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Generating French virtual commuting networks at municipality level

Maxime Lenormand,1 Sylvie Huet,1 and Floriana Gargiulo1

1IRSTEA, LISC, 24 avenue des Landais, 63172 AUBIERE, France

We aim to generate virtual commuting networks in the rural regions of France in order to study
the dynamics of their municipalities. Since it will be necessary to model small commuting flows be-
tween municipalities with a few hundred or thousand inhabitants, we have opted for the stochastic
model presented by [1]. This model reproduces various possible complete networks using an iterative
process, stochastically selecting a workplace in the region for each commuter living in the munici-
pality of a region. The choice is made considering the job offers in each municipality of the region
and the distance to all of the possible destinations. This paper will present methods for adapting
and implementing this model to generate commuting networks between municipalities for regions
in France. We address three different issues: How can we generate a reliable virtual commuting
network for a region that is highly dependent on other regions for the satisfaction of its resident’s
demands for employment? What about a convenient deterrence function? How to calibrate the
model when detailed data is not available? Our solution proposes an extended job search geograph-
ical base for commuters living in the municipalities, we compare two different deterrence functions
and we show that the parameter is a constant for network linking municipalities in France.

I. INTRODUCTION

The connection between the home and workplace
plays a central role in understanding the socio-
economic relations in a network of rural municipal-
ities [2, 3]. Indeed, new economic theories assume
local positive dynamics can be explained by implicit
geographical money transfers made by commuters or
retired people (see for example [4]). Simulation is be-
coming an increasingly convenient tool to study pop-
ulations and their interactions over the space. That
is particularly the case with the individual-based ap-
proaches which allow studying theories at the indi-
vidual level since they simulate the variations in how
individuals interact with each other and with their
environment. Recent modeling reviews show the in-
creasing use of such a tool [5–10]. However, these ap-
proaches require generation models capable of build-
ing reliable virtual commuting networks that consider
each individual within a population. That is the case
in the SimVillages dynamic micro-simulation model
we developed during the PRIMA project[21]. Indeed,
in the SimVillages model, after generating a synthetic
population of individuals [11], it is necessary to choose
a place of work for each worker within this population
because a commuting origin-destination table was un-
available.

The goal of the European PRIMA project was to
understand the dynamics of rural municipalities in
France. 95% of them have less than 3000 inhabitants.
This means that most of the commuting flows we want
to study are weak, with a spatial distribution very dif-
ficult to predict with the available variables at an ag-
gregated level. This is why we opt for the stochastic
model recently proposed by [1]. Moreover, we want to
consider the commuting network on different dates.
Detailed data regarding flows between pairs of mu-
nicipalities are only available in France for the year
1999. For other dates, the only reliable data is ag-
gregated data for each municipality, which describes
how many people work outside of the municipality and

how many come from outside of the municipality to
work. Such data lacks precision regarding the various
places of work and the various municipalities where
citizens reside. Then we also choose the [1] model for
its ability to generate a population of individuals on
a commuting network, starting from this data. This
model reproduces the complete network using an iter-
ative process that stochastically selects a workplace in
the region for each commuter living in the municipal-
ity of the region. The choice is made while considering
the job offers in each municipality of the region and
the distance to all possible destinations. It differs from
the classical generation models presented in [12] since
it is a discrete choice model where the individual de-
cision function is inspired by the gravity law model,
which is not usually employed on an individual level
[12–14]. Moreover, such a model ensures that for every
municipality the virtual total numbers of commuters
both coming in and going out are the same as the ones
supplied by the data. This paper presents a method
to adapt and implement this model to generate com-
muting networks between municipalities for regions in
France. This implementation has forced us to address
three different issues: How can we generate a reliable
virtual commuting network for a region highly depen-
dent of other regions to satisfy the need for job for the
people living in the municipalities? What about a con-
venient deterrence function? How should the model
be calibrated when detailed data is not available?

