cε−1

∫
|x− xj |4|χjψ|2 dx

≥
(
(1− ε)Θ0β(xj)h− Cε−1h4ρ

)
‖χjψ‖2.

To optimize the remainder, we choose: ε = h2ρ−1/2. Then, we take ρ = 3
8 and the

conclusion follows. �

3.2 Normal Agmon estimates
We now prove the following (weighted) localization estimates:

Proposition 3.2 Let us consider a smooth cutoff function χ supported in a fixed neigh-
borhood of the boundary. Let (λn(h), ψh) be an eigenpair of Ph,A. For all δ ≥ 0, there
exist ε0, C ≥ 0 and h0 such that, for h ∈ (0, h0):

‖eχ(x)ε0t(x)h−1/2+δχ(x)|s(x)|h−1/4
ψh‖2 ≤ C‖eδχ(x)|s(x)|h−1/4

ψh‖2,

Qh,A

(
eχ(x)ε0t(x)h−1/2+δχ(x)|s(x)|h−1/4

ψh

)
≤ Ch‖eδχ(x)|s(x)|h−1/4

ψh‖2.

Proof: The proof is based on a technique of Agmon (see for instance [1, 2, 12]). Let
us recall the IMS formula ; we have, for an eigenpair (λn(h), ψh):

Qh,A
(
eΦψh

)
= λn(h)‖eΦψh‖2 + h2‖a1/2∇ΦeΦψh‖2.

We take:
Φ = χ(x)ε0t(x)h−1/2 + δχ(x)|s(x)|h−1/4,

where χ is a smooth cutoff function supported near the boundary. We use a partition
of unity χj with balls of size Rh1/2 with R large enough and we get:∑
j

(
Qh,A

(
χje

Φψh
)
− λn(h)‖χjeΦψh‖2 − CR−2h− h2‖χja1/2∇ΦeΦψh‖2

)
≤ 0.
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We now distinguish the balls intersecting the boundary and the others. For the interior
balls, we have the lower bound, for η > 0 and h small enough:

Qh,A
(
χje

Φψh
)
≥
(
a(xj)β(xj)h− Ch3/2

)∥∥χjeΦψh
∥∥2
.

For the boundary balls, we have:

Qh,A
(
χje

Φψh
)
≥
(

Θ0a(xj)β(xj)h− Ch3/2
)∥∥χjeΦψh

∥∥2
.

Let us now split the sum:∑
jint

∫ (
a(xj)β(xj)h−Θ0a(x0)β(x0)h− Ch3/2 − CR−2h− Ch2‖∇Φ‖2

)
|χjeΦψh|2dx

≤ Ch
∑
jbnd

∥∥χjeΦψh
∥∥2
.

We can notice that:
‖∇Φ‖2 ≤ C(ε2

0h
−1 + δ2h−1/2).

Taking R large enough, ε0 and h small enough and using (1.6), we get the existence
of c > 0 such that:

a(xj)β(xj)h−Θ0a(x0)β(x0)h− Ch3/2 − CR−2h− Ch2‖∇Φ‖2 ≥ ch.

We deduce:
c
∑
jint

∥∥χjeΦψh
∥∥2 ≤ C

∑
jbnd

∥∥χjeΦψh
∥∥2
.

Due to support considerations, we can write:

C
∑
jbnd

∥∥χjeΦψh
∥∥2 ≤ C̃

∑
jbnd

‖χjeδχ(x)|s(x)|h−1/4
ψh‖2.

Thus, we infer:
‖eΦψh‖2 ≤ C̃‖eδχ(x)|s(x)|h−1/4

ψh‖2.
We deduce that: ∑

j

Qh,A
(
χje

Φψh
)
≤ Ch‖eδχ(x)|s(x)|h−1/4

ψh‖2.

and thus:
Qh,A(eΦψh) ≤ Ch‖eδχ(x)|s(x)|h−1/4

ψh‖2.
�

Corollary 3.3 Let η ∈
(
0, 1

2

]
. Let (λn(h), ψh) be an eigenpair of Ph,A. For all δ ≥ 0,

there exist ε0, C ≥ 0 and h0 such that, for h ∈ (0, h0):

‖χh,ηeχ(x)ε0t(x)h−1/2+δχ(x)|s(x)|h−1/4
ψh‖2 ≤ C‖χh,ηeδχ(x)|s(x)|h−1/4

ψh‖2,

Qh,A

(
χh,ηe

χ(x)ε0t(x)h−1/2+δχ(x)|s(x)|h−1/4
ψh

)
≤ Ch‖χh,ηeδχ(x)|s(x)|h−1/4

ψh‖2,

where χh,η(x) = χ̂(t(x)h−1/2+η) and with χ̂ a smooth cutoff function being 1 near
0.
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Proof: With Proposition 3.2, we have:

‖χh,ηeχ(x)ε0t(x)h−1/2+δχ(x)|s(x)|h−1/4
ψh‖2 ≤ C‖eδχ(x)|s(x)|h−1/4

ψh‖2.

We can write:

‖eδχ(x)|s(x)|h−1/4
ψh‖2 = ‖χh,ηeδχ(x)|s(x)|h−1/4

ψh‖2+‖
√

1− χh,ηeδχ(x)|s(x)|h−1/4
ψh‖2.

Using Proposition 3.2, we have the estimate:

‖
√

1− χh,ηeδχ(x)|s(x)|h−1/4
ψh‖2

= ‖
√

1− χh,ηe−χ(x)ε0t(x)h−1/2
eχ(x)ε0t(x)h−1/2+δχ(x)|s(x)|h−1/4

ψh‖2

= O(h∞)‖eδχ(x)|s(x)|h−1/4
ψh‖2.

The IMS formula provides:

Qh,A
(
eΦψh

)
= Qh,A

(
χh,ηe

Φψh
)

+Qh,A
(√

1− χh,ηeΦψh
)

+O(h1+2η)‖eΦψh‖2.

�

Corollary 3.4 Let η ∈
(
0, 1

2

]
. Let (λn(h), ψh) be an eigenpair of Ph,A. For all δ ≥ 0,

there exist ε0, C ≥ 0 and h0 such that, for h ∈ (0, h0):

‖χh,ηeχ(x)ε0t(x)h−1/2+δχ(x)|s(x)|h−1/4
(−ih∂s+Ã1)ψh‖2 ≤ Ch‖χh,ηeδχ(x)|s(x)|h−1/4

ψh‖2,

‖χh,ηeχ(x)ε0t(x)h−1/2+δχ(x)|s(x)|h−1/4
(−ih∂t+Ã2)ψh‖2 ≤ Ch‖χh,ηeδχ(x)|s(x)|h−1/4

ψh‖2.

4 Order of the second term
It is well-known that the order of the second term in the asymptotics of λn(h) is
closely related to localization properties of the corresponding eigenfunctions. The
aim of this section is to establish such properties.

Proposition 4.1 Under the generic assumptions, there exist C > 0 and h0 > 0 such
that for h ∈ (0, h0):

λn(h) ≥ Θ0a(x0)β(x0)h− Ch3/2.

Moreover, for all δ ≥ 0, there exist C > 0 and h0 > 0 such that for h ∈ (0, h0):∫
e2δχ(x)|s|h−1/4 |ψ|2 dsdt ≤ C‖ψ‖2.

