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We propose a general approach for the construction of modified gravity which is invariant under

foliation-preserving diffeomorphisms. Special attention is paid to the formulation of modified F (R)

Hořava-Lifshitz gravity (FRHL), whose Hamiltonian structure is studied. It is demonstrated that

the spatially-flat FRW equations of FRHL are consistent with the constraint equations. The analysis

of de Sitter solutions for several versions of FRHL indicates that the unification of the early-time

inflation with the late-time acceleration is possible. It is shown that a special choice of parameters

for FRHL leads to the same spatially-flat FRW equations as in the case of traditional F (R)-gravity.

Finally, an essentially most general modified Hořava-Lifshitz gravity is proposed, motivated by its

fully diffeomorphism-invariant counterpart, with the restriction that the action does not contain

derivatives higher than the second order with respect to the time coordinate.

PACS numbers: 11.10.Ef, 95.36.+x, 98.80.Cq, 04.50.Kd, 11.25.-w

I. INTRODUCTION

Recent observational data clearly indicates that our universe is currently expanding with an accelerating rate,
apparently due to Dark Energy. The early universe has also undergone a period of accelerated expansion (in-
flation). The modified gravity approach (for a general review, see [1]) suggests that such accelerated expansion
is caused by a modification of gravity at the early/late-time universe. A number of modified theories of grav-
ity, which successfully describe the unification of early-time inflation with late-time acceleration and which are
cosmologically and observationally viable, has been proposed (for a review, see [1]). Despite some indications [2]
that such alternative theories of gravity may emerge from string/M-theory, they are still mostly phenomenological
theories that are not yet related to a fundamental theory.

Recently the so-called Hořava-Lifshitz quantum gravity [3] has been proposed. This theory appears to be
power-counting renormalizable in 3+1 dimensions. One of the key elements of such a formulation is to abandon
the local Lorentz invariance so that it is restored as an approximate symmetry at low energies. Despite its partial
success as a candidate for a fundamental theory of gravity, there are a number of unresolved problems (see refs.
[4, 5, 6, 7, 8, 9]) related with the detailed balance and the projectability conditions (see section II for definitions),
strong couplings, an extra propagating degree of freedom and the GR (infrared) limit, the relation with other
modified theories of gravity etc. Moreover, study of the spatially-flat FRW cosmology in the Hořava-Lifshitz
gravity indicates that its background cosmology [10] is almost the same as in the usual GR, although an effective
dark matter could appear as a kind of a constant of integration in the Hořava-Lifshitz gravity [15]. Hence, it
seems that there is no natural way (without extra fields) to obtain an accelerating universe from Hořava-Lifshitz
gravity, let alone a unified description of the early-time inflation with the late-time acceleration. Therefore it is
natural to search for a generalization of the Hořava-Lifshitz theory that could be easily related to a traditional
modified theory of gravity. On the one hand, it may be very useful for the study of the low-energy limit of such a
generalized Hořava-Lifshitz theory due to the fact that a number of modified theories of gravity are cosmologically
viable and pass the local tests. On the other hand, it is expected that such a generalized Hořava-Lifshitz gravity
may have a much richer cosmological structure, including the possibility of a unification of the early-time inflation
with the late-time acceleration. Finally, within a more general theory one may hope to formulate the dynamical
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scenario for the Lorentz symmetry violation/restoration caused by the expansion of the universe.
In the present work we propose such a general modified Hořava-Lifshitz gravity. We mainly consider modified

F (R) Hořava-Lifshitz gravity which is shown to coincide with the traditional F (R)-gravity on the spatially-flat
FRW background for a special choice of parameters. Another limit of our model leads to the degenerate F (R)
Hořava-Lifshitz gravity proposed in ref. [11]. The Hamiltonian analysis of the modified F (R) Hořava-Lifshitz
theory is presented. The preliminary investigation of the FRW equations for models from this class indicates a
rich cosmological structure and a natural possibility for the unification of the early-time inflation with the Dark
Energy epoch. Finally, we propose the most general modification of Hořava-Lifshitz-like theory of gravity. Our
formulation ensures that the spatially-flat FRW cosmology of any modified Hořava-Lifshitz gravity (for a special
choice of parameters) coincides with the one of its traditional modified gravity counterpart.