The first problem to solve involves the fact that re-
gions in France are not islands, as presented in the
example of [15, 16]. Indeed, some of the inhabitants,
especially those living close to the borders of the re-
gion, are likely to work in municipalities located out-
side the region of residence. This part, especially if it
is significant, causes the generated network to regis-
ter false if we only consider that people living in the
region also work in the region. A method for solv-
ing this problem involves generating the commuting
network only for people living and working in the re-
gion. However, in order to do this it is required that
the modeler know the quantity and the place of resi-
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dence for individuals who work outside but live in the
region. Data providing this information is very rare.
Therefore, we address this issue by extending the job
search geographical base for commuters living in the
municipalities to a sufficiently large number of munic-
ipalities located outside the region of residence. Then,
we compare the model without outside municipalities
and the model with outside municipalities in 23 re-
gions in France and come to a conclusion regarding
the quality of our solution.

The second problem relates to the form of the deter-
rence function which governs the impact of distance
on choice of the place of work relative to the quan-
tity of job offers. The initial work done by [1] propose
the use of a power law. However, [14] states that
the form of the deterrence function varies greatly, and
can sometimes be inspired by an exponential func-
tion, such as in [17], or by a power law function as in
[18]. To choose the much more convenient deterrence
function, we have compared the quality of generated
networks for 34 regions in France obtained with both
the exponential law and the power law. Better results
were obtained with the exponential law.

The final problem was related to calibration. The
generation model, as with most of the currently used
commuting network generation models, has one pa-
rameter to calibrate. This parameter governs the im-
pact of distance on the individual decision regarding
the place of work relative to the quantity of job offers.
This parameter was calibrated through minimization
of the Kolmokorov-Smirnov distance between the ob-
served and simulated commuting distance distribution
for individuals of the studied region. When detailed
data is not available, it is necessary to find a way to
determine this parameter. The only available distance
that can be used is the Euclidian distance. While de-
tailed commuting network data was available for the
year 1999 and could be used for calibration, it was not
available for earlier or more recent years. Though it
may be possible to assume the parameter value does
not change over time, a transportation network can
evolve greatly at the local level to reduce the time dis-
tance. Such a change cannot be recorded when using
the Euclidian distance. A solution was finally found.
Using 34 regions in France, we show that every region
can be generated using a constant value for the pa-
rameter. Then, we assume that the parameter value
is constant over time and space.

II. MATERIAL AND METHODS

A. The French case-studies and data from the
French statistical office

A complete description of the regions from which
the network was generated is provided in Table 4.
These regions have been randomly chosen for their
diversity in terms of number of municipalities, num-
ber of commuters and surface areas. Some correspond
to an administrative region of France while others

are closer to the county (known as ”departements”, a
French administrative unit). These two types of case
studies are called ”region” hereafter.

The French Statistical Office (INSEE) collects in-
formation regarding each individual’s residence and
place of work. From this collected data, the Maurice
Halbwachs Center or the INSEE make the following
data available for every researcher:

1. in 1999, the observed commuting networks i.e.
data regarding the numbers of individuals com-
muting from location i to location j for every
municipality of a region (called ”observed data”
hereafter);

2. in 1999, the total number of commuters, the to-
tal job offers and the total number of workers
in residence for every municipality. These data
allow computations to be made for the number
of workers that commute to their office of em-
ployment for each municipality.

3. The Lambert coordinates for each municipality
are easy to find on the internet. They are used
to compute the Euclidian distance between each
pair of municipalities.

We used the data sets 2 and 3 as inputs of the
algorithms described in this paper to simulate com-
muting networks (noted S). We compare these sim-
ulated commuting networks to ”real” network (noted
R) built from the observed data of the data set 1.

B. The Gargiulo’s model

Consider a region composed of n municipalities. We
can model the observed commuting network starting
from matrix R ∈ Mn×n(N) where Rij represents the
number of commuters from municipality i (in the re-
gion) to municipality j (in the region). This matrix
represents the light gray origin-destination table pre-
sented in Table 1.

The inputs of the algorithm are:

• D = (dij)1≤i,j≤n the Euclidean distance matrix
between municipalities.

• Ij the number of in-commuters from the region
to municipality j of the region, 1 ≤ j ≤ n (i.e.
the number of individuals living in the region in
municipality i (i 6= j) and working in municipal-
ity j).

• Oi the number of out-commuters from munici-
pality i of the region to the region, 1 ≤ i ≤ n
(i.e. the number of individuals working in the
region in municipality j (j 6= i) and living in
municipality i).