Proof: Let us recall the so-called IMS formula (see for instance [7]) ; we have, for an
eigenpair (λn(h), ψ):

Qh,A
(
eΦψ

)
− λn(h)‖eΦψ‖2 − h2‖a1/2∇ΦeΦψ‖2 = 0.
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We take:
Φ = δχ(x)|s(x)|h−1/4, with δ ≥ 0.

The idea is now to prove a suitable lower bound for Qh,A. We use a partition of unity
with balls of size h1/4. We get the lower bound:

Qh,A(eΦψ) ≥
∑
j

Qh,A(ψj)− Ch3/2‖eΦψ‖2,

where
ψj = χj,he

Φψ

and we deduce: ∑
j

Qh,A(ψj)− Ch3/2‖ψj‖2 − λn(h)‖ψj‖2 ≤ 0, (4.1)

since ‖∇Φ‖ ≤ Ch−1/2.

Interior balls Considering the balls intersecting the boundary, we get:∑
jint

Qh,A(ψj) ≥
∑
jint

(a(xj)β(xj)h− Ch5/4)‖ψj‖2. (4.2)

Boundary balls Let us consider the j such that Dj intersects the boundary. Using
first the normal Agmon estimates, we have the lower bound:∑
jbnd

Qh,A(ψj) ≥
∑
jbnd

∫
ã(|(−ih∂t + Ã2)ψj |2 + |(ih∂s + Ã1)ψj |2) dsdt− Ch3/2‖ψ‖2,

where we have used the IMS formula to get:∑
jbnd

∫
tã(|(−ih∂t + Ã2)ψj |2 + |(ih∂s + Ã1)ψj |2) dsdt

≤ C
∫

0<t<t0

tã(|(−ih∂t + Ã2)eΦψ|2 + |(ih∂s + Ã1)eΦψ|2) dsdt+ Ch3/2‖eΦψ‖2.

Using again the normal estimates and also the size of the balls, we get:∑
jbnd

Qh,A(ψj) ≥
∑
jbnd

∫
ãlin
j (|(−ih∂t + Ã2)ψj |2 + |(ih∂s + Ã1)ψj |2) dsdt− Ch3/2‖ψ‖2,

(4.3)

where
ãlin
j = aj + (s− sj)∂sã(xj).
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Case |sj| ≥ s0 Let us consider the boundary balls such that |sj | ≥ s0. Using the
size of the balls, we get the lower bound:∫

ãlin
j (|(−ih∂t + Ã2)ψj |2 + |(ih∂s + Ã1)ψj |2) dsdt (4.4)

≥ (Θ0a(xj)β(xj)h− Ch5/4)‖ψj‖2 ≥ Θ0(1 + ε)a(x0)β(x0)h‖ψj‖2.

Case |sj| ≤ s0 Let us consider the boundary balls such that |sj | ≤ s0. In each ball,
we can use a new gauge so that:∑

jbnd
|sj |≤s0

∫
ãlin
j (|(−ih∂t + Ã2)ψj |2 + |(ih∂s + Ã1)ψj |2) dsdt

=
∑
jbnd
|sj |≤s0

∫
ãlin
j (|h∂tψj |2 + |(ih∂s + Ãnew

1 )ψj |2) dsdt,

where Ãnew
1 satisfies:

|Ãnew
1 − tβ̃lin

j | ≤ C(t|s− sj |2 + t2),

with:
β̃lin
j = β̃j + ∂sβ̃(xj)(s− sj).

We obtain, thanks to the estimates of Agmon:∑
jbnd
|sj |≤s0

∫
ãlin
j (|h∂tψj |2 + |(ih∂s + Ãnew

1 )ψj |2) dsdt (4.5)

≥ (1− h1/2)
∑
jbnd
|sj |≤s0

∫
ãlin
j (h2|∂tψj |2 + |(ih∂s + tβ̃lin

j )ψj |2) dsdt− Ch3/2‖ψ‖2.

In each ball, we use the change of variables:

σ = s and τ =
(
β̃lin
j

)1/2
t.

We can write:

∂t =
(
β̃lin
j

)1/2
∂τ and ∂s = ∂σ + ∂s

(
β̃lin
j

)1/2
∂τ

and

dsdt =
(
β̃lin
j

)−1/2
dσdτ.

We obtain:∫
h2|∂tψ̂j |2 + |(ih∂s + tβ̃lin

j )ψ̂j |2 dsdt (4.6)

≥ (1− h1/2)
∫
ãlin
j β̃

lin
j

(
h2|∂tψ̂j |2 + |(ih

(
β̃lin
j

)−1/2
∂σ + τ)ψ̂j |2

) (
β̃lin
j

)−1/2
dσdτ

− Ch3/2

∫
|τ∂τ ψ̂j |2dσdτ.
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With the normal Agmon estimates, we have:∑
jbnd
|sj |≤s0

∫
|τ∂τ ψ̂j |2dσdτ ≤ C‖ψ‖2.

We can notice that the Dirichlet realization on (−s̃0, s̃0) of Dσ

(
β̃lin
j

)−1/2
is self-

adjoint on L2

((
β̃lin
j

)−1/2
dσ

)
. Thus, we shall commute Dσ and

(
β̃lin
j

)−1/2
and

control the remainder due to the commutator. We can write:∫
ãlin
j β̃

lin
j

(
h2|∂tψ̂j |2 + |(ih

(
β̃lin
j

)−1/2
∂σ + τ)ψ̂j |2

) (
β̃lin
j

)−1/2
dσdτ

=
∫
ãlin
j β̃

lin
j h

2|∂tψ̂j |2
(
β̃lin
j

)−1/2
dσdτ

+
∫
alin
j β̃

lin
j |(ih∂σ

(
β̃lin
j

)−1/2
− ih∂σ

{
β̃lin
j

}−1/2
+ τ)ψ̂j |2

(
β̃lin
j

)−1/2
dσdτ.

We can estimate the double product:

2h<
(∫

alin
j β̃

lin
j

(
ih∂σ

(
β̃lin
j

)−1/2
+ τ

)
ψ̂j i∂σ

{
β̃lin
j

}−1/2
ψ̂j

(
β̃lin
j

)−1/2
dσdτ

)
= −2h2<

(∫
alin
j β̃

lin
j ∂σ

{
β̃lin
j

}−1/2
∂σ

((
β̃lin
j

)−1/2
ψ̂j

) (
β̃lin
j

)−1/2
ψ̂j dσdτ

)
= −h2

∫
alin
j β̃

lin
j ∂σ

{
β̃lin
j

}−1/2
∂σ

(
|
(
β̃lin
j

)−1/2
ψ̂j |2

)
dσdτ = O(h2)‖ψj‖2,

where we have used an integration by parts for the last estimate. We deduce:∫
ãlin
j β̃

lin
j

(
h2|∂tψ̂j |2 + |(ih

(
β̃lin
j

)−1/2
∂σ + τ)ψ̂j |2

) (
β̃lin
j

)−1/2
dσdτ (4.7)

≥
∫
ãlin
j β̃

lin
j

(
h2|∂tψ̂j |2 + |(ih∂σ

(
β̃lin
j

)−1/2
+ τ)ψ̂j |2

) (
β̃lin
j

)−1/2
dσdτ

− Ch2‖ψj‖2.

For s0 small enough, we have, using the non-degeneracy, for s such that |s| ≤ s̃0 (with
s̃0 slightly bigger than s0):

ãlin
j (s)β̃lin

j (s) ≥ a(x0)β(x0) +
α

4
|s|2.

