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Abstract

We present a possibility of coupling a point-like, non-singular, mass distribution
to four-dimensional quantum gravity in the nonperturbative setting of Causal
Dynamical Triangulations (CDT). In order to provide a point of comparison for
the classical limit of the matter-coupled CDT model, we derive the spatial volume
profile of the Euclidean Schwarzschild-de Sitter space glued to an interior matter
solution. The volume profile is calculated with respect to a specific proper-
time foliation matching the global time slicing present in CDT. It deviates in a
characteristic manner from that of the pure-gravity model. The appearance of
coordinate caustics and the compactness of the mass distribution in lattice units
put an upper bound on the total mass for which these calculations are expected
to be valid. We also discuss some of the implementation details for numerically
measuring the expectation value of the volume profiles in the framework of CDT
when coupled appropriately to the matter source.
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1 Introduction

There has been growing interest in a nonperturbative formulation of quantum gravity
in recent decades. Several candidate theories have emerged, among which is the Causal
Dynamical Triangulations (CDT) programme. This approach implements a nonper-
turbative path-integral quantization of gravity, where each contributing spacetime
history carries a well-defined causal structure. In one of the phases of the underlying
statistical model of ‘random geometry’ one has observed the formation of an extended
universe with good classical properties. More specifically, it has been shown that both
its Hausdorff [1] and spectral dimension [2] are four on large scales. Furthermore, the
large-scale shape of this dynamically generated background geometry matches to great
accuracy that of a de Sitter universe [3], corresponding to a universe with a positive
(renormalized) cosmological constant, and the quantum fluctuations around it agree
with predictions from a mini-superspace model [4].

As a next step towards making the model more realistic, we want to study matter
coupling using CDT. In the framework of dynamical triangulations, it is straightfor-
ward to set up dynamical, coupled gravity-matter systems by extending the sum over
all geometries to a double-sum over all geometrical and matter field configurations
(for a spin, scalar or gauge field, say). This has already been demonstrated in the
corresponding Euclidean quantum gravity models in four dimensions [5, 6, 7, 8, 9].
The situation we will be studying presently is slightly different, and assumes that a
particular matter configuration has already been arrived at, namely, one that can be
approximated by a compact mass distribution that we shall refer to as a point-like
mass. Compared with the matter-free case, this introduces an inhomogeneity in the
geometry of the spatial slices, but preserves spherical symmetry. Such a situation
is of great physical relevance because it corresponds to the gravitational field of any
spherically symmetric mass distribution in a universe with a positive cosmological
constant.

The relevant classical solution to the Einstein equations outside the source is given
by the Schwarzschild-de Sitter (SdS) metric. In this paper, we address the question
of how to detect the presence—on sufficiently large scales—of this particular back-
ground geometry in CDT quantum gravity coupled to a point-like mass. This implies
finding a quantum observable that is well defined in the nonperturbative, background-
independent setting of the full path integral, is sensitive to the presence of the mass,
and is potentially measurable in the computer simulations. The dynamics of CDT
quantum gravity is defined directly on the space of geometries (in a continuum lan-
guage: the space of metrics modulo diffeomorphisms) and forces one to tackle the issue
of observables head-on, by giving measuring prescriptions for geometric observables
whose expectation values with respect to the ensemble average over all spacetime
geometries give nontrivial results. Examples of this are the dynamical dimensions
mentioned above.

In the CDT setting, another class of geometric quantities is accessible relatively
easily, namely, those referring to the proper-time slicing that comes with the for-
mulation.2 This has been used previously in the pure-gravity theory to study both

2One should keep in mind that geometric quantities associated with a spatial slice in the sim-
ulations will in general not correspond directly to properties of classical three-geometry; for this,
they will usually need to be smeared out (coarse-grained) over some finite time-extension, cf. [10].
However, the spatial three-volume considered below is a sufficiently robust quantity, for which this
turns out not to be necessary.
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the volume profile (the development V3(τ) of the spatial three-volume as function of
proper time τ) and the correlator of quantum fluctuations in the three-volume around
the dynamically generated de Sitter background spacetime [3, 4]. As we shall see, the
volume profile is a geometric quantity that is modified by the presence of the mass.
We shall focus in this work on the derivation in the continuum of the volume profile of
the Euclidean Schwarzschild-de Sitter (ESdS) solution in a proper-time slicing, which
may be compared to the values obtained from CDT simulation. To our knowledge, no
background-independent approach to quantum gravity has so far succeeded in gener-
ating a Schwarzschild-de Sitter geometry in the classical limit. The volume profiles
we derive can be used as a criterion to identify this spacetime in any background-
independent approach to quantum gravity in four spacetime dimensions, when using
a suitable proper-time slicing.

Unlike the previously mentioned work on dynamical matter fields, very little has
been done on coupling point or point-like masses to quantum gravity in four dimen-
sions. We are not aware of any nonperturbative, background-independent approach to
quantum gravity that has been ab initio coupled to point masses in four dimensions.
Inclusion of point particles is common in discussions of both classical and quantum
three-dimensional gravity [11]. The three-dimensional theory has no local degrees of
freedom and therefore is significantly different from the four-dimensional one, already
at the classical level. The inclusion of point particles is simplified by the fact that their
presence only creates conical defects [12, 13], and not stronger curvature singularities
like in higher dimensions. Quantization of three-dimensional gravity with point par-
ticles has been discussed early on in [14, 15] and more recently in the contexts of
Loop Quantum Gravity [16] and the Ponzano-Regge Spin Foam model [17]. In four
dimensions, a spherically symmetric quantum spacetime has been studied in a series
of papers by Husain and Winkler [18, 19, 20], where they applied canonical quanti-
zation to a symmetry-reduced midi-superspace model of black hole collapse from a
scalar field coupled to gravity. The Euclidean Schwarzschild-de Sitter space, which
we discuss extensively below, has been studied in the context of black hole thermody-
namics [21] and the stability of de Sitter space [22, 23]. Schwarzschild-de Sitter space
shares many of its global properties with de Sitter space. An overview of the latter
can be found in [24].

In this work, we propose to perform CDT simulations with a mass line representing
the point-like source and measure the average volume profile to test whether the
classical limit of CDT coincides with the Euclidean Schwarzschild-de Sitter geometry.
We derive the expected deviation from the Euclidean de Sitter profile for pure gravity
by performing a proper-time slicing of the continuum ESdS geometry glued to an
interior matter region. The particular Gaussian normal coordinate system we work
with in the continuum, in order to mimic the CDT set-up, exhibits caustics in the
vicinity of the mass, which cannot be eliminated by extending the coordinates to the
matter region. For the numerical derivation of the volume profiles, we neglect this
problematic region by cutting out a tube from the Euclidean Schwarzschild-de Sitter
space whose spatial slices are balls of constant Schwarzschild radius. This procedure
gives rise to an upper bound for the mass under consideration. The profiles for masses
below this bound are the ones that should be compared with those coming from
CDT simulations to test for the possible presence of an ESdS ground state. A mass
propagating in triangulated spacetime can be represented by a timelike mass line on
the lattice dual to the triangulation. Our analysis reveals that in order to compare
the results derived here with those coming from simulations, the mass line should be

3



implemented so as to form a contractible loop on S4 (or a suitable analogue on the
S3 × S1-topology used in simulations).