Ik and Ok can be respectively assimilated to the job
offers for those employed in the region and the job de-
mand of those employed in the region for municipality
k, 1 ≤ k ≤ n. The algorithm starts with:
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Ij =

n∑
i=1

Rij (1)

and

Oi =

n∑
j=1

Rij (2)

The purpose of the model is to generate the light
gray origin-destination sub-table of the region de-
scribed in Table 1. To do this it generates matrix
S ∈ Mn×n(N) where Sij represents the number of
commuters from municipality i (in the region) to mu-
nicipality j (in the region). It’s important to note that
Sij = 0 if i = j. The algorithm assigns to each indi-
vidual a place of work with a probability based on the
distance from the place of residence to every possible
place of work and their corresponding job offer. The
number of in-commuters for municipality j and the
number of out-commuters for municipality i decrease
each time an individual living in i is assigned munic-
ipality j as a workplace. The algorithm is stopped
when all out-commuters have a place of work. The
algorithm is described in Algorithm 1 with m = n.

Algorithm 1: Commuting generation model

Input : D ∈ Mn×m(R), I ∈ Nm, O ∈ Nn, β ∈ R+

Output : S ∈ Mn×m(N)
Sij ← 0
while

∑n
i=1Oi > 0 do

Simulate i ∼ UA where A = {k|k ∈ |[1, n]|, Ok 6= 0}
Simulate j from |[1,m]| with a probability:

Pi→j =
Ijf(dij , β)∑m

k=1 Ikf(dik, β)

Sij ← Sij + 1
Ij ← Ij − 1
Oi ← Oi − 1

end while

In [1], the authors use a deterrence function
f(dij , β) with a power law shape:

f(dij , β) = d−βij 1 ≤ i, j ≤ n . (3)

Statistical tools

This section presents the tools used to calibrate
the model and to compare various implementation
choices.

C. Calibration of the β value.

The same method used in [1] is used to calibrate the
β value. β is calibrated so as to minimize the aver-

age Kolmogorov-Smirnov distance between the simu-
lated commuting distance distribution and one build-
ing from the observed data. For the basic model we
compute the commuting distance distribution with
the commuting distance of individuals who are com-
muting from the region to the region. For the model
focused on the outside we compute the commuting
distance distribution with the commuting distance of
the individuals who are commuting from the region to
the region and outside.

Since the model is stochastic, the final calibration
value we consider is the average β value over ten repli-
cations of the generation process.

D. An indicator to assess the change.

It is necessary to have an indicator to compare
the simulated commuting network and the observed
commuting network (data set 1 in section II A). Let
R ∈ Mn1×n2

(N) represent the observed commuting
network when Rij represents the number of com-
muters from municipality i to municipality j. Let
S ∈ Mn1×n2

(N) represent a simulated commuting net-
work for the same municipalities. We can calculate the
number of common commuters between R and S (Eq.
4) and the number of commuters in R (Eq. 5):

NCCn1×n2
(S,R) =

n1∑
i=1

n2∑
j=1

min(Sij , Rij) (4)

NCn1×n2
(R) =

n1∑
i=1

n2∑
j=1

Rij (5)

From (Eq. 4) and (Eq. 5) we calculate the Sørensen
similarity index [19]. This index is suitable because it
corresponds to the common part of commuters be-
tween R and S. Thus it is called the common part of
commuters (CPC) (Eq. 6):

CPCn1×n2(S,R) =
2NCCn1×n2(S,R)

NCn1×n2
(R) +NCn1×n2

(S)
(6)

This index has been chosen for its intuitive explana-
tory power, as it is a similarity coefficient that pro-
vides the likeness degree between two networks. The
index ranges from a value of zero, for which there are
no any commuter flows in common in the two net-
works, to a value of one, when all commuter flows are
identical between the two networks.
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Table 1: Origin-destination table for the region; The light gray table represents the commuters living (place of residence
RP) and working (place of work WP) in the region for each municipality of the region; The dark gray line represents
the number of out-commuters from municipality of the region to the region for each municipality of the region (i.e. the
row totals of the light gray table); The dark gray column represents the number of in-commuters from the region to a
municipality of the region for each municipality of the region (i.e. the column totals of the light gray table).