Let us analyze the integral:∫
|σ(ih∂σ

(
β̃lin
j

)−1/2
+ τ)ψ̂j |2

(
β̃lin
j

)−1/2
dσdτ

=
∫
|(ih∂σ

(
β̃lin
j

)−1/2
+ τ)σψ̂j − ih

(
β̃lin
j

)−1/2
ψ̂j |2

(
β̃lin
j

)−1/2
dσdτ.
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We must estimate the double product:

2<
∫ (

(ih∂σ
(
β̃lin
j

)−1/2
+ τ)σψ̂j ih

(
β̃lin
j

)−1/2
ψ̂j

) (
β̃lin
j

)−1/2
dσdτ

= −2h2<
∫ (

∂σ

((
β̃lin
j

)−1/2
σψ̂j

) (
β̃lin
j

)−1/2
ψ̂j

) (
β̃lin
j

)−1/2
dσdτ

= −h2

∫
∂σ

∣∣∣∣(β̃lin
j

)−1/2
ψ̂j

∣∣∣∣2 (β̃lin
j

)−1/2
dσdτ +O(h2)‖ψ̂j‖2

= O(h2)‖ψ̂j‖2.

We infer:∫
ãlin
j β̃

lin
j

(
h2|∂tψ̂j |2 + |(ih∂σ

(
β̃lin
j

)−1/2
+ τ)ψ̂j |2

) (
β̃lin
j

)−1/2
dσdτ

≥ a(x0)β(x0)
∫ (

h2|∂tψ̂j |2 + |(ih∂σ
(
β̃lin
j

)−1/2
+ τ)ψ̂j |2

) (
β̃lin
j

)−1/2
dσdτ

+
α

4

∫ (
h2|∂t(σψ̂j)|2 + |(ih∂σ

(
β̃lin
j

)−1/2
+ τ)σψ̂j |2

) (
β̃lin
j

)−1/2
dσdτ

− Ch2‖ψ̂j‖2.

We recall that, for all ξ ∈ R:∫ (
h2|∂tφ|2 + |(τ − hξ − ξ0h

1/2)φ|2
)
dτ ≥ hµ(ξ0 + h1/2ξ)‖φ‖2 ≥ Θ0‖φ‖2.

We infer with the functional calculus:∫
ãlin
j β̃

lin
j

(
h2|∂tψ̂j |2 + |(ih∂σ

(
β̃lin
j

)−1/2
+ τ − ξ0h

1/2)ψ̂j |2
) (

β̂lin
j

)−1/2
dσdτ

(4.8)

≥ hΘ0

∫ (
a(x0)β(x0) +

α

4
σ2
)
|ψ̂j |2

(
β̃lin
j

)−1/2
dσdτ − Ch2‖ψ̂j‖2.

Lower bound for λn(h) If we take δ = 0, we deduce, with (4.1), (4.2), (4.3),
(4.4), (4.5), (4.6), (4.7) and (4.8):

λn(h)‖ψ‖2 ≥
∑
j

Θ0ha(x0)β(x0)
∫
|ψj |2 dx− Ch3/2‖ψ‖2.

Tangential Agmon estimate Gathering all the estimates, we deduce the exis-
tence of c > 0 such that:∑

jbnd
|sj |≤s0

(
Θ0h

∫ (
a(x0)β(x0) +

α

4
s2
)
|ψj |2 dsdt−Θ0h‖ψj‖2 − Ch3/2‖ψj‖2

)

+
∑
jbnd
|sj |≥s0

ch‖ψj‖2 +
∑
jint

ch‖ψj‖2 ≤ 0
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and: ∑
jbnd

2C0h
1/4≤|sj |≤s0

(
Θ0h

∫
α

4
s2|ψj |2 dsdt− Ch3/2‖ψj‖2

)
≤ Ch3/2‖ψ0‖2 ≤ Ch3/2‖ψ‖2.

Taking C0 large enough, we infer:∑
jbnd

2C0h
1/4≤|sj |≤s0

‖ψj‖2 ≤ C‖ψ‖2

so that: ∑
jbnd
|sj |≤s0

‖ψj‖2 ≤ C‖ψ‖2

and: ∑
j

‖ψj‖2 = ‖eΦψ‖2 ≤ C‖ψ‖2.

�

Let us write an immediate corollary (see Corollaries 3.3 and 3.4).

Corollary 4.2 Let (η1, η2) ∈
(
0, 1

2

]
×
(
0, 1

4

]
. Let (λn(h), ψh) be an eigenpair of

Ph,A. For all (k, l) ∈ N, there exist C ≥ 0 and h0 > 0 such that, for h ∈ (0, h0):

‖χh,η1,η2sktlψh‖2 ≤ Chk/2hl‖ψh‖2,
‖χh,η1,η2sktl(−ih∂s + Ã1)ψh‖2 ≤ Chhk/2hl‖ψh‖2,
‖χh,η1,η2sktl(−ih∂t + Ã2)ψh‖2 ≤ Chhk/2hl‖ψh‖2.

where χh,η1,η2(x) = χ̂(t(x)h−1/2+η1)χ̂(s(x)h−1/4+η2). Moreover, we have:

‖(1− χh,η1,η2)sktlψh‖2 = O(h∞)‖ψh‖2,
‖(1− χh,η1,η2)sktl(−ih∂s + Ã1)ψh‖2 = O(h∞)‖ψh‖2,
‖(1− χh,η1,η2)sktl(−ih∂t + Ã2)ψh‖2 = O(h∞)‖ψh‖2.

Remark 4.3 In the following, each reference to the ”estimates of Agmon” will be a
reference to this last corollary.

5 Refined lower bound
We use a cutoff function χh near x0 with support or order h1/4−η̃ with η̃ > 0. For
all N ≥ 1, let us consider L2-normalized eigenpairs (λn(h), ψn,h)1≤n≤N such that
〈ψn,h, ψm,h〉 = 0 when n 6= m. We consider the N dimensional space defined by:

EN (h) = span
1≤n≤N

ψ̃n,h, where ψ̃n,h = χhψn,h.
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Remark 5.1 The estimates of Agmon of Corollary 4.2 are satisfied by all the elements
of EN (h).

We can notice that, with the estimates of Agmon, for all ψ̃ ∈ EN (h):

Qh,A(ψ̃) ≤ λN (h)‖ψ̃‖2 +O(h∞)‖ψ̃‖2. (5.1)

In this subsection, we provide a lower bound for Qh,A on EN (h).

Choice of gauge and new coordinates On the support of χh, we use a gauge
such that Ã2 = 0 and

|Ã1 − Ãapp
1 | ≤ C(t3 + |s|t2 + |s|2t),

where:

Ãapp
1 = t(1 + b1s+ b11s

2) +
b̂2
2
t2 = tb̂(s)− ξ0b̂(s)1/2h1/2 +

b̂2
2
t2,

where b̂2 = b2 − k0. We also let:

ãapp(s, t) = 1 + a1s+ a11s
2 + a2t = â(s) + a2t.

Moreover, in this neighborhood of (0, 0), we introduce new coordinates:

τ = t(b̂(s))1/2, σ = s. (5.2)

In particular, we get:

∂t = (b̂(σ))1/2∂τ , ∂s = ∂σ +
1
2
b̂−1∂sb̂ τ∂τ

and:
dsdt = b̂−1/2dσdτ.

To simplify the notation, we let: p = b̂−1/2. We will also use the change of variable:

σ̌ =
∫ σ

0

1
p(u)

du = f(σ)

so that L2(p dσ) becomes L2(p̌2 dσ̌).