The paper is organized as follows. In section 2 we review CDT, emphasizing its
hypersurface structure and its classical limit and describe the possibility to couple a
point-like mass. Section 3 deals with the properties of ESdS space. Starting from the
metric in static form we construct Gaussian normal coordinates to obtain a particularly
simple proper-time form of the metric. In section 4 we derive the bound on masses
accessible in simulations and derive the volume profiles of the ESdS geometry in the
proper-time slicing for masses below this bound. Section 5 contains the conclusion
and the outlook. Appendix A contains the technical details of the derivation of the
metric in proper-time form. In Appendix B we discuss the matching of an interior
matter solution to the exterior vacuum solution.

2 Causal Dynamical Triangulations

2.1 Regularization of the gravitational path integral

For readers unfamiliar with the quantization programme of Causal Dynamical Trian-
gulations, let us briefly review its motivation, implementation and the main results it
has produced to date (for more in-depth reviews, see [25, 26, 27, 28, 29]).

Building on insights from general relativity and (canonical) quantum gravity, this
approach uses nothing but standard quantum-field theoretic principles and methods,
adapted to the situation where geometry is no longer part of a fixed background struc-
ture, but is itself dynamical. The basic quantum-dynamical principle it implements is
the Feynman path integral, the “superposition of gravitational amplitudes” or “sum
over histories”

Z =
∫

[g]∈G

Dg eiSEH[g], with SEH =
1
GN

∫
d4x

√
det g(R− 2Λ), (1)

where each history is a spacetime geometry (a diffeomorphism equivalence class [g]
of metrics on a fixed manifold M , with G the space of all such equivalence classes),
weighted with the exponential of i times its Einstein-Hilbert action. Because of the
nonrenormalizability of gravity as a perturbative quantum field theory on a Minkow-
skian background, such a path integral necessarily has to be nonperturbative, which
means that it must include spacetime configurations “far” from any classical solu-
tion. The evaluation of the ensuing, highly non-Gaussian path integral is technically
challenging, and in the CDT approach is addressed by using powerful lattice meth-
ods, borrowed from the nonperturbative treatment of QCD. Adapting them to gravity
implies that the rigid lattices of gauge theory become themselves dynamical, and actu-
ally take the form of dynamical triangulations, because of the way the infinitely many
geometric/curvature degrees of freedom of the theory are regularized.

Namely, the gravitational path integral is regularized by summing over a class
of piecewise flat four-manifolds, which can be thought of as being assembled from
(two types of) four-dimensional simplices, which are simply triangular building blocks
cut out of Minkowski space. They are individually flat, but can pick up nontrivial
deficit angles after being glued together pairwise along three-dimensional subsimplices
(tetrahedra), with curvature concentrated at two-dimensional subsimplices (triangles)
where tetrahedra meet. This does not imply that spacetime is conjectured to consist

4



of (Planck-sized) triangular building blocks. On the contrary, the edge length of the
simplices serves as a short-distance cut-off and we are only interested in the universal
properties of the model as this cut-off is sent to zero.

When evaluating the path integral, these simplicial geometries are taken to be
Euclidean, like those that are summed over in the Euclidean gravitational path integral
in its standard definition [30]. In contrast to previous Euclidean quantum gravity work,
the triangulations used in CDT have a preferred, discrete notion of time τ = 1, 2, 3, . . .
inherited from a class of triangulated Lorentzian piecewise flat spacetimes by explicit
Wick rotation [31, 32]. In the Lorentzian regime, the triangulations are restricted to
those consisting of a sequence of slices with (discrete) proper-time thickness ∆τ = 1
and fixed topology. Links that lie in a spatial hypersurface of constant integer τ are
spacelike and links connecting two adjacent spatial slices of this kind are timelike.
The restriction on the path integral histories is motivated by the desire to eliminate
the causality-violating ‘baby universes’ in the time direction produced in Euclidean
dynamical triangulations [33], which lead to an incorrect classical limit because of the
absence of an extended four-dimensional geometry on large scales. After discretization
and Wick rotation, the path integral becomes a statistical sum with Boltzmann weights
using the Regge action [34], which is the discretized version of the Einstein-Hilbert
action. The first major result of the CDT formulation was to show in exactly solvable
two-dimensional quantum gravity that the signature, i.e., sum over Lorentzian as
opposed to Euclidean geometries in the path integral, leads to genuinely different
properties of the model (different intrinsic Hausdorff dimension, for instance) [35].

In dimension four, the regularized path integral can no longer be evaluated by exact
methods, but Monte Carlo methods must be used to explore its continuum limit. This
has led to a number of unexpected and new results. Since the curvature is allowed to
fluctuate strongly on short scales, and since a nontrivial limiting process is involved, it
turns out that the dimensionality of the “quantum geometry” generated by the path
integral is not necessarily four. Only when the summed triangulations have the causal
structure described above, and the (bare) coupling constants are chosen appropriately,
does a four-dimensional universe emerge from the quantum theory [1, 10]. This is the
first instance in which a classical-looking universe has been obtained from first princi-
ples within a nonperturbative formulation of quantum gravity. Moreover, as already
mentioned in the introduction, this dynamically generated universe macroscopically
resembles a de Sitter universe, with matching quantum fluctuations [3, 4].

2.2 Time slicing and classical limit of CDT

The classical limit of the CDT model is considered good if, when the length scale
is large and quantum fluctuations are small, the continuum limit of the regularized
path integral reproduces the observable predictions of classical general relativity. In
order to compare the two, one needs to phrase their respective results in a common
language, that of geometric observables. These are generally hard to come by, but
in the case of CDT quantum gravity there is an extra structure that comes to our
help. Each sample CDT geometry in the regularized path integral carries a discrete
time label. Since this labelling is respected by the quantum superposition, a (possibly
rescaled) version of the discrete time parameter labelling the slices is still available in
the continuum. The reason for calling this a proper time comes from the fact that (i)
at the discretized level, inside each flat four-simplex one can introduce a proper-time
slicing (with respect to the Minkowskian metric of the simplex) in a way that after
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gluing all of them together, the triangulated “sandwich geometry” between integer
times τ0 and τ0 + 1 can be foliated into hypersurfaces τ = const, τ0 ≤ τ ≤ τ0 + 1
[36], (ii) in the continuum limit, the volume profile of the extended universe emerging
in the ‘well-behaved’ phase of CDT quantum gravity matches that of a continuum
Euclidean de Sitter space as a function of cosmological proper time, if the bare τ
of the regularized geometries is rescaled by a finite constant. More precisely, the
expectation value of the volume profile behaves to a very good approximation as

〈V3(τ)〉 = A cos3 (τ/B) , (2)

for some constants A and B depending on the bare coupling constants and geometric
parameters of the triangulation (see [4] for further details). The volume profile of
Euclidean de Sitter space has exactly the same shape [cf. equation (12) below].