III. GENERATING COMMUTING
NETWORKS FOR FRENCH REGIONS AT

MUNICIPALITY LEVEL

A. How to cope with regions that are not
islands or those that lack detailed data?

A commuting network is defined by an origin-
destination table (light gray table in Table 2). At
the regional level, this means that it is necessary to
know, for each municipality of residence and for each
municipality of employment, the value for the flow of
commuters traveling from one to another. This kind
of data is not always provided by statistical offices
and the datasets are usually aggregated: only the to-
tal number of out-commuters and in-commuters for
each municipality is available for each (dark gray row
and colum in Table 2). To apply the model and de-
fine the commuting network, unless we are on a sig-
nificantly isolated region [22], we need to find a way
to isolate from the total number of in(out)-commuters
(dark gray row and colum in Table 2) the fraction that
relates strictly to the region (light gray table in Table
2). However, this is not a simple task.

Furthermore, even if these parts can be isolated, a
problem remains due to the border effect. Indeed, if
we consider only the region, there is the risk of mak-
ing an error in the reconstruction of the network for
municipalities near the region’s border. The higher
the proportion of individuals working outside of the
region, the more significant the error will be.

To go further, we propose to change the inputs for
the algorithm. Instead of only considering the regional
municipalities as possible places of work, we also con-
sider an outside of the region. The outside represents
the surroundings of the studied area. The following
section describes a method for considering this outside
area practically.

1. A new extended to outside job search base.

We implement the model to generate 23 various re-
gions in France. Their outside is composed of the set
of municipalities of their neighboring ”departments”.

We consider the outside of the region to be com-
posed of m−n municipalities, where n represents the
number of municipalities in the region. The inputs
are the directly available aggregated data at the mu-
nicipal level:

• D = (dij) 1≤i≤n
1≤j≤m

the Euclidean distance matrix

between municipalities both in the same region
and in the outside.

• (Ij)1≤j≤m the total number of in-commuters of
municipality j of the region and outside of it (i.e.
the number of individuals working in municipal-
ity j of the region or the outside and living in
another municipality).

• (Oi)1≤i≤n the total number of out-commuters of
municipality i of the region only (i.e. the num-
ber of individuals living in municipality i of the
region and working in an other municipality).

The purpose of the algorithm that introduces the
outside is to generate the origin-destination table
(light gray and gray sub-table in Table 2). To do
this the algorithm presented in Algorithm 1 is used to
simulate the Table 3. From this, through difference
the Table 2 can be obtained with the total number
of in-commuters (Ij)1≤j≤n, the total number of out-
commuters (Oi)1≤i≤n and the light gray table of the
Table 3.

A matricial representation of the origin-destination
table presented in the light gray and gray sub-table
in Table 2, known as the simulated matrix S ∈
M(n+1)×(n+1)(N) is obtained. Sij represents:

• the number of commuters from municipality i
(in the region) to municipality j (in the region)
if i, j 6= n+ 1;
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Table 2: Origin-destination table; The light gray table represents the commuters living and working in the region
for each municipality of the region; The gray column represents the out-commuters living in the region and working
outside (Out.) for each municipality of the region; The gray line represents the in-commuters working in the region and
living outside (Out.) for each municipality of the region; The dark gray line(column) represents the total number of
out(in)-commuters for each municipality of the region.

Table 3: Origin-destination table from the region to the region and the outside; The light gray table represents the
commuters living (place of residence RP) and working (place of work WP) in the region for each municipality of the
region; The gray table represents the commuters living (place of residence RP) in the region and working (place of work
WP) outside of the region.

• the number of commuters from outside to mu-
nicipality j (in the region) if i = n + 1 and
j 6= n+ 1;

• the number of commuters from municipality i to
outside if i 6= n+ 1 and j = n+ 1.

2. Comparison of the two models: Assessing the impact
of the outside.

We assess the impact of the outside through a com-
parison between the network generations for 23 French
regions both with and without the outside. The gen-
eration is made on a municipality scale using a power
law deterrence function.

Both implementations are compared through their
CPC values between the simulated network S and the
observed network R (data set 1 presented in Section
II A) for each region. We replicate the generation for
each region ten times and our indicator on each repli-
cate is calculated. In all the presented figures, the
indicator averages ten replications. The variation of
the indicator over the replications is very low, aver-
aging 1.02% at most. Consequently, this is not rep-
resented on the figures. Fig. 1 presents the common

part of commuters CPCn×n(S,R) between the sim-
ulated network S and the observed network R; The
squares represent the CPC between the observed net-
work R and the simulated networks obtained with
the regional job search base; The triangles repre-
sent the CPC between the observed network R and
the simulated networks obtained with a job search
base comprising the region and its outside. It’s im-
portant to note that for the implementation without
outside S ∈ Mn×n(N) while for the implementation
with outside S ∈ M(n+1)×(n+1)(N). In order to com-
pare the two models, the regional network (commuters
from the region to the region) must be taken into
consideration. Indeed, in the without-outside cases
NCn×n(S) = NCn×n(R) but this is not necessarily
true for the with-outside cases.