5.1 A first lower bound
This subsection is devoted to the proof of the following lower bound of Qh,A on
EN (h).

Proposition 5.2 There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all
ψ̃ ∈ EN (h):

Qh,A(ψ̃) ≥ Q̌h,app(ψ̌)− Ch3/2+1/4‖ψ̃‖2, (5.3)

23



where:

Q̌h,app(ψ̌) =
∫

(1 + a2τ)(1− τk0)|h∂τ ψ̌|2 p̌2dσ̌dτ

+
∫

(1 + a2τ)(1− τk0)−1|(ihp̌−1∂σ̌p̌+ τ − ξ0h
1/2 +

b̂2
2
τ2 − hb1

2
τDτ )ψ̌|2 p̌2dσ̌dτ

+ hαΘ0

∫
σ̌2|ψ̌|2 p̌2dσ̌dτ,

where ψ̌ denotes ψ̃ in the coordinates (σ̌, τ).

In order to prove Proposition 5.2, we will need a first lemma:

Lemma 5.3 There exist h0 > 0 and C > 0 s. t. for h ∈ (0, h0) and all ψ̃ ∈ EN (h):

Qh,A(ψ̃) ≥ Q̂h,app(ψ̂)− Ch3/2+1/4‖ψ̃‖2.

where:

Q̂h,app(ψ̂) =
∫
m2(σ, τ)|h∂τ ψ̂|2 b̂−1/2dσdτ

+
∫
m1(σ, τ)|(hΞ + τ − ξ0h

1/2 +
b̂2
2
τ2 − hb1

2
τDτ )ψ̂|2 b̂−1/2dσdτ,

with

Ξ = i∂σ b̂
−1/2, m1(σ, τ) = (1 + ασ2)(1 + a2τ)(1− τk0)−1,

m2(σ, τ) = (1 + ασ2)(1 + a2τ)(1− τk0)

and where ψ̂ denotes ψ̃ in the coordinates (σ, τ).

Proof: We have:

Qh,A(ψ̃) =
∫
ã(1− tk(s))|(−ih∂t+ Ã2)ψ̃|2 + ã(1− tk(s))−1|(ih∂s+ Ã1)ψ̃|2 dsdt.

Thanks to the normal and tangential Agmon estimates, we get:

Qh,A(ψ̃) ≥
∫
ã(1−tk0)h2|∂tψ̃|2+ã(1−tk0)−1|(ih∂s+Ã1)ψ̃|2 dsdt−Ch3/2+1/4‖ψ̃‖2.

The Agmon estimates imply:

Qh,A(ψ̃) ≥
∫
ãapp(1− tk0)h2|∂tψ̃|2 + ãapp(1− tk0)−1|(ih∂s + Ãapp

1 )ψ̃|2 dsdt

−Ch3/2+1/4‖ψ̃‖2.

We get:

Qh,A(ψ̃) ≥∫
â(1 + a2t)

(
(1− tk0)h2|∂tψ̃|2 + (1− tk0)−1

∣∣∣((ih∂s + Ãapp
1

)
ψ̃
∣∣∣2) dsdt

− Ch3/2+1/4‖ψ̃‖2.
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With the coordinates (σ, τ), we obtain:∫
â(1 + a2t)(1− tk0)h2|∂tψ̃|2 + (1 + a2t)(1− tk0)−1|(ih∂s + Ãapp

1 )ψ̃|2 dsdt

≥ Q̂h(ψ̂)− Ch3/2+1/4‖ψ̃‖2,

where:

Q̂h(ψ̂) =
∫
m̃2(σ, τ)|h∂τ ψ̂|2 b̂−1/2dσdτ

+
∫
m̃1(σ, τ)|(hb̂−1/2i∂σ + τ − ξ0h

1/2 +
b̂2
2
τ2b̂−1/2 − h ∂σ b̂

2b̂3/2
τDτ )ψ̂|2 b̂−1/2dσdτ,

where:

m̃1(σ, τ) = âb̂(1 + a2τ)(1− τk0)−1, m̃2(σ, τ) = âb̂(1 + a2τ)(1− τk0).

With the estimates of Agmon, we can simplify the quadratic form modulo lower order
terms:

Q̂h(ψ̂) ≥
∫
m̃2(σ, τ)|h∂τ ψ̂|2 b̂−1/2dσdτ

+
∫
m̃1(σ, τ)|(hb̂−1/2i∂σ + τ − ξ0h

1/2 +
b̂2
2
τ2 − hb1

2
τDτ )ψ̂|2 b̂−1/2dσdτ

− Ch3/2+1/4‖ψ̃‖2.

We recall that âb̂ = 1 + ασ2 +O(|σ|3) so that, we the estimates of Agmon, we infer:

Q̂h(ψ̂) ≥
∫
m2(σ, τ)|h∂τ ψ̂|2 b̂−1/2dσdτ

+
∫
m1(σ, τ)|(hb̂−1/2i∂σ + τ − ξ0h

1/2 +
b̂2
2
τ2 − hb1

2
τDτ )ψ̂|2 b̂−1/2dσdτ

− Ch3/2+1/4‖ψ̃‖2.

We now want to replace b̂−1/2i∂σ by i∂σ b̂−1/2 which is self-adjoint onL2
(
b̂−1/2dσdτ

)
.

Writing a commutator, we get:∫
m1(σ, τ)|(hb̂−1/2i∂σ + τ − ξ0h

1/2 +
b̂2
2
τ2 − hb1

2
τDτ )ψ̂|2 b̂−1/2dσdτ

=
∫
m1(σ, τ)|(hi∂σ b̂−1/2 − ih(∂σ b̂−1/2) + τ − ξ0h

1/2 +
b2
2
τ2 − hb1

2
τDτ )ψ̂|2 b̂−1/2dσdτ.

Let us consider the double product:

2h<

(∫
m1(σ, τ)

(
hi∂σ b̂

−1/2 + τ − ξ0h
1/2 +

b̂2
2
τ2 − hb1

2
τDτ

)
ψ̂ i(∂σ b̂−1/2)ψ̂ b̂−1/2dσdτ

)

= 2h<
(∫

m1(σ, τ)
(
hi∂σ b̂

−1/2 − hb1
2
τDτ

)
ψ̂ i(∂σ b̂−1/2)ψ̂ b̂−1/2dσdτ

)
= −2h2<

∫
m1(σ, τ)

(
∂σ

(
b̂−1/2ψ̂

)
(∂σ b̂−1/2)ψ̂ b̂−1/2dσdτ

)
+O(h2)‖ψ̂‖2,
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where we have used the normal Agmon estimates. We deduce that:

2<

(∫
m1(σ, τ)

(
hi∂σ b̂

−1/2 + τ − ξ0h
1/2 +

b̂2
2
τ2 − hb1

2
τDτ

)
ψ̂ i(∂σ b̂−1/2)ψ̂ b̂−1/2dσdτ

)

= −h2

∫
m1(σ, τ)(∂σ b̂−1/2)∂σ

∣∣∣b̂−1/2ψ̂
∣∣∣2 dσdτ +O(h2)‖ψ̂‖2

= O(h2)‖ψ̂‖2.

This implies:∫
m1(σ, τ)|(hb̂−1/2i∂σ + τ − ξ0h

1/2 +
b̂2
2
τ2 − hb1

2
τDτ )ψ̂|2 b̂−1/2dσdτ

≥
∫
m1(σ, τ)|(hi∂σ b̂−1/2 + τ − ξ0h

1/2 +
b̂2
2
τ2 − hb1

2
τDτ )ψ̂|2 b̂−1/2dσdτ

− Ch2‖ψ̂‖2.