II. MODIFIED F (R) HOŘAVA-LIFSHITZ GRAVITY

In this section we propose a new extended action for F (R) Hořava-Lifshitz gravity. The FRW equations for
this theory are also formulated. The action of the standard F (R)-gravity is given by

SF (R) =
∫

d4x
√
−gF (R) . (1)

Here F is a function of the scalar curvature R. By using the ADM decomposition [12] (for reviews and mathe-
matical background see [13, 14]), we can write the metric in the following form:

ds2 = −N2dt2 + g
(3)
ij

(
dxi + N idt

) (
dxj + N jdt

)
, i = 1, 2, 3 . (2)

Here N is called the lapse variable and N i’s are the shift variables. Then the scalar curvature R has the following
form:

R = KijKij − K2 + R(3) + 2∇µ (nµ∇νnν − nν∇νnµ) (3)

and
√
−g =

√
g(3)N . Here R(3) is the three-dimensional scalar curvature defined by the metric g

(3)
ij and Kij is

the extrinsic curvature defined by

Kij =
1

2N

(
ġ
(3)
ij −∇(3)

i Nj −∇(3)
j Ni

)
, K = Ki

i . (4)

nµ is a unit vector perpendicular to the three-dimensional hypersurface Σt defined by t = constant and ∇(3)
i

expresses the covariant derivative on the hypersurface Σt.
Recently an extension of F (R)-gravity to a Hořava-Lifshitz type theory [3] has been proposed [11], by intro-

ducing the action

SFHL(R) =
∫

d4x
√

g(3)NF (RHL) , RHL ≡ KijKij − λK2 − EijGijklE
kl . (5)

Here λ is a real constant in the “generalized De Witt metric” or “super-metric” (“metric of the space of metric”),

Gijkl =
1
2

(
g(3)ikg(3)jl + g(3)ilg(3)jk

)
− λg(3)ijg(3)kl , (6)

defined on the three-dimensional hypersurface Σt, Eij can be defined by the so called detailed balance condition
by using an action W [g(3)

kl ] on the hypersurface Σt

√
g(3)Eij =

δW [g(3)
kl ]

δgij
, (7)

and the inverse of Gijkl is written as

Gijkl =
1
2

(
g
(3)
ik g

(3)
jl + g

(3)
il g

(3)
jk

)
− λ̃g

(3)
ij g

(3)
kl , λ̃ =

λ

3λ − 1
. (8)
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The action W [g(3)
kl ] is assumed to be defined by the metric and the covariant derivatives on the hypersurface Σt.

The original motivation for the detailed balance condition is its ability to simplify the quantum behaviour and
renormalization properties of theories that respect it. Otherwise there is no a priori physical reason to restrict
Eij to be defined by (7). There is an anisotropy between space and time in the Hořava-Lifshitz gravity. In the
ultraviolet (high energy) region, the time coordinate and the spatial coordinates are assumed to behave as

x → bx , t → bzt , z = 2, 3, · · · , (9)

under the scale transformation. In [3], W [g(3)
kl ] is explicitly given for the case z = 2,

W =
1

κ2
W

∫
d3x

√
g(3)(R − 2ΛW ) , (10)

and for the case z = 3,

W =
1

w2

∫

Σt

ω3(Γ) . (11)

Here κW in (10) is a coupling constant of dimension −1/2 and w2 in (11) is the dimensionless coupling constant.
ω3(Γ) in (11) is given by

ω3(Γ) = Tr
(

Γ ∧ dΓ +
2
3
Γ ∧ Γ ∧ Γ

)
≡ εijk

(
Γm

il ∂jΓl
km +

2
3
Γn

ilΓ
l
jmΓm

kn

)
d3x . (12)

A general Eij consist of all contributions to W up to the chosen value z.
In the Hořava-Lifshitz-like F (R)-gravity, we assume that N can only depend on the time coordinate t, which

is called the projectability condition. The reason is that the Hořava-Lifshitz gravity does not have the full
diffeomorphism invariance, but is invariant only under “foliation-preserving” diffeomorphisms, i.e. under the
transformations

δxi = ζi(t, x) , δt = f(t) . (13)

If N depended on the spatial coordinates, we could not fix N to be unity (N = 1) by using the foliation-preserving
diffeomorphisms. There exists a version of Hořava-Lifshitz gravity without the projectability condition, but it is
suspected to possess few additional consistency problems [5, 9]. Therefore we prefer to assume that N depends
only on the time coordinate t.