Fig. 1 shows that the two job search bases give re-
sults which are not different. Thus, introducing the
outside solves the problem linked to a lack of detailed
data without changing the quality of the resulted sim-
ulated network. Indeed, one must keep in mind that
the inputs for the with-outside cases do not require
detailed data in comparison to the without-outside
cases.
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Figure 1: Average CPC for 23 regions. The squares rep-
resent the basic model; The triangles represent the model
with outside.

B. Choosing a shape for the deterrence function

The next problem relates to the form of the deter-
rence function which rules the impact of distance on
the choice of the place of work relative to the quan-
tity of job offers. The initial work done by [1] proposes
to use a power law. However, [14] states the form of
the deterrence function varies significantly, and can
sometimes be inspired by an exponential function as
in [17] or by a power law function as in [18]. Through
choosing the much more convenient deterrence func-
tion, we compare the quality of generated networks
for 34 French regions obtained with the model with
outside using both the exponential law and the power
law.

A deterrence function following an exponential law
is introduced:

f(dij , β) = e−βdij 1 ≤ i ≤ n and 1 ≤ j ≤ m . (7)

To compare the two deterrence functions, we have
generated the networks of 34 various French regions
(see Table 4 for details) that replicate ten times for
each region. The networks were generated with a job
search base for the algorithm that considers the out-
side.

For example, Fig. 2 shows that we obtained a bet-
ter estimation of the Auvergne commuting distance
distribution when using the exponential law. We com-
puted the observed commuting distance distribution
with the observed Auvergne commuting network (data
set 1 presented in Section II A) and the Euclidean dis-
tances between the Auvergne municipalities (data set
3 presented in Section II A).

More systematically, we plot, for the expo-
nential law and power law, the average of the
replications for the common part of commuters
CPC(n+1)×(n+1)(S,R) between the simulated net-
work S and the observed network R in Fig. 3. This

0 10 20 30 40 50 60

0.00

0.02

0.04

0.06

0.08

Commuting distance (Km)

 

Observed data
Power
Exponential

D
en

si
ty

Figure 2: Density of the Auvergne commuting distance
distribution; the solid line represents the observed com-
muting distance distribution; the dotted line represents
the commuting distance distribution obtained with the
calibrated model with a job search base comprising the
outside and the exponential law; the dashed line repre-
sents the commuting distance distribution obtained with
a job search base comprising the outside and the power
law. The two simulated commuting distance distributions
are computed for one replication each.
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and the exponential shape (square) for 34 French regions.

clearly indicates that the average proportion of com-
mon commuters is always better when using an expo-
nential law represented by squares.

C. Spatial Analysis

To better understand how CPC is spatially dis-
tributed at a more granular level we mapped the CPC
by municipality for three models and three study ar-
eas. In Fig. 4, it can be observed that for all case
studies (in rows) the highest values of the CPC were
obtained by municipalities using the model with an ex-
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(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Figure 4: Maps of the average CPC by municipalities obtained with ten replications. In green CPC ≤ 0.5; In yellow
0.5 < CPC ≤ 0.75; In red 0.75 < CPC. (a), (d) and (g) Model with the power shape without outside; (b),(e) and
(h) Model with the power shape with outside; (c), (f) and (i) Model with the exponential shape with outside. (a)-(c)
Auvergne case-study; (d)-(f) Bretagne case-study; (g)-(i) Auquitaine case-study. Base maps source: Cemagref - DTM -

Développement Informatique Système d’Information et Base de Données : F.Bray & A.Torre IGN (GéoflaR©, 2007).

ponential shape including the outside (third column).
It can also be noted that the model without the out-
side (second column) and the model with the power
shape including the outside (first column) give results
which are not wholly different.

As we can see in Fig. 4, the CPC values are not
uniformly distributed in the municipalities of the three
areas. The error seems to increase as distance from
the urban areas increases.