The latter is of course a highly nontrivial result, however, one needs to keep in
mind that the role of τ as (constant multiple of) proper time—in the way this notion
is used in the classical continuum theory—emerges unambiguously from CDT only
on sufficiently large scales and in the sense of a quantum average (of a particular
quantum observable). In order to understand better the relation with the continuum
situation, recall that in the classical theory geometries with a time foliation are natu-
rally described in the ADM formalism [37]. Labelling the spatial slices of the foliation
as hypersurfaces of constant time t, and choosing coordinates xi on each of them, the
geometry is specified by writing the metric in the ADM form,

ds2 = −N(t, x)2dt2 + hij(t, x)(dxi +N i(t, x)dt)(dxj +N j(t, x)dt), (3)

with lapse function N(t, x), shift vector N i(t, x) and spatial metric hij(t, x). The
volume profile of the spacetime with respect to this foliation is then given by

V3(t) =
∫
d3x

√
deth. (4)

A metric in proper-time form is one where N = const. Requiring in addition the shift
vector N i to vanish, so that there are no cross terms dxidt and the gauge is essentially
fixed, one obtains a metric in proper-time gauge [38, 39]. The associated coordinates
are the same as Gaussian normal coordinates [40, 37] with respect to any of the
spatial hypersurfaces. Although such coordinate systems can always be set up in the
neighbourhood of a hypersurface, they rarely exist globally because of the formation
of caustics.3 Therefore, taking a path integral only over those smooth metrics which
globally can be put into proper-time gauge would appear far too restrictive.

However, this is not what is done in CDT quantum gravity, assuming we iden-
tify the time t in (3) with CDT’s τ -parameter. Firstly, the ADM-decomposition (3)
for differentiable, metric manifolds cannot in general be extended beyond a single
four-simplex in piecewise flat simplicial geometries; they are neither smooth nor dif-
ferentiable. (The same holds for individual CDT three-slices.) Secondly, when one
follows the geodesics of freely falling, initially hypersurface-orthogonal observers in
CDT (which are still well defined in open neighbourhoods not containing curvature
singularities), one finds that they generically form caustics within a single time step

3Even in flat Minkowski space, by choosing an initial hypersurface τ = 0 with typical extrinsic
curvature K, caustics will form after a typical evolution time τ ∼ K−1/2. For instance, a sphere
of radius R has K ∼ 1/R2, while Gaussian normal coordinates, extended to the interior, become
singular at its centre.
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Figure 1: (a) Volume profile of a typical CDT universe that contributes to the sum over trian-
gulations, made into a solid of revolution by rotation about the proper-time axis. It consists of an
extended region, the ‘blob’, and a degenerate tube. (b) Normalized volume profile V3(τ)/R3

0 for EdS
space, cf. equations (2) and (12), which after a constant rescaling of τ matches that of the expectation
value 〈V3(τ)〉 determined in CDT simulations [3, 4].

∆τ = 1. From this point of view, CDT histories are indeed full of caustics (and curva-
ture singularities), whose density only increases as the lattice cut-off is taken to zero.
Since individual path integral histories are not physical, this in no way contradicts
the possibility that their nonperturbative superposition can be a quantum geometry
which on large scales behaves classically. As we have seen for the case of Euclidean
de Sitter space (EdS), the ground state of the empty universe emerging from CDT,
it is also no obstacle to the existence of a well-defined global description in proper-
time gauge. The fact that Euclidean de Sitter space possesses a global proper-time
form which moreover has a direct Lorentzian interpretation under the straightforward
substitution τ → −iτ is in a way a fortunate circumstance. If we want to use CDT
quantum gravity to describe different physical situations, associated with a specific
matter content and/or boundary conditions, we would in general expect that making
a link to Lorentzian continuum physics will be (much) more difficult.

As we will see in subsequent sections, the inclusion of a mass distribution already
presents challenges of this kind. Nevertheless, by requiring the mass distribution
to be sufficiently compact (point-like), the total mass M to be small and treating
the situation as a one-parameter family deviating from the known, pure-gravity case
M = 0, we are able to quantify the consequences of M 6= 0 for the physical volume
profile.

Before describing the inclusion of such a point-like mass, let us comment on space-
time topology. Computer simulations of CDT in four dimensions are performed with
compact manifolds of product topology I×Σ(3) or, if for simplicity the time direction
is compactified, S1 × Σ(3). In simulations considered so far, the spatial slices were
chosen to be topological three-spheres, Σ(3) = S3. Interestingly, in the pure-gravity
case, despite fixing the topology to S1 × S3 at the outset, the system is driven dy-
namically to a state which is as close to a four-sphere as allowed by the kinematical
constraints (minimal, nonvanishing spatial diameter at each time step). This is illus-
trated in Fig. 1a, which shows the volume profile V3(τ) of a typical sample geometry
from the regularized path integral. It consists of an extended universe which forms a
‘blob’ and a thin degenerate tube or ‘stalk’ of minimal extension. After subtracting
the minimal stalk-volume from the data, the average volume profile can be matched
to that of EdS space (the “round four-sphere”), shown in Fig. 1b, with great accu-
racy. In simulations, the period of the time identification is much larger than the time
extension of the universe, such that this result is unaffected by the periodic boundary
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Figure 2: Mass line on the dual lattice of a triangulation in CDT, for simplicity demonstrated in
two dimensions, representing the worldline of a point-like mass.

conditions.

2.3 CDT with a localized mass

We want to generalize the above discussion by including matter. More specifically, we
are interested in the effect of a localized mass on the ground state geometry found in
Causal Dynamical Triangulation simulations. The concept of a point mass is already
problematic in classical general relativity, in the sense of including it consistently
as a distributional source in the Einstein equations (for a recent overview, see [41]
and references therein). We will refrain from making this idealization and assume an
extended, but localized, spherically symmetric mass source, mostly without discussing
its internal structure. An exception is Appendix B, where we consider the extension of
the proper-time coordinates in the exterior to a simple interior matter distribution. In
any case, from the point of view of the regularized geometries used in the simulations,
one cannot really distinguish between a point mass and a compact, massive object that
fits inside a single spatial simplex. In this context, we call a compact mass distribution
point-like if its spatial extent does not exceed that of a single triangulation simplex.

In CDT simulations, the worldline of such a mass is naturally represented by a
time-like path, transverse to the foliation, on the dual lattice of the triangulation, as
illustrated in Fig. 2. The (Euclidean) action associated with this mass line is Sp = ML,
where M is the bare mass, and L is the (positive) total length of the line in units of the
lattice spacing a. This is the regularized version of the continuum action associated
to a localized mass M , Sp = M

∫
dτ , integrated with respect to the proper time along

its world-volume, which in turn depends on the spacetime geometry containing the
mass line. The action Sp gives an extra contribution to the Boltzmann weight of each
path-integral configuration and therefore changes the expectation value of geometric
quantities under consideration. In particular, the volume profiles are expected to be
modified.—The remainder of this paper is devoted to the derivation in the continuum
of the classical form of the modified volume profiles, which could be compared to
the expectation values of corresponding quantities numerically obtained from CDT
simulations.
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Figure 3: Euclidean Schwarzschild-de Sitter space can be compactified by taking the Schwarzschild
time coordinate T to be periodic. The geometry can be smoothed out in the central point R = R++

(the location of the cosmological horizon in Lorentzian signature) by adjusting the periodicity of T .
The shaded region represents the matter region and contains no conical singularities. It is glued to
the exterior vacuum solution at a constant Schwarzschild radius R = RS > R+, outside the horizon.
The compactified, closed geometry has topology S4.