Let us consider the FRW universe with a flat spatial part,

ds2 = −N2dt2 + a(t)2
∑

i=1,2,3

(
dxi
)2

. (14)

Then, it is clear from the explicit expressions in (10) and (11) that W [g(3)
kl ] vanishes identically if ΛW = 0, which

we assume since a non-vanishing ΛW gives a cosmological constant. Then one can obtain

R =
12H2

N2
+

6
N

d
dt

(
H

N

)
= −6H2

N
+

6
a3N

d
dt

(
Ha3

N

)
, RHL =

(3 − 9λ) H2

N2
. (15)

Here the Hubble rate H is defined by H ≡ ȧ/a. In the case of the Einstein gravity, the second term in the last
expression for R becomes a total derivative:

∫
d4x

√
−gR =

∫
d4x a3N

{
−6H2

N
+

6
a3N

d
dt

(
Ha3

N

)}
=
∫

d4x

{
−6H2a3 + 6

d
dt

(
Ha3

N

)}
. (16)

Therefore, this term can be dropped in the Einstein gravity. The total derivative term comes from the last term
2∇µ (nµ∇νnν − nν∇νnµ) in (3), which is dropped in the usual Hořava-Lifshitz gravity. In the F (R)-gravity,
however, this term cannot be dropped due to the non-linearity. Then if we consider the FRW cosmology with the
flat spatial part, there is almost no qualitative difference between the Einstein gravity and the Hořava-Lifshitz
gravity, except that there could appear an effective dark matter as a kind of a constant of integration in the
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Hořava-Lifshitz gravity [15]. The effective dark matter appears since the constraint given by the variation over
N becomes global in the projectable Hořava-Lifshitz gravity.

Now we propose a new and very general Hořava-Lifshitz-like F (R)-gravity by

SF (R̃) =
∫

d4x
√

g(3)NF (R̃) , R̃ ≡ KijKij − λK2 + 2µ∇µ (nµ∇νnν − nν∇νnµ) − EijGijklE
kl . (17)

In the FRW universe with the flat spatial part, R̃ has the following form:

R̃ =
(3 − 9λ) H2

N2
+

6µ

a3N

d
dt

(
Ha3

N

)
=

(3 − 9λ + 18µ)H2

N2
+

6µ

N

d
dt

(
H

N

)
. (18)

The case one obtains with the choice of parameters λ = µ = 1 corresponds to the usual F (R)-gravity as long
as we consider spatially-flat FRW cosmology, since R̃ reduces to R in (15). On the other hand, in the case of
µ = 0, R̃ reduces to RHL in (15) and therefore the action (17) becomes identical with the action (5) of the
Hořava-Lifshitz-like F (R)-gravity in [11]. Hence, the µ = 0 version corresponds to some degenerate limit of the
above general F (R) Hořava-Lifshitz gravity. We call this limit degenerate because it is very difficult (perhaps
even impossible) to obtain FRW equations when µ = 0 is set from the very begining. In our theory the FRW
equations can be obtained quite easily, and then µ = 0 is a simple limit.

For the action (17), the FRW equation given by the variation over g
(3)
ij has the following form after assuming

the FRW space-time (14) and setting N = 1:

0 = F
(
R̃
)
− 2 (1 − 3λ + 3µ)

(
Ḣ + 3H2

)
F ′
(
R̃
)
− 2 (1 − 3λ) H

dF ′
(
R̃
)

dt
+ 2µ

d2F ′
(
R̃
)

dt2
+ p , (19)

where F ′ denotes the derivative of F with respect to its argument. Here, the matter contribution (the pressure
p) is included. On the other hand, the variation over N gives the global constraint:

0 =
∫

d3x


F

(
R̃
)
− 6

{
(1 − 3λ + 3µ) H2 + µḢ

}
F ′
(
R̃
)

+ 6µH
dF ′

(
R̃
)

dt
− ρ


 , (20)

after setting N = 1. Here ρ is the energy density of matter. Since N only depends on t, but does not depend on
the spatial coordinates, we only obtain the global constraint given by the integration. If the standard conservation
law is used,