We now focus on the third model with an exponen-
tial shape including the outside to better understand
which types of municipalities compose the three clus-
ters (CPC≤ 0.5, 0.5 <CPC≤ 0.75 and 0.75 <CPC).
We identify the number of out-commuters as the most
explanatory variable. Indeed, we can observed in
Fig. 5 that the distribution of the number of out-
commuters in each cluster is significantly different.
The higher the average number of out-commuters, the
higher the CPC. Having performed analyses of vari-
ance (ANOVA) for each case study, we obtained signif-
icant differences between the averages for the number
of out-commuters in each cluster with a 0.95% level
of confidence for each case study.

For the three regions, the CPC value is strongly
linked to municipality characteristics. Indeed, the mu-
nicipalities with 0.75 <CPC are urban and suburban
municipalities with a high number of out-commuters
that are closed to a large urban municipality. In con-
trast, the municipalities with a low number of out-
commuters that are far from large urban municipali-
ties have a CPC lower than 0.5. For this type of mu-
nicipality, the commuting flows are very small. Thus
they are difficult to reproduce with the mechanisms
taken into consideration. However, the distance to
cities does not appear to be particularly responsible
for the error. The timing for the job offer arrival on
the job market is probably much more significant in
determining the local topology of the network than
elsewhere. These flows represent about 4% of the to-
tal number of out-commuters for the Auvergne region,
1% for Bretagne and 5% for Aquitaine.
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Figure 5: Boxplots of the number of out-commuters in term of the CPC by municipality for the model with the
exponential shape with outside. (a) Auvergne case study; (b) Bretagne case study; (c) Aquitaine case study.
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Figure 6: The circle represents the average calibrated β
values for ten replications (The confident interval is com-
posed of the minimum and the maximum) for each regions;
the line represents the average β value for the 34 regions.

D. Calibrating the model for French regions

The final problem involves the calibration process,
which previously required detailed and accurate data.

Fig. 6 shows the calibrated β values for each of the
34 regions in France. It can be observed that these
values display subtle variations from about 1.7 · 10−4

to 2.4·10−4 with the average β valued (C = 1.94·10−4)
corresponding to the dark line.

Then we hypothesize that it is possible to directly
calibrate the algorithm to generate the 34 regions in
France, by using a constant equal to C. To study the
influence of this approximation on the common part
of commuters we have computed the CPC with C as
the parameter value for the 34 regions. We observe
in Fig. 7 that the influence of the β’s approximation
on the CPC is very weak. It can then be noted that
the average CPC obtained with C is, for some regions,
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Figure 7: Common part of commuters for the 34 regions;
The squares represents the average CPC (10 replications)
obtained with the calibrated β value; The triangles repre-
sents the average CPC (10 replications) obtained with the
estimated β values (average β value over the 34 calibrated
β values).

higher than the CPC obtained by the β value that is
not averaged. It is possible that the common part of
commuters is better with another beta value because
it is not a calibration criterion.

It is not necessary to study the influence of the β’s
approximation on the calibration criterion. Indeed,
from the studies made by [1], we know the CPC and
the calibration criterion show a significant correlation.
The CPC and the calibration criterion follow the same
evolution in terms of β. The β value for minimization
of the Kolmogorov-Smirnov distance is very close to
the one obtained for maximization of the CPC (see
the figure 7 in [1] which perfectly illustrates this rela-
tion). The CPC values remain quasi-identical to β=C
or to β valued from the calibration process presented
in Section II C, the quality of the approximation of
the calibration criterion, i.e. the commuting distance
distribution, remains the same.



9

IV. DISCUSSION

To study the rural area dynamics through micro-
simulation, we need virtual commuting networks that
link individuals living in the municipalities of various
French regions. As the studied scale is very low, the
flows are low, and we thus decided to opt for a stochas-
tic generation algorithm. The one recently proposed
by [1] is relevant to our problem. Starting from this
model, we implement the commuting networks of 34
different French regions. The implementation work
leads us to solve three practical problems.