�

Proof of Proposition 5.2 We use Lemma 5.3. In the coordinates (σ̌, τ), we have:

Q̂h,app(ψ̂) =
∫
m2(f−1(σ̌), τ)|h∂τ ψ̌|2 p̌2dσ̌dτ

+
∫
m1(f−1(σ̌), τ)|(ihp̌−1∂σ̌p̌+ τ − ξ0h

1/2 +
b̂2
2
τ2 − hb1

2
τDτ )ψ̌|2 p̌2dσ̌dτ,

where

m1(f−1(σ̌), τ) = (1 + αf−1(σ̌)2)(1 + a2τ)(1− τk0)−1,

m2(f−1(σ̌), τ) = (1 + αf−1(σ̌)2)(1 + a2τ)(1− τk0).

We notice that: f−1(σ̌) = σ̌+O(|σ̌|2) so that, we can use the estimates of Agmon to
get:

Q̂h,app(ψ̂) ≥
∫
m2(σ̌, τ)|h∂τ ψ̌|2 p̌2dσ̌dτ

+
∫
m1(σ̌, τ)|(ihp̌−1∂σ̌p̌+ τ − ξ0h

1/2 +
b̂2
2
τ2 − hb1

2
τDτ )ψ̌|2 p̌2dσ̌dτ

− Ch3/2+1/4‖ψ̃‖2.

This inequality can be rewritten as:

Q̂h,app(ψ̂) ≥ Q̌h,app,1(ψ̌) + Q̌h,app,2(ψ̌)− Ch3/2+1/4‖ψ̃‖2,

26



where:

Q̌h,app,1(ψ̌) =
∫

(1 + a2τ)(1− τk0)|h∂τ ψ̌|2 p̌2dσ̌dτ

+
∫

(1 + a2τ)(1− τk0)−1|(ihp̌−1∂σ̌p̌+ τ − ξ0h
1/2 +

b̂2
2
τ2 − hb1

2
τDτ )ψ̌|2 p̌2dσ̌dτ

and:

Q̌h,app,2(ψ̌) =
∫

(1 + a2τ)(1− τk0)|h∂τ (σ̌ψ̌)|2 p̌2dσ̌dτ

+
∫

(1 + a2τ)(1− τk0)−1|σ̌(ihp̌−1∂σ̌p̌+ τ − ξ0h
1/2 +

b̂2
2
τ2 − hb1

2
τDτ )ψ̌|2 p̌2dσ̌dτ

Reduction of Q̌h,app,2(ψ̌) By the estimates of Agmon, we have:

Q̌h,app,2(ψ̌) ≥
∫
|h∂τ (σ̌ψ̌)|2 p̌2dσ̌dτ

+
∫
|σ̌(ihp̌−1∂σ̌p̌+ τ − ξ0h

1/2 +
b̂2
2
τ2 − hb1

2
τDτ )ψ̌|2 p̌2dσ̌dτ − Ch3/2+1/4‖ψ̃‖2.

Moreover, we get:∫
|σ̌(ihp̌−1∂σ̌p̌+ τ − ξ0h

1/2 +
b̂2
2
τ2 − hb1

2
τDτ )ψ̌|2 p̌2dσ̌dτ

≥
∫
|σ̌(ihp̌−1∂σ̌p̌+ τ − ξ0h

1/2)ψ̌|2 p̌2dσ̌dτ − Ch3/2+1/4‖ψ̃‖2.

Let us analyze
∫
|σ̌(ihp̌−1∂σ̌p̌+ τ − ξ0h

1/2)ψ̌|2 p̌2dσ̌dτ . We have:∫
|σ̌(ihp̌−1∂σ̌p̌+ τ − ξ0h

1/2)ψ̌|2 p̌2dσ̌dτ

=
∫
|(ihp̌−1∂σ̌p̌+ τ − ξ0h

1/2)σ̌ψ̌ − ihψ̌|2 p̌2dσ̌dτ.

The double product is:

2<
(∫

(ihp̌−1∂σ̌p̌+ τ − ξ0h
1/2)σ̌ψ̌ ihψ̌ p̌2dσ̌dτ

)
= −2h2<

(∫
(p̌−1∂σ̌p̌)σ̌ψ̌ ψ̌ p̌2dσ̌dτ

)
.

But, we have:

2<
(∫

∂σ̌(σ̌p̌ψ̌) p̌ψ̌ dσ̌dτ
)

= 2<
(∫

p̌ψ̌ p̌ψ̌ dσ̌dτ

)
+
∫
σ̌∂σ̌|p̌ψ̌|2 dσ̌dτ

and: ∫
σ̌∂σ̌|p̌ψ̌|2 dσ̌dτ = −

∫
|p̌ψ̌|2 dσ̌dτ.

Gathering the estimates, we obtain the lower bound:

Q̂h,app(ψ̂) ≥ Q̌h,app(ψ̌)− Ch3/2+1/4‖ψ̃‖2.
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5.2 Toward a model operator
We now define the unitary transform which diagonalizes the self-adjoint operator
p̌−1Dσ̌p̌ (for completeness, one should extend p̌ by 1 away from a neighborhood of
0). As we will see, with the coordinate σ̌, this transform admits a nice expression.

Weighted Fourier transform Let us now introduce the weighted Fourier trans-
form Fp̌:

(Fp̌ψ)(λ) =
∫

R
e−iλσ̌ψ(σ̌) p̌(σ̌)dσ̌ = F(p̌ψ).

We observe that Fp̌ : L2(R, p̌2dσ̌) → L2(R, dλ) is unitary. Standard computations
provide:

Fp̌((p̌−1Dσ̌p̌)ψ) = λFp̌(ψ)

and:
Fp̌(σ̌ψ) = −DλFp̌(ψ).

Proposition 5.4 There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all
ψ̃ ∈ EN (h):

Q̌h,app(ψ̌) ≥
∫

(1 + a2τ)(1− τk0)
∣∣hDτ φ̌

∣∣2 dλdτ
+
∫

(1 + a2τ)(1− τk0)−1|(−hλ+ τ − ξ0h
1/2 +

b̂2
2
τ2)φ̌|2 dλdτ

+ hαΘ0

∫ ∣∣Dλφ̌
∣∣2 dλdτ − Ch3/2+1/4‖ψ̃‖2,

where:

φ̌ = e
−i b1

2h

“
−hλ τ

2

2
+ τ3

3
−ξ0h1/2 τ2

2
+
b2
8
τ4

”
Fp̌(ψ̌).

Proof: We have:

Q̌h,app(ψ̌) =
∫

(1 + a2τ)(1− τk0)|h∂τ ϕ̌|2 dλdτ

+
∫

(1 + a2τ)(1− τk0)−1|(−hλ+ τ − ξ0h
1/2 +

b̂2
2
τ2 − hb1

2
τDτ )ϕ̌|2 dλdτ

+ hαΘ0

∫
|Dλϕ̌|2 dλdτ,

where
ϕ̌ = Fp̌(ψ̌).
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With the normal estimates, we can write:∫
(1 + a2τ)(1− τk0)−1|(−hλ+ τ − ξ0h

1/2 +
b̂2
2
τ2 − hb1

2
τDτ )ϕ̌|2 dλdτ

≥
∫

(1 + a2τ)(1− τk0)−1|(−hλ+ τ − ξ0h
1/2 +

b̂2
2
τ2)ϕ̌|2 dλdτ

− b1<

(∫
(1 + a2τ)(1− τk0)−1(−hλ+ τ − ξ0h

1/2 +
b̂2
2
τ2)ϕ̌ τhDτ ϕ̌ dλdτ

)

≥
∫

(1 + a2τ)(1− τk0)−1|(−hλ+ τ − ξ0h
1/2 +

b̂2
2
τ2 − hb1

2
τDτ )ϕ̌|2 dλdτ

− b1<

(∫
(−hλ+ τ − ξ0h

1/2 +
b̂2
2
τ2)ϕ̌ τhDτ ϕ̌ dλdτ

)
− Ch3/2+1/4‖ψ̃‖2.