3 Euclidean Schwarzschild-de Sitter space

3.1 Metric in static form

Written in the static form of the metric, the line element of Euclidean Schwarzschild-
de Sitter (ESdS) space is

ds2 = f(R)dT 2 + f(R)−1dR2 +R2dΩ2(θ, φ), (5)

where f(R) = 1 − 2M/R − R2/R2
0, and the coordinates T and R are referred to as

static or Schwarzschild coordinates. The mass of the source isM and R0 =
√

3/Λ with
Λ > 0 being the cosmological constant. For a given cosmological constant, there is
an upper limit for the mass of the Schwarzschild black hole, given by MN = 3−3/2R0,
the Nariai mass [42], because the static region disappears in this limit. We recover
Euclidean de Sitter space for M = 0, and the Euclidean Schwarzschild metric for
Λ = 0. The metric has Euclidean signature in the static region R+ < R < R++,
where

R+ = 6MN cos
(
α+ 4π

3

)
, R++ = 6MN cos

(α
3

)
, (6)

are the locations of the black hole horizon and the cosmological horizon, respectively,
and α = arccos (−M/MN ). Also, R+ → 0 and R++ → R0 as M → 0.

For the Lorentzian version of the solution (5), the event horizon only forms if the
object that generates the gravitational field is sufficiently dense. We shall consider
a mass distribution that is glued to the exterior vacuum region such that no event
horizon is present. For now we will focus solely on the properties of the vacuum region.

The topology of Euclidean de Sitter space is S4. Suppressing the two angular
variables θ and φ in (5) with M = 0, we see that the two-dimensional sheet spanned
by T and 0 < R < R0 can be wrapped by taking T to be periodic, as displayed in
Fig. 3 (depicting the general Euclidean Schwarzschild-de Sitter case). The resulting
punctured disc has a potential conical singularity at its centre, R = R0, which is
smoothed out by a specific choice of the T -period, namely 4π/|f ′(R0)| = 2πR0. One
obtains the complete Euclidean manifold (forM = 0 this is S4, as we will make explicit
below) by gluing a two-sphere of radius R0 to the puncture boundary.
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In the case of Euclidean Schwarzschild-de Sitter space with M 6= 0, the maximal
Euclidean vacuum region is spanned by R+ < R < R++. Periodic compactification
along the T -direction introduces a different global topology and two potential conical
singularities at R+ and R++, which cannot be smoothed out simultaneously [43].
Fortunately, the new topology and the ambiguity in periodicity need not be dealt with
if the manifold consists of an ESdS exterior and an interior matter region (shaded in
Fig. 3), without an inner horizon. In this case, the periodicity is again uniquely fixed
to TP = 4π/|f ′(R++)|, which smoothes out the geometry around R = R++, and the
topology remains S4.

As a consequence of the compactification, the mass line closes to a contractible
loop on the S4. If one wants to compare with the calculations done in this paper, this
should be taken into account when implementing the mass line in CDT simulations,
rather than using a noncontractible loop which winds around the compactified time
direction, say.

3.2 Metric in proper-time form

As has been pointed out already, the explicit derivation of the volume profile of the
Euclidean Schwarzschild-de Sitter geometry has to be done by adopting a proper-time
gauge. In order to achieve this form, we construct comoving or Gaussian normal
coordinates (cf. [40, 37]) from the T = 0 surface, which for the matter-free case
coincides with half of the ‘equator’ of S4 and will in general form a time-symmetric
hypersurface. This procedure has been previously carried out, in Lorentzian signature,
for the de Sitter case in [44] and for the Schwarzschild case in [45].

We briefly describe the necessary calculations here, while referring the reader to
Appendix A for the details. First, one has to integrate the radial geodesic equations,
taking initial conditions that guarantee that the geodesics are perpendicular to and
their proper time parameter vanishes on the T = 0 hypersurface. Then one chooses the
proper time of these radial geodesics as a new time coordinate τ . The comoving radial
coordinate, Ri (the subscript i stands for initial), can be introduced as the position
R(T = 0), i.e. labelling each geodesic with the value of R at which it intersects the
T = 0 hypersurface. The resulting metric has proper-time form and is diagonal,

ds2 = dτ2 +
(∂R/∂Ri)2

f(Ri)
dR2

i +R(τ,Ri)2dΩ2, (7)

where the expression for the Schwarzschild coordinate R(τ,Ri) as a function of the
new proper-time coordinates is known from equation (30). For the Euclidean de Sitter
case we find the explicit expression

R(τ,Ri) = Ri cos (τ/R0) (8)

and the metric line element becomes

ds2 = dτ2 +R2
0 cos2(τ/R0)

[
dR2

i

R2
0 −R2

i

+ (Ri/R0)2dΩ2

]
. (9)

3.3 Domain of comoving coordinates and caustics

It is well known that Gaussian normal coordinates in general fail to cover the entire
underlying manifold. Below, we determine how much of the EdS and ESdS spaces can
be covered by the coordinates constructed in the previous section.
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Figure 4: Euclidean de Sitter space (a, b) and Euclidean Schwarzschild-de Sitter space (c, d) (after
periodically identifying the static time T , with angular variables θ, φ suppressed), described in terms
of (a, c) static and (b, d) proper-time coordinates. The shaded region R < RS in (c, d) is occupied
by matter. In static coordinates, lines R = const are concentric circles, with mid point R = R++ and
outermost circle R = 0. In the proper-time coordinates, the lines Ri = const converge at τ = ±πR0/2
for (b), they start forming caustics in the region R < R∗ for (d). The middle line is Ri = R++.
Every Ri = const appears once on the left half of the disc (dark curves, perpendicular to the T = 0
surface), and is mirrored on the right half of the disc (light curves, perpendicular to T = TP /2).

First, we consider the simpler case of EdS space. The relationship between static
(T,R) and comoving (τ,Ri) coordinates is illustrated in Fig. 4. The disc depicted
in Fig. 4a is formed from R-T -space by periodically identifying the static time T
such that 0 ≤ T ≤ 2πR0. The static coordinates (T,R) cover the entire disc. Lines
of constant Schwarzschild radius R are concentric circles around the point R = R0

(rather a two-sphere, with angular coordinates taken into account), which is added
to the Euclidean manifold to make it complete. Fig. 4b depicts the same disc, but
now with dark vertical lines representing constant Ri (radial geodesics) and dashed
horizontal lines representing constant τ . Note that only half the disc is covered by
Gaussian normal coordinates emanating from the T = 0 surface. The other half (which
is of a lighter shade in the figure) can be covered by reflecting the (τ,Ri) coordinates
about Ri = R0 or, equivalently, by constructing Gaussian normal coordinates from
the T = πR0 surface, which smoothly joins the T = 0 one.