The first problem involves the fact that our French
regions are not islands. Indeed, some of the inhab-
itants, especially those living close to the border of
the region, are likely to work in municipalities located
outside the region of residence. However, classical ap-
proaches to generating commuting networks consider
only residents of the region that work in the region.
That is also the case for ours. Data providing details,
or knowledge, allowing the modeler to evaluate peo-
ple living in the region but working outside is difficult
to obtain. Thus, we address this issue by extending
the geographical base of the job search for commuters
living in the municipalities to a sufficiently large num-
ber of municipalities located outside the region of resi-
dence. We compare the model without municipalities
located outside and the model with outside munici-
palities to 23 French regions. We are able to come to
a conclusion regarding the relevance of our solution
which keeps the value of our quality indicator iden-
tical. At the same time, it is not necessary to have
information regarding those who do not work in the
region, which allows us to generate networks using
only the aggregated data.

The [1] model is based on the gravity law. Then,
our second problem relates to the deterrence function,
which is more of a power law or an exponential law de-
pending on the study. Moreover, as empirical studies

comparing generated networks to observed data are
extremely rare [14], few know which is better. In or-
der to select the more convenient one for our French
regions, we have compared the quality of generated
networks for 34 regions obtained with both the expo-
nential law and the power law. Better results were ob-
tained with the exponential law, no matter the region.
Indeed, the 34 regions display significant variance in
regards to surface area, the number of municipalities,
and the number of commuters.

The final problem involved calibration. Applying a
model with an extended job search base and an expo-
nential deterrence function, we found a constant equal
to 1.94 · 10−4 to be a perfect parameter value for gen-
erating commuting networks for French administra-
tive regions, no matter the region. However, we did
not test this result for other countries with different
types of administrative regions. The robustness of this
result to commuting networks of different scales has
been studied in [20]. The β value correlated to a scale
consistent with the results obtained in this paper.

A spatial analysis of three different case studies has
been proposed, and it was shown that the CPC value
by municipality strongly correlated with the number
of out-commuters for the municipality. Our model is
not able to reproduce very small flows which represent
between 1 and 5% of the total flows in the region we
studied. However, we continue to question if it makes
sense to attempt to reproduce them.
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Table 4: Description of the regions

ID Region
Number of
municip.
(region)

Number of
municip.
(outside)

Region area
(km2)

Average
municip.

area (km2)

Number of
commuters

FR1 Auvergne 1310 3463 26013 19.86 295776
FR2 Bretagne 1269 1447 27208 21.44 653710
FR3 Ain 419 2809 5762 13.75 162370
FR4 Alsace 903 3081 8280 9.17 440961
FR5 Aquitaine 2296 2835 41309 17.99 700452
FR6 Mayenne 261 3124 5175 19.83 69915
FR7 Lozère 185 1859 5167 27.93 12273
FR8 Poitou-Charente 1464 2467 25810 17.63 375363
FR9 Centre 1842 4718 39151 21.25 624693
FR10 Midi-Pyrénée 3020 3845 45348 15.02 546162
FR11 Limousin 747 3169 16942 22.68 139481
FR12 Franche-Comté 1786 3317 16202 9.07 268399
FR13 Haute-Normandie 1420 3536 12317 8.67 469335
FR14 Haute-Marne 433 3914 6211 14.34 42690
FR15 Vosges 515 3808 5874 11.41 92053
FR16 Lorraine 2339 3067 23547 10.07 547457
FR17 Creuse 260 1814 5565 21.40 23949

FR18
Languedoc-
Roussillon

1545 3046 27367 17.71 409116

FR19 Charente-Maritime 1948 1983 25606 13.14 375363
FR20 Haut-de-Seine 36 1245 176 4.89 973173
FR21 Yveline 262 1543 2284 8.72 618741
FR22 Val d’Oise 185 1707 1246 6.74 526600
FR23 Val de Marne 47 1234 245 5.21 642092
FR24 Haut-Rhin 377 2283 3525 9.35 183504
FR25 Tarn et Garonne 195 2338 3718 19.07 41600
FR26 Pyrénée-Atlantique 547 449 4116 7.52 65469
FR27 Alpes-Maritimes 163 353 4299 26.37 163445
FR28 Loire 327 2788 4781 14.62 178828
FR29 Territoire de Belfort 102 2031 609 5.97 45185
FR30 Seine-Saint-Denis 40 783 236 5.90 655200
FR31 Essonne 196 1597 1804 9.20 518321
FR32 Ardennes 463 2588 5229 11.29 59963
FR33 Aube 433 2728 6004 13.87 75561
FR34 Corréze 286 2088 5857 20.48 49815
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