Completing a square and using the normal Agmon estimates to control the additional
terms, we get:

Q̌h,app(ψ̌)

≥
∫

(1 + a2τ)(1− τk0)

∣∣∣∣∣
(
hDτ −

b1
2
τ

(
−hλ+ τ − ξ0h

1/2 +
b̂2
2
τ2

))
ϕ̌

∣∣∣∣∣
2

dλdτ

+
∫

(1 + a2τ)(1− τk0)−1|(−hλ+ τ − ξ0h
1/2 +

b̂2
2
τ2)ϕ̌|2 dλdτ

+ hαΘ0

∫
|Dλϕ̌|2 dλdτ − Ch3/2+1/4‖ψ̃‖2.

We now change the gauge by letting:

ϕ̌ = e
i
b1
2h

“
−hλ τ

2

2
+ τ3

3
−ξ0h1/2 τ2

2
+
b2
8
τ4

”
φ̌.

We deduce:

Q̌h,app(ψ̌) ≥
∫

(1 + a2τ)(1− τk0)
∣∣hDτ φ̌

∣∣2 dλdτ
+
∫

(1 + a2τ)(1− τk0)−1|(−hλ+ τ − ξ0h
1/2 +

b̂2
2
τ2)φ̌|2 dλdτ

+ hαΘ0

∫ ∣∣∣∣Dλ

(
e−i

λb1τ
2

4 φ̌

)∣∣∣∣2 dλdτ − Ch3/2+1/4‖ψ̃‖2.

Finally, we write:∫ ∣∣∣∣Dλ

(
e−i

λb1τ
2

4 φ̌

)∣∣∣∣2 dλdτ =
∫ ∣∣∣∣Dλφ̌−

b1
4
τ2φ̌

∣∣∣∣2 dλdτ
≥
∫
|Dλφ̌|2 dλdτ − C‖τ2φ̌‖‖Dλφ̌‖ ≥

∫
|Dλφ̌|2 dλdτ − C‖τ2ψ̌‖‖Dλφ̌‖.
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In addition, we notice that:

‖Dλφ̌‖ ≤ C
(
‖σ̌ψ̌‖+ ‖τ2ψ̌‖

)
≤ Ch1/4‖ψ̃‖.

�

In order to get a good model operator, we shall add a cutoff function with respect
to τ . Let η ∈

(
0, 1

100

)
. Let χ a cutoff function such that:

χ(t) = 1, for |t| ≤ 1, 0 ≤ χ ≤ 1 and suppχ ⊂ [−2, 2].

We define
l(x) = xχ(hηx).

Applying the normal Agmon estimates, we have:

Proposition 5.5 There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all
ψ̃ ∈ EN (h):

Q̌h,app(ψ̌) ≥
∫

(1 + a2h
1/2l(h−1/2τ))(1− h1/2l(h−1/2τ)k0)

∣∣hDτ φ̌
∣∣2 dλdτ

+
∫

(1 + a2h
1/2l(h−1/2τ))(1− h1/2l(h−1/2τ)k0)−1|(−hλ+ τ − ξ0h

1/2 +
b̂2
2
hl(h−1/2τ)2)φ̌|2 dλdτ

+ hαΘ0

∫ ∣∣Dλφ̌
∣∣2 dλdτ − Ch3/2+1/4‖ψ̃‖2,

where:

φ̌ = e
−i b1

2h

“
−hλ τ

2

2
+ τ3

3
−ξ0h1/2 τ2

2
+
b2
8
τ4

”
Fp̌(ψ̌).

5.3 A simpler model
We introduce the rescaled quadratic form:

Qη,h(ϕ) =
∫

(1 + a2h
1/2l(x))(1− l(x)k0h

1/2) |∂xϕ|2 dλdx

+
∫

(1 + a2l(x)h1/2)(1− l(x)k0h
1/2)−1|(x− ξ0 + h1/2λ+

b̂2
2
l(x)2h1/2)ϕ|2 dλdx

+ αΘ0

∫
|Dλϕ|2 dλdx,

We recall that b̂2 = b2 − k0. We will denote by Hη,h its corresponding Friedrichs
extension. We will denote by νn(Qη,h) the sequence of its Rayleigh quotients. For
each λ, we will need to consider the following quadratic form:

qλ,η,h(ϕ) =
∫

(1 + a2h
1/2l(x))(1− l(x)k0h

1/2) |∂xϕ|2 dx

+
∫

(1 + a2l(x)h1/2)(1− l(x)k0h
1/2)−1|(x− ξ0 + h1/2λ+

b̂2
2
l(x)2h1/2)ϕ|2 dx,
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whose domain is B1(R+). We denote by νj(qλ,η,h) the increasing sequence of the
eigenvalues of the associated operator. The main proposition of this subsection is the
following:

Proposition 5.6 For all n ≥ 1, there exist h0 > 0 and C > 0 s. t., for h ∈ (0, h0):

νn(Qη,h) ≥ Θ0 +

(
C(k0, a2, b2) + (2n− 1)

√
αµ′′(ξ0)Θ0

2

)
h1/2 − Ch1/2+1/8.

Jointly with Propositions 5.5, 5.2, Inequality (5.1), the min-max principle, we first
deduce the size of the spectral gap between the lowest eigenvalues of Ph,A. Then,
with Theorem 2.1, we deduce Theorem 1.2.

5.3.1 Elementary properties of the spectrum

This subsection is devoted to basic properties of the spectrum of Qη,h. The following
proposition provides a lower bound for ν1(qλ,η,h).

Proposition 5.7 There exist positive constants C, c0,M and h0 s.t. if h ∈ (0, h0),
then:

1. If |λ| ≥Mh−1/4−η, then:

ν1(qλ,η,h) ≥ Θ0 + c0 min
(
1, λ2h

)
.

2. If |λ| ≤Mh−1/4−η, then:

ν1(qλ,η,h) ≥ Θ0 + C(k0, a2, b2)h1/2 +
µ′′(ξ0)

2
λ2h− Ch3/4−3η,

where C(k0, a2, b2) is given in Theorem 1.2.

Proof: The proof is left to the reader as an adaptation of [11, Proposition 5.2.1]. �

Let us now prove a lower bound for the essential spectrum of Hη,h.

Proposition 5.8 There exist h0 > 0 and c̃0 > 0 such that, if h ∈ (0, h0), then:

inf σess(Qη,h) ≥ Θ0 + c̃0

Proof: Let φ ∈ Dom(Qη,h) such that supp(φ) ⊂ R2
+\[−R̃, R̃]2. Let us use a partition

of unity: χ2
1,R + χ2

2,R = 1 such that χ1,R(x) = χ1

(
R−1x

)
and where χ1 is a smooth

cutoff function being 1 near 0. We have:

Qη,h(φ) ≥ Qη,h(χ1,Rφ) +Qη,h(χ2,Rφ)− CR−2‖φ‖2.