Figs. 4c and 4d parallel the above discussion for ESdS space, though the ranges
of the static coordinates change to 0 ≤ T ≤ TP and 0 < R < R++. Again, the right
half of the disc in Fig. 4d can be covered by reflection of the (τ,Ri) coordinates or by
constructing Gaussian normal coordinates from the T = TP /2 surface. As explained
in section 3.1 the geometry we are considering has no inner horizon since the exterior
vacuum is matched to a static interior matter solution (shaded region) at RS > R+.
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The comoving coordinate system breaks down at an intersection point of two radial
geodesics, because it would associate two distinct labels (τ,Ri), (τ,R′i) with the same
physical point. In Fig. 4b we see that the geodesics intersect only at the poles, R = 0
and τ = ±πR0. In contrast, Fig. 4d shows that the geodesics intersect (form caustics)
already for R < R∗. Fig. 4 is schematic, the corresponding calculations are presented
in Appendices A and B. Therefore, we can conclude that comoving coordinates (τ,Ri)
cover EdS space in its entirety4, while only a portion of ESdS space is covered, namely
for R > R∗, with R∗ the boundary of the caustic region.

Caustics appear already in the ESdS exterior vacuum, in which case R∗ = (MR2
0)

1
3 .

Generically, caustics persist even if the vacuum exterior is glued to an interior matter
solution of arbitrarily low density, as explicitly shown for a specific matter model in
Appendix B. Thus, for convenience, from now on R∗ will only refer to this vacuum
caustic boundary. To ensure that the entire vacuum region is covered by comoving
coordinates, we require that the matter-vacuum boundary satisfies the condition RS >
R∗, which puts an upper bound on the density of the mass distribution. We only
consider densities below this critical value. This bound and the associated bound on
the total mass are discussed in detail in sections 4.1 and 4.2.

We should emphasize that the occurrence of caustics does not imply any patholo-
gies of the underlying spacetime, but is a consequence of the choice of a particular
coordinate system. In order to calculate the volume profile, all we need is a proper-
time slicing. Neither the vanishing of the shift vector nor the existence of a single,
global coordinate system are in principle necessary. However, our (time-symmetric)
choice of the Gaussian normal coordinates starting at T = 0 and T = TP /2 has the
advantage of being continuously connected to a globally well-defined coordinate sys-
tem in the limiting case M = 0. That coordinate system was used to successfully
compare classical, continuum volume profiles to those produced by CDT simulations.
It is this successful case that we are ‘perturbing’ about.5

The global, proper-time coordinate system on de Sitter space is introduced by
extending the range of the radial coordinate by introducing an angle ψ, 0 ≤ ψ < π,
where

Ri = R0 sinψ. (10)

Every Ri = const line appears twice on the disc in Fig. 4b. On the left half of the
disc it is represented by an angle ψ < π/2 and on the right half by ψ > π/2, with the
middle line given by Ri = R0. The line element written in terms of τ and ψ becomes

ds2 = dτ2 +R2
0 cos2(τ/R0)

(
dψ2 + sin2 ψ dΩ2

)
. (11)

Note that this is the line element of the round four-sphere, where the geodesic Ri = 0
has become the location of the coordinate singularity ψ = 0. Spatial sections of
this four-dimensional Euclidean geometry are three-spheres, which is consistent with
CDT simulations. From this metric, or already from the line element (9), we can
immediately derive the volume profile

V3(τ) = 2π2R3
0 cos3 (τ/R0) (12)

for EdS space, which we have referred to earlier in equation (2). We now turn to the
calculation of the volume profile of ESdS space.

4Strictly speaking, these coordinates fail to cover some lower-dimensional submanifolds. But, since
we are only interested in computing three- and four-volumes, they can be safely ignored.

5It is possible that there exist even more convenient coordinate choices for M 6= 0, which would
avoid caustics altogether, but we have not found them.
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4 Volume profiles

4.1 Cutting out the vicinity of the mass-line

In computer simulations, the volume profile is determined by counting spatial simplices
per slice of constant proper time for the individual sample geometries and taking the
average value over the ensemble. For simulations with a mass line, the average of the
discrete geometries should approximate the Euclidean Schwarzschild-de Sitter space
well away from the mass, but poorly close to it. Thus it makes sense to discard the
simplices pierced by the mass line and to excise a corresponding thin ‘tube’ surrounding
the mass from the four-dimensional continuum geometry. Only the volume profiles of
the remaining regions will be compared. On every spatial slice τ = const we choose
to cut out the region inside of a ball of a certain Schwarzschild radius R, whose area
is 4πR2. Of course, this choice of the radius depends on the mass and only for small
masses can we expect a good match between the continuum and discrete picture. A
more detailed analysis on the mass bound will be presented in the following section.

An important property of this prescription is that the surface of this region (which
has topology S2 × S1 for compactified Schwarzschild time) is invariantly defined, and
mapped into itself under the flow of the time-like Killing vector. This agrees with
the discrete picture, where the sequence of four-simplices cut out of the four-geometry
representing the mass line has the topology of a tube. A strict implementation of
the classical continuum set-up on the simplicial lattice would allow only for mass
lines whose boundary is everywhere time-like, which would limit the types of tube
geometry that can occur in a single time step. This would be associated with an excised
region per time step of some typical, average surface area O(1) in discrete units, even
though the internal geometry of the excised region is considered unspecified. Other
prescriptions for cutting out the matter region in the classical continuum geometry
are in principle possible. However, they must not deviate from the Schwarzschild
prescription more than the scale set by the discretization (the lattice spacing) which
is the size of the error already inherent in the triangulation procedure.

In view of the quantum nature of the CDT path integral, simulations may have to
include more general mass lines, which can wind around longer in a given time step
or are even allowed to run backwards in time.

4.2 Derivation of a mass bound

We emphasized that due to caustic formation in the continuum picture it is necessary
to cut out a certain region of the Euclidean manifold. Now, it is important to carefully
translate the excised region from the continuum picture to the discrete one in order
to reliably compare the volume profiles. For this we relate the physical parameters
on both sides. In the continuum there are only two parameters, the mass M and the
cosmological constant Λ, which sets the cosmological radius R0 =

√
3/Λ. Newton’s

constant GN has been set to one. In CDT simulations performed so far, the directly
specifiable parameters6 are Newton’s constant, the mass, and the number of four-
simplices N . The lattice spacing a is introduced to relate dimensionless simulation

6Another parameter specifiable in simulations is the directional asymmetry parameter ∆, though
its value is not accessible in a classical geometry. For the discrete computations presented in this
subsection, we will assume for definiteness that ∆ = 0, such that the Euclideanized four-simplices
are all equilateral [32].
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parameters to dimensionful physical parameters. We relate simulation and continuum
parameters by comparing geometric observables in the continuum limit. For instance,
for Euclidean de Sitter space, the total four-volume is V4 = 8π2

3 R4
0, from (12), while

on the triangulation side we have V4 =
√

5
96 a

4N , leading to the relationship

a/R0 =
(

8 · 96π2

3
√

5

)1/4

N−1/4 ∼ 5.8N−1/4. (13)