ForR ≥ 2h−η, we have (the metrics becomes flat and we can compare with a problem
in R2):

Qη,h(χ2,Rφ) ≥ ‖χ2,Rφ‖2.
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We have:

Qη,h(χ1,Rφ) ≥
∫

R2
+

ν1(qλ,η,h)|χ1,Rφ|2 + αΘ0|Dλ(χ1,Rφ)|2 dxdλ

Taking h ∈ (0, h0) (where h0 is given by Proposition 5.7) and R̃ ≥ h−1/2, we infer:

Qη,h(χ1,Rφ) ≥
∫

R2
+

(Θ0 + c0)|χ1,Rφ|2 dxdλ.

This implies that:

Qη,h(φ) ≥ (min(1,Θ0 + c0)− Ch2η)‖φ‖2.

The conclusion follows from a Persson’s lemma-like argument (see [18] and also [11,
Appendix B.3]). �

The following proposition provides an upper bound for the lowest eigenvalues ofHη,h.

Proposition 5.9 For all M ≥ 1, there exist h0 > 0, C > 0 s. t. for all 1 ≤ n ≤M :

νn(Qη,h) ≤ h−1λn(h) +O(h∞).

Proof: This is a consequence of (5.1) joint with the lower bounds of Propositions 5.2
and 5.5 and the min-max principle (see for instance [21]). �

Remark 5.10 For h small enough, we deduce that there is at least M eigenvalues
below Θ0 + c̃0. Let us consider theM first eigenvalues νn(Qη,h) below Θ0 + c̃0. With
Theorem 2.1, we deduce that, for all M ≥ 1, there exist h0 > 0 and C(M) > 0 such
that, for 1 ≤ n ≤M :

0 ≤ νn(Qη,h)−Θ0 ≤ C(M)h1/2.

For 1 ≤ n ≤ M , let us consider a normalized eigenfunction fn,η,h associated to
νn(Qη,h) so that fn,η,h and fm,η,h are orthogonal if n 6= m. Let us introduce:

FM (h) = span1≤j≤M (fj,η,h).

5.3.2 Agmon estimates

First, let us state Agmon estimates with respect to x.

Proposition 5.11 There exist h0 > 0, ε0 > 0, C > 0 such that, for all f ∈ FM (h):∫
R2

+

eε0x|f |2 dxdλ ≤ C‖f‖2.
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Proof: Let us use a partition of unity: χ2
1,R + χ2

2,R = 1, with R ≥ h−η. We take
Φ = ε0χ

(
x
r

)
|x|. This IMS formula implies (with f = fn,η,h):

Qη,h(χ1,Re
Φf) +Qη,h(χ2,Re

Φf)− Cε2
0‖eΦf‖2 − νn(Qη,h)‖eΦf‖2 ≤ 0.

We recall that:
Qη,h(χ2,Re

Φf) ≥ ‖χ2,Re
Φf‖2

and that:
Qη,h(χ1,Re

Φf) ≥
∫
ν1(qλ,η,h)|χ1,Re

Φf |2 dxdλ.

On the one hand, we have:

Qη,h(χ2,Re
Φf)− Cε2

0‖χ2,Re
Φf‖2 − (Θ0 + Ch1/2)‖χ2,Re

Φf‖2

≥ (1− Cε2
0 −Θ0 − Ch1/2)‖χ2,Re

Φf‖2.

On the other hand, we get:

Qη,h(χ1,Re
Φf)− Cε2

0‖χ1,Re
Φf‖2 − (Θ0 + Ch1/2)‖χ1,Re

Φf‖2

≥
∫

(ν1(qη,λ,h)− Cε2
0 −Θ0 − Ch1/2)|χ1,Re

Φf |2 dxdλ.

When |λ| ≥Mh−1/4−η, we have:

ν1(qη,λ,h)− Cε2
0 −Θ0 − Ch1/2 ≥ −Cε2

0 − Ch1/2.

When |λ| ≤Mh−1/4, we have:

ν1(qη,λ,h)− Cε2
0 −Θ0 − Ch1/2 ≥ −Cε2

0 − C̃h1/2.

If h and ε0 are small enough, we deduce that:

(1− Cε2
0 −Θ0 − Ch1/2)‖χ2,Re

Φf‖2 ≤ C‖χ1,Re
Φf‖2

so that:
‖χ2,Re

Φf‖2 ≤ C̃‖f‖2 and ‖eΦf‖2 ≤ Ĉ‖f‖2,

where C̃ and Ĉ are independent from r. It remains to make r → +∞ and apply the
Fatou lemma. Finally, this is easy to extend the inequality to f ∈ FM (h). �

Then, we will need Agmon estimates with respect to λ:

Proposition 5.12 There exist h0 > 0, C > 0 such that, for all f ∈ FM (h):∫
R2

+

e2h1/4|λ||f |2 dxdλ ≤ C‖f‖2 (5.4)

and: ∫
R2

+

e2h1/4|λ||Dλf |2 dxdλ ≤ Ch1/2‖f‖2 (5.5)
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Remark 5.13 Heuristically, those estimates with respect to λ correspond to the phase
space localization of [10, Section 5].

Proof: We take f = fj,η,h and we use the IMS formula (with Φ = h1/4χ
(
r−1|λ|

)
|λ|)

to get:

Qη,h(eΦf) ≤ νj(Qη,h)‖eΦf‖2+C‖∇ΦeΦf‖2 ≤ (Θ0+C(M)h1/2+Ch1/2)‖eΦf‖2.

We recall that:

Qη,h(eΦf) ≥
∫

R2
+

ν1(qλ,η,h)|eΦf |2 + αΘ0|Dλ(eΦf)|2 dxdλ

≥
∫

R2
+

ν1(qλ,η,h)|eΦf |2 dxdλ.

We have, for all D > 0:∫
R2

+

ν1(qλ,η,h)|eΦf |2 dxdλ

=
∫
|λ|≤Dh−1/4

ν1(qλ,η,h)|eΦf |2 dxdλ+
∫
|λ|≥Dh−1/4

ν1(qλ,η,h)|eΦf |2 dxdλ.

Moreover, we get:∫
|λ|≥Mh−1/4−η

ν1(qλ,η,h)|eΦf |2 dxdλ

≥
∫
|λ|≥Mh−1/4−η

(
Θ0 + c0 min(1, hλ2)

)
|eΦf |2 dxdλ

and:∫
Dh−1/4≤|λ|≤Mh−1/4−η

ν1(qλ,η,h)|eΦf |2 dxdλ

≥
∫
Dh−1/4≤|λ|≤Mh−1/4−η

(
Θ0 + C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h− Ch3/4−3η

)
|eΦf |2 dxdλ.

This leads to:∫
|λ|≥Dh−1/4

(c1 min(1, hλ2)− C̃h1/2 − Cα2h1/2)|eΦf |2 dxdλ

≤ C̃h1/2

∫
|λ≤Dh−1/4

|f |2 dλdx.

It remains to take D large enough and we get (5.4). Then, we have:∫
R2

+

(ν1(qλ,η,h)−Θ0)|eΦf |2 + αΘ0|Dλ(eΦf)|2 dxdλ ≤ Ch1/2‖f‖2.
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But, we notice that:∫
R2

+

(ν1(qλ,η,h)−Θ0)|eΦf |2 dxdλ

≥
∫
Dh−1/4≤|λ|≤Mh−1/4−η

(
C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h− Ch3/4−3η

)
|eΦf |2 dxdλ

+
∫
|λ≤Dh−1/4

(
C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h− Ch3/4−3η

)
|eΦf |2 dλdx.