Typical values of N ∼ 3× 105 give a/R0 ∼ 1/4.
Another important relationship is between the lattice spacing a and the maximum

mass M accessible to simulations. To find the possible range of masses we recall that
the vacuum caustic boundary R∗ = 3M1/3M

2/3
N must fall within the matter region,

R∗ < RS . On the other hand, in order to compare directly with the calculations done
in this paper, one should consider mass distributions that are sufficiently compact to
fit inside a region of the same size as the simplex whose volume we neglect, that is
RS < a. The resulting condition R∗ ≤ a can be expressed as an upper bound on the
mass M :

M ≤ 33/2

(
a

R0

)3

MN =
1
3
a3Λ ∼ a

√
8 · 96π2

3
√

5N
∼ 33.6

a√
N
. (14)

The first is the most useful form of the bound for the numerical calculations carried out
in Appendix A and section 4.3, where, as we shall see, the dimensionless parameter
ε = M/MN determines the shape of the volume profiles, while the last gives an
estimate for the maximum accessible mass in terms of simulation parameters, with
the approximation coming from direct use of equation (13). Since a/R0 is expected
to be small, the deviations of the volume profile from the Euclidean de Sitter case for
accessible masses are also likely to be small.

4.3 Derivation of the volume profiles

Having discussed the range of validity of the excision we can move on to the derivation
of the volume profile which can be used to test the classical limit of matter-coupled
CDT quantum gravity and constitutes the main result of our work. From the line
element (7) and definition (4) we obtain an integral expression for the total three-
volume of the vacuum region,

V3(τ) = 8π
∫ R++

Rmin
i (τ)

dRi
R2(τ,Ri)R′(τ,Ri)√

f(Ri)
, (15)

where R′ = ∂R/∂Ri, a factor of 4π comes from the angular integration, and an extra
factor of 2 takes the doubling of the Ri ≤ R++ region into account, as explained
in section 3.3. The function Rmin

i (τ) is the cut-off condition R = a in proper-time
coordinates.

In the continuum, increasing the mass while keeping R0 (and therefore the cosmo-
logical constant Λ) fixed changes the total four-volume. In CDT simulations, however,
the four-volume (that is, the number of four-simplices) is usually kept fixed for tech-
nical reasons.7 In order to facilitate comparison with CDT results, we invert the

7The path integrals for fixed four-volume and fixed cosmological constant are related by a Legendre
transformation.
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Figure 5: Plots of the dependence of the scaled total four-volume on the parameter ε for the two
cut-off values a/R0 = 1/8 [red line, ranging from zero to the first vertical line at ε = 33/2(1/8)3]
and a/R0 = 1/4 [blue line, ranging from zero to the second vertical line at ε = 33/2(1/4)3]. Both
functions are normalized to one at ε = 0. In the displayed region the curves are linear to very good
approximation; the cut-off dependence is essentially negligible.

relationship between R0 and V4 in the continuum for fixed mass M . First, note that
the function R in the definition of the volume profile (15) and the four parameters τ ,
Ri, M and R0 on which it depends all have the dimension of length. Hence, we can
write

R(τ,Ri,M,R0) = R0F (ζ,Ri/R0, ε), (16)

for some dimensionless function F that depends only on the dimensionless parameters
ζ = τ/R0, ε = M/MN = 33/2M/R0 and the ratio Ri/R0. The volume profile can
therefore also be written as

V3(τ, ε) = R3
0G(τ/R0, ε), (17)

with another dimensionless function G whose explicit form is to be evaluated. Note
that the lower integration limit in (15) introduces an additional dependence on the
lattice length a that we suppress here. From equation (12) it follows that G(ζ, 0) =
2π2 cos3 ζ for the case M = 0. In terms of the function G the four-volume is

V4(ε) =

τmax(ε)∫
−τmax(ε)

dτ V3(τ, ε) = R4
0

τmax(ε)/R0∫
−τmax(ε)/R0

dζ G(ζ, ε) ≡ R4
0H(ε). (18)

In these expressions the integration limit is given by the time τmax(ε) where the three-
volume becomes zero. For Euclidean de Sitter space the value of the function H(ε)
before cutting out the tube is H(0) = 8π2/3. If V ∗

4 is the fixed four-volume used in
a simulation, we have to adjust R0 depending on the value of ε by setting R0(ε) =
(V ∗

4 /H(ε))1/4. The rescaled four-volume H(ε) can be easily evaluated analytically in
static coordinates:

H(ε, a/R0) = V4/R
4
0 =

4π
R4

0

∫ TP

0

dT

∫ R++

a

dR R2 (19)

=
8π2

3
8 cos3(α(ε)/3)− 33/2(a/R0)3∣∣∣ 3ε
4 cos2(α(ε)/3) − 6 cos(α(ε)/3)

∣∣∣ ,
where f(R), R++, TP , and α(ε) = arccos(−ε) were introduced in section 3.1. We
checked the numerical evaluation of the volume profiles V3(τ, ε), as described below,
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Figure 6: (a) Difference, ∆G(ζ, ε) = G(ζ, 0)−G(ζ, ε), between the pure EdS volume profile rescaled
to a fixed four-volume and the rescaled volume profiles for ε = εmax/7, . . . , 6εmax/7, with cut-off at
R = a = R0/4 and εmax = 33/2(a/R0)3. (b) Repeating the difference measurements of (a) for both
a/R0 = 1/4 and a/R0 = 1/8 yields a total of 12 curves, which we have normalized by letting them all
go through the point (0, 1). We observe that they are multiples of a single universal curve, modulo
some weak cut-off artifacts near ζ = ±π/2 that quickly disappear for smaller values of a/R0.

by comparing the value of H(ε, a/R0) obtained from numerical quadrature of (18) to
its exact value in (19) and found that our numerics are reliable.

For small a/R0, and over the correspondingly small range of ε, the total four-
volume is well approximated by

H(ε, a/R0)
H(0, a/R0)

∼ 1− 3−3/2
[
1 + 3(a/R0)3

]
ε, (20)

as can be seen from Fig. 5.
In Fig. 6a we have plotted the difference between the rescaled pure Euclidean de Sit-

ter profile G(ζ, 0) and the rescaled profiles G(ζ, ε) for different values of ε > 0, with
the same interior region cut out, in the mass range given by (14) and for same fixed
four-volume. They were obtained in Mathematica by first dividing the positive region
of the τ -interval into 200 equidistant parts. For each τ the integral (15) is computed
by numerical quadrature with the integrand given by cubic spline interpolation over
400 equidistant points. These points are obtained by solving numerically the implicit
relation (30) for R and by finite differences to find R′. Having obtained the points of
the V3(τ, ε) curve, we perform another cubic interpolation and numerically integrate
the resulting function to get H(ε), according to (18). This allows us to rescale the
profiles and obtain G(ζ, ε) from equation (17). The curves in Fig. 6a appear to scale
linearly in ε. Indeed, after a rescaling linear in ε, all of them collapse onto the single
curve (modulo cut-off artifacts) plotted in Fig. 6b. Since we are restricted to small
values of the parameter ε, it is not surprising that we are in the linear regime, where
rescaled profiles are well approximated by the first two terms of the Taylor expansion
in ε,

G(ζ, ε) = 2π2 cos3 ζ − εD(ζ) +O(ε2). (21)

In Fig. 6b we show D(ζ)/D(0), that is, the linear coefficient in (21), normalized such
that its value at ζ = 0 is given by 1.