Taking D larger, we get:∫
Dh−1/4≤|λ|≤Mh−1/4−η

(
µ′′(ξ0)

2
λ2h− Ch1/2 − Ch3/4−3η

)
|eΦf |2 dxdλ ≥ 0.

Moreover, we have:∣∣∣∣∣
∫
|λ≤Dh−1/4

(
C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h− Ch3/4−3η

)
|eΦf |2 dλdx

∣∣∣∣∣ ≤ Ch1/2‖f‖2.

�

5.3.3 Approximations of eigenvectors

Let us define the quadratic form q0 with domain B1(R+)⊗ L2(R):

q0(ϕ) = Q0(ϕ)−Θ0‖ϕ‖2 =
∫

R2
+

|∂xϕ|2 + |(x− ξ0)ϕ|2 −Θ0|ϕ|2 dxdλ.

The Friedrichs extension of q0 is the operator Hξ0 ⊗ IdL2(R). We also define the
projection on the kernel of Hξ0 ⊗ IdL2(R):

Π0ϕ = 〈ϕ, uξ0〉xuξ0(x).

The next proposition states an approximation result for the elements of FM (h) (which
behave as tensor products):

Proposition 5.14 For all M ≥ 1, there exist h0 > 0 and C > 0 such that, we have,
for all f ∈ FM (h):

‖f −Π0f‖L2 + ‖∂x(f −Π0f)‖L2 + ‖x(f −Π0f)‖L2 ≤ Ch1/8‖f‖, (5.6)

‖(λf −Π0λf‖L2 + ‖∂x(λf −Π0λf)‖L2 + ‖x(λf −Π0λf)‖L2 ≤ Ch−1/8‖f‖,
(5.7)

‖(∂λf −Π0∂λf‖L2 + ‖∂x(∂λf −Π0∂λf)‖L2 + ‖x(∂λf −Π0∂λf)‖L2 ≤ Ch3/8‖f‖.
(5.8)

In particular, Π0 is an isomorphism from FM (h) onto its range.

Proof: We take f = fj,η,h. By definition, we have:

Hη,hf = νj(Qη,h)f. (5.9)
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Approximation of f We deduce:

Qη,h(f) = νj(Qη,h)‖f‖2 ≤ (Θ0 + Ch1/2)‖f‖2.

We have:

Qη,h(f) ≥ (1− Ch1/2−η)
∫

R2
+

|∂xf |2 + |(x− ξ0 + h1/2λ+ h1/2 b̂2
2
l(x)2)f |2 dxdλ.

Moreover, we get (using the estimates of Agmon), for all ε ∈ (0, 1):∫
R2

+

|∂xf |2 + |(x− ξ0 + h1/2λ+ h1/2 b2
2
l(x)2)f |2 dxdλ

≥ (1− ε)Q0(f)− Cε−1h1/2‖f‖2.

Taking ε = h1/4, we deduce:

q0(f) ≤ Ch1/4‖f‖2.

We deduce (5.6).

Approximation of λf We multiply (5.9) by λ and take the scalar product with
λf :

Qη,h(λf) ≤ (Θ0 + Ch1/2)‖λf‖2 + |〈[Hη,h, λ]f, λf〉|.
Thus, it follows:

Qη,h(λf) ≤ (Θ0 + Ch1/2)‖λf‖2 + αΘ0|〈Dλf, λf〉| ≤ Θ0‖λf‖2 + C‖f‖2.

We get:

Qη,h(λf) ≥ (1− Ch1/2−η)
(
(1− ε)Q0(λf)− Cε−1‖f‖2

)
.

We take ε = h1/4 to deduce:

q0(λf) ≤ Ch−1/4‖f‖2.

We infer (5.7).

Approximation of Dλf We take the derivative of (5.9) with respect to λ and take
the scalar product with ∂λf :

Qη,h(∂λf) ≤ (Θ0 + Ch1/2)‖∂λf‖2 + |〈[Hη,h, ∂λ]f, ∂λf〉|.

The estimates of Agmon give:

|〈[Hη,h, ∂λ]f, ∂λf〉| ≤ Ch3/4‖f‖2.

We have:

Qη,h(∂λf) ≥ (1− Ch1/2−η)
(
(1− ε)Q0(∂λf)− Cε−1h‖f‖2

)
.

We take ε = h1/4 and we deduce:

q0(∂λf) ≤ Ch3/4‖f‖2.

We infer (5.8).
�
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5.3.4 Conclusion: proof of Proposition 5.6

For all f ∈ FM (h), we have the lower bound:

Qη,h(f) ≥
∫

R2
+

ν1(qλ,η,h)|f |2 + αΘ0|Dλf |2 dxdλ

≥
∫

R2
+

(
ν1(qλ,η,h)−

(
Θ0 + C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h

))
|f |2 dxdλ

+
∫

R2
+

(
Θ0 + C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h

)
|f |2 dxdλ+ αΘ0|Dλf |2 dxdλ

We now estimate:∫
R2

+

(
ν1(qλ,η,h)−

(
Θ0 + C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h

))
|f |2 dxdλ

=
∫
|λ|≥Mh−1/4−η

(
ν1(qλ,η,h)−

(
Θ0 + C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h

))
|f |2 dxdλ

+
∫
|λ|≤Mh−1/4−η

(
ν1(qλ,η,h)−

(
Θ0 + C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h

))
|f |2 dxdλ

Moreover, we get:∫
|λ|≥Mh−1/4−η

(
ν1(qλ,η,h)−

(
Θ0 + C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h

))
|f |2 dxdλ

≥
∫
|λ|≥Mh−1/4−η

−
(

Θ0 + C(k0, a2, b2)h1/2 +
µ′′(ξ0)

2
λ2h

)
|f |2 dxdλ = O(h∞)‖f‖2,

where the last estimate is a consequence of the estimates of Agmon. Then, we get:∫
|λ|≤Mh−1/4−η

(
ν1(qλ,η,h)−

(
Θ0 + C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h

))
|f |2 dxdλ

≥ −Ch3/4−3η‖f‖2.

We deduce:

Qη,h(f) ≥
∫

R2
+

(
C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h

)
|f |2 dxdλ+ αΘ0|Dλf |2 dxdλ

+ Θ0‖f‖2 − Ch3/4−3η‖f‖2.

We now use Proposition 5.14 to get:

Qη,h(f) ≥
∫

R2
+

(
C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h

)
|Π0f |2 dxdλ+ αΘ0|DλΠ0f |2 dxdλ

+ Θ0‖f‖2 − Ch1/2+1/8‖Π0f‖2.

But, we notice that, for all f ∈ FM (h):

Qη,h(f) ≤ νM (Qη,h)‖f‖2
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and thus:∫
R2

+

(
C(k0, a2, b2)h1/2 +

µ′′(ξ0)
2

λ2h

)
|Π0f |2 dxdλ+ αΘ0|DλΠ0f |2 dxdλ

≤ (νM (Qη,h)−Θ0)‖f‖2 + Ch1/2+1/8‖Π0f‖2

≤ (νM (Qη,h)−Θ0)‖Π0f‖2 + C̃h1/2+1/8‖Π0f‖2.

The conclusion follows from the min-max principle.
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