Numerical simulations produce volume profiles V3(τ) in lattice units. Rescaling
the range of τ to [−π/2, π/2] fixes the value of R0 in lattice units and defines the
rescaled volume profile G(ζ) through equation (17). We believe that subtracting G(ζ)
from 2π2 cos3 ζ and normalizing this difference to be 1 at ζ = 0 should reproduce
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the curve D(ζ)/D(0) plotted in Fig. 6b, thereby establishing a good classical limit of
matter-coupled CDT. The corresponding value of ε can be obtained from comparing
the normalized simulation four-volume V ∗

4 /R
4
0 to H(ε) in (19) or (20).

5 Conclusions and Outlook

In any theory of quantum gravity, it is notoriously difficult to come up with “observ-
ables”, that is, quantities with an invariant geometric meaning, which may eventually
be related to physical observations. Besides their obvious use in bridging between
theory and phenomenology, they play an important role at the current stage, when
we are not yet in possession of a complete, nonperturbative formulation of quantum
gravity. This role is at least two-fold. First, appropriately coarse-grained geometric
observables can provide nontrivial tests of whether a proposed nonperturbative the-
ory possesses a well-defined classical limit, and whether in this limit it reproduces
the physics of classical general relativity correctly. Second, evaluating an observable
which explicitly probes the quantum regime of the theory can be a means of comparing
different candidate theories of quantum gravity.

A prominent example of both of these uses is the so-called spectral dimension
of spacetime, measured on short and large scales. Its expectation value was first
studied in Causal Dynamical Triangulations [2, 10], exhibiting a characteristic scale
dependence. On large scales, the expected classical value of four is reproduced, which
decreases to two8 when approaching the Planck scale, indicating strong deviations
from classicality. This is a highly nontrivial result which has since been reproduced in
at least two completely different formulations of quantum gravity [46, 47], stimulating
further research into a common origin of this seemingly universal behaviour [48, 49].

This example illustrates how observables of this type can yield valuable informa-
tion about the quantum theory. Unfortunately, they are rather rare. In the present
work, we have looked at another geometric quantity which has been studied previ-
ously in CDT, the three-volume profile, which makes explicit use of the proper-time
foliation. In a first attempt to try and quantify the effects of matter on geometry in
this framework, we have analyzed how the volume profile can be expected to change
under insertion of a point-like mass, as a function of the particle mass M , if the cor-
responding ground state geometry which is generated dynamically by CDT is related
to the Schwarzschild-de Sitter geometry.

As we have seen, the analysis involved several nontrivial steps, despite the rel-
atively simple and static nature of the classical metric. The difficulties have to do
with the nonlocal nature of the volume profile, which requires a careful treatment of
boundary conditions and regions of validity of the coordinate systems one has to use
in a continuum calculation. Another difficulty derives from having to define a quantity
which is geometric, i.e., independent of any particular coordinate choice, to be able
to compare with the (coordinate-free) set-up of the CDT simulations. Both of these
issues are characteristic for quantum observables in gravity.

Our specific construction involved the use of a system of Gaussian normal coordi-
nates. On the one hand, this gave us a relatively good control on some of the global
properties of the Euclidean Schwarzschild-de Sitter space like at the (Euclideanized)
cosmological horizon, on the other hand the coordinates do not cover the complete

8More precisely, a value compatible with two, taking into account the error bars of the Monte
Carlo simulations.
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region outside the source. However, when restricting the mass to be small, the proper-
time foliation is nearly global in the sense that neglecting the contribution to the spa-
tial volume from the region inside of a certain small Schwarzschild radius, we obtain
an approximation to the actual volume profiles while preserving their characteristic
deviation from the Euclidean de Sitter profile. The approximation is equivalent to
neglecting those simplices that contain the mass-line when determining the average
spatial volume in the computer simulations. Let us point out that the deviations we
have computed are small and one will need good control of the numerical errors to
measure them. We also found that the correct way of implementing the mass line in
the simulations, if one wants to compare to our calculation, is by representing it by a
closed contractible loop on the geometry which has a four-sphere topology.

We regard the present work as a step towards understanding the dynamics of
coupled systems of matter and geometry in nonperturbative quantum gravity, about
which there is currently little known, since most candidate theories have focussed their
efforts on the pure-gravity situation. As we have already mentioned above, it is possi-
ble that our treatment can be improved, to cover a larger region of spacetime and/or
the case of larger masses. In addition, it would be interesting to derive the volume
fluctuations from a mini-superspace action in the same way as has been done for Eu-
clidean de Sitter space [4] and check whether the agreement between the analytical
and numerical calculations persists.
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A Geodesics in ESdS space

In this appendix we derive the line element on Euclidean Schwarzschild-de Sitter space
in terms of Gaussian normal coordinates, Eq. (7), starting from the static form, Eq.
(5). For this we first determine the radial geodesic equations for ESdS space.9 The
Killing vector ξ = ∂/∂T yields a conserved quantity along the geodesics,

E = gµνξ
µ dx

ν

dτ
= f(R)Ṫ , (22)

where the dot refers to differentiation with respect to τ . We will refer to E as the
energy parameter. The geodesic equations are then

dR

dτ
= m

√
f(R)− E2,

dT

dτ
=

E

f(R)
, (23)

where the m = ±1 distinguishes motion in Euclidean proper-time τ with increasing
and decreasing R. Combining the two geodesic equations we find the proper time

9The complete analytic solution for geodesics in Schwarzschild-de Sitter space was constructed in
[50, 51].
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Figure 7: The effective potential for radial geodesic motion in ESdS space for M = MN/10 (upper
curve with horizontal line to illustrate turning points for the maximum total energy) and for M = 0
(lower curve). These potentials determine the evolution of the Ri = const geodesics which form the
proper-time coordinate system.

element along each geodesic,

dτ = EdT +m

√
f(R)− E2

f(R)
dR. (24)

While E is constant on a given geodesic, it may assume different values on dif-
ferent geodesics. For now, we take it as a yet to be specified function of coordi-
nates E(T,R). If we consider the two-dimensional R-T -plane to be foliated by non-
intersecting geodesics, we can eliminate the T -coordinate in favour of their proper
time τ and obtain the metric [52]

ds2 = dτ2 +
1

E(T (τ,R), R)2
(
dR−m

√
f(R)− E(T (τ,R), R)2dτ

)2

+R2dΩ2. (25)

Note that the metric is already in proper-time form. To set the shift vector to zero,
and obtain a Gaussian normal coordinate system, we replace the R-coordinate by a
comoving radial coordinate. We introduce the comoving radial coordinate by first
observing that radial geodesic motion of a test body in ESdS space corresponds to
motion in the effective potential

Veff(R) = M/R+R2/2R2
0 (26)

with total energy Etot = (1− E2)/2. This is easily seen from writing the equation in
the form 1

2 Ṙ
2 + Veff(R) = Etot. The potential is displayed in Fig. 7 for M = 0 and

M = MN/10. It has a minimum at R = R∗ = M1/3R
2/3
0 . A test body has two turning

points given by the roots of the equation f(R) = E2. The larger turning radius, Ri,
will be our comoving radial coordinate. For the maximal energy Etot = 1/2 the turning
radii are the two horizons, R = R+ and R = R++. Hence, for the construction of
coordinates in proper-time gauge we look at geodesic motion of test bodies with initial
positions R∗ < Ri < R++ and zero initial velocity. The synchronization condition that
each geodesic passes through its turning point at T = τ = 0 completes the specification
of the proper-time coordinates (τ,Ri). In terms of the new coordinates, the energy
parameter is specified simply as E =

√
f(Ri).
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Integration of the radial geodesic equation yields

τ(R,Ri) = −m
∫ Ri

R

dy√
f(y)− f(Ri)

= −mR0

∫ 1

ρ

dξ

√
ξ

P (ξ)
, (27)

with the dimensionless quantities ξ = y/Ri, ρ = R/Ri ≤ 1, β = 54MM2
N/R

3
i and

P (ξ) = −ξ3 + (β + 1)ξ − β = (1− ξ)(ξ − ξ+)(ξ − ξ−), (28)

ξ± = −1
2
±∆, ∆ =

√
1
4

+ β. (29)

In terms of special functions the above integral becomes

τ = −mR0

√
2/∆

[
(1− ξ−)Π(µ,

ξ+ − 1
2∆

, r) + ξ−F (µ, r)
]
, (30)

where

µ = arcsin

√
2∆(1− ρ)

(1− ξ+)(ρ− ξ−)
, r =

√
(1− ξ+)(−ξ−)

2∆
. (31)

F and Π are the elliptic functions of the first and third kind, respectively [53, 3.167.15].
Equation (30) is an implicit definition of R(τ,Ri). This relation allows us to write the
line element in terms of proper-time τ and comoving spatial coordinate Ri as

ds2 = dτ2 +
(∂R/∂Ri)2

f(Ri)
dR2

i +R(τ,Ri)2dΩ2. (32)

When M = 0, the expression for R(τ,Ri) = Ri cos(τ/R0) is known explicitly.
When M 6= 0, the values of R(τ,Ri) can be obtained by numerically solving the
implicit equation (30). Both cases are shown for comparison in Fig. 8. Note that the
radial geodesics in EdS space, Fig. 8a, do not intersect except for extreme values of τ ,
but those in ESdS space do, Fig. 8b, that is, they form caustics. The implications of
these caustics are discussed in section 3.3.

B Caustic formation in an interior matter solution

We show here that gluing the vacuum ESdS solution to an interior solution of matter
of constant density does not significantly improve on the situation found in vacuo
with respect to the formation of caustics in a set of Gaussian normal coordinates. The
matter distribution we are interested in is the Wick-rotated version of a simple model
of a spherically symmetric relativistic star in the presence of a positive cosmological
constant. The Euclidean stress-energy tensor can be taken to be the one of a perfect
fluid with a uniform density ρ,

Tµν = − (p(R) + ρ)uµuν + p(R)gµν . (33)

Solving the Euclidean Einstein equations one finds that the line element inside the
star written in Schwarzschild coordinates is [54]10

ds2 = (A Y (RS)−B Y (R))2 dT 2 +
dR2

Y (R)2
+R2dΩ2, (34)

10Some intermediate results in this reference contain typographical errors. However, we have
verified that the formulas relevant for this work are correct.
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Figure 8: Ri = const geodesics in (a) Euclidean de Sitter space and (b) Euclidean Schwarzschild-
de Sitter (M = MN/10) space. The outermost line is the Ri = R++ geodesic. (a) All curves

converge at τ = ±πR0/2. (b) The vertical line marks R = R∗ ≡ M1/3R
2/3
0 , the minimum of the

effective potential. Geodesics, which at T = 0 are located to the right of the line start intersecting
each other when entering the region R < R∗, forming caustics. There are no caustics in the region
R∗ < R < R++.

where we denote the location of the surface of the star by RS > R+ (or RS > R∗, as
we restrict to later on) and define

Y (R) =

√
1− 8πρ+ Λ

3
R2, A =

9M
6M + ΛR3

S

, B =
3M − ΛR3

S

6M + ΛR3
S

, ρ =
3M

4πR3
S

. (35)

Setting R = RS in (34), we see that the interior matter solution is matched contin-
uously to the exterior ESdS vacuum region. This implies that the correct matching
condition for the radial timelike geodesics is that the first derivatives match at the
surface of the star.

For the case RS = R∗ = M1/3R
2/3
0 we can determine the extension of radial

geodesics to the interior region explicitly. This is depicted in Fig. 9a. The geodesics
intersect inside of the matter region and hence the formation of caustics persists.

This result is not specific to the choice RS = R∗. In order to avoid a lengthy
analysis we set up a simple criterion for the intersection of geodesics. We release two
test bodies, one from Ri = R++ and the other from Ri = RS , with zero initial velocity
and compare the proper time they take to arrive at R = 0, which is the centre of the
star. If the test body starting at the surface takes longer, then there must be an
intersection. The arrival time for the test body starting from Ri = R++ is given by

τ(Ri = R++) = σ arcsin (RS/σ) +
∫ R++

RS

dy√
f(y)

, (36)

with 1/σ2 =
(
1 + 2/γ3

)
/(27M2

N ) and γ = RS/R∗. The first term in (36) constitutes
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Figure 9: Gluing an interior uniform matter distribution to an external Euclidean Schwarzschild-de
Sitter solution for M = MN/10. (a) Ri = const geodesics for the special case of gluing at the radius
R = R∗ (vertical line). The curves intersect inside the matter region, illustrating the breakdown of
the Gaussian normal coordinates. The outermost line is the Ri = R++ geodesic. (b) For general
gluing radius: proper time at R = 0 (arrival time) of the two radial geodesics, R = R++ (lower curve)
and R = γR∗ (upper curve), as functions of γ = RS/R∗, showing that adjusting the gluing condition
does not prevent the breakdown of the Gaussian coordinates in the interior region.

the contribution of the matter region and the second constitutes that of the vacuum
region. The integral in the second term is the same as that evaluated in (30).

For the test body starting with zero initial velocity at the star’s surface, R = RS ,
we have

τ(Ri = RS) =
∫ RS

0

dy

Y (y)
√

1− f(RS)
(AY (RS)−BY (y))2

, (37)

where the constants A,B, f(RS) and Y (RS) all depend on γ. The resulting arrival
times are plotted in Fig. 9b, where the upper curve represents the Ri = RS case
and was found by numerical integration. The arrival times are equal only when the
trajectories coincide, i.e., when the star surface reaches the cosmological horizon.
Therefore, we conclude that the Gaussian normal coordinates are not well defined in
the interior region for any choice of radius and density of the mass distribution. We
have not investigated whether fine-tuning of the internal structure of the matter model
(e.g. by considering inhomogeneous or anisotropic fluids) could help in preventing the
occurrence of caustics. However, such a possibility appears unlikely to us.
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