0 = ρ̇ + 3H (ρ + p) , (21)

Eq. (19) can be integrated to give

0 = F
(
R̃
)
− 6

{
(1 − 3λ + 3µ)H2 + µḢ

}
F ′
(
R̃
)

+ 6µH
dF ′

(
R̃
)

dt
− ρ − C

a3
. (22)

Here C is the integration constant. Using (20), one finds C = 0. In [15], however, it has been claimed that C

need not always vanish in a local region, since (20) needs to be satisfied in the whole universe. In the region
C > 0, the Ca−3 term in (22) may be regarded as dark matter.

Note that Eq. (22) corresponds to the first FRW equation and (19) to the second one. Specifically, if we choose
λ = µ = 1 and C = 0, Eq. (22) reduces to

0 = F
(
R̃
)
− 6

(
H2 + Ḣ

)
F ′
(
R̃
)

+ 6H
dF ′

(
R̃
)

dt
− ρ

= F
(
R̃
)
− 6

(
H2 + Ḣ

)
F ′
(
R̃
)

+ 36
(
4H2Ḣ + Ḧ

)
F ′′
(
R̃
)
− ρ , (23)

which is identical to the corresponding equation in the standard F (R)-gravity (see Eq. (2) in [16] where a
reconstruction of the theory has been made).
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We should note that in the degenerate µ = 0 case [11], the action (17) or (5) does not contain any term with
second derivatives with respect to the coordinates, which appears in the usual F (R)-gravity. The existence of
the second derivatives in the usual F (R)-gravity induces the third and fourth derivatives in the FRW equation
as in (19). Due to such higher derivatives, there appears an extra scalar mode, which is often called the scalaron
in the usual F (R)-gravity. This scalar mode often affects the correction to the Newton law as well as other solar
tests. Therefore, such a scalar mode does not appear in the F (R) Hořava-Lifshitz gravity with µ = 0. Hence,
we have formulated a general Hořava-Lifshitz F (R)-gravity which describes the standard F (R)-gravity or its
non-degenerate Hořava-Lifshitz extension in a consistent way.

III. HAMILTONIAN FORMALISM

Let us present some elements of the Hamiltonian analysis of our proposal (for Hamiltonian analysis of con-
strained systems, and their quantization, see [17]). By introducing two auxiliary fields A and B we can write the
action (17) into a form that is linear in R̃:

SF (R̃) =
∫

d4x
√

g(3)N
[
B(R̃ − A) + F (A)

]
. (24)

Variation with respect to B yields R̃ = A that can be inserted back into the action (24) in order to produce the
original action (17). The variation with respect to A yields B = F ′(A).

First we rewrite R̃ in (24) into a more explicit and useful form (see (17) for the definition of R̃). The unit
normal nµ to the hypersurface Σt in space-time can be written in terms of the lapse and the shift vector as
nµ = (n0, ni) =

(
1
N ,−Ni

N

)
. The corresponding one-form is nµ = −N∇µt = (−N, 0, 0, 0). The term in (17) that

involves the unit normal can be written

∇µ (nµ∇νnν − nν∇νnµ) = ∇µ (nµK) − 1
N

g(3)ij∇(3)
i ∇(3)

j N . (25)

Thus we can rewrite R̃ as

R̃ = KijGijklKkl + 2µ∇µ (nµK) − 2µ

N
∇(3)

i ∇(3)iN − EijGijklE
kl . (26)

Introducing (26) into (24) and performing integrations by parts yields the action

SF (R̃) =
∫

dtd3x
√

g(3)
{
N
[
B
(
KijGijklKkl − EijGijklE

kl − A
)

+ F (A)
]

−2µK
(
Ḃ − N i∂iB

)
− 2µNg(3)ij∇(3)

i ∇(3)
j B

}
, (27)

where the integral is taken over the union U of the t = constant hypersurfaces Σt with t over some interval in R,
and we have written Nnµ∇µB = Ḃ − N i∂iB. We assume that the boundary integrals on ∂U and ∂Σt vanish.

In the Hamiltonian formalism the field variables gij , N , Ni, A and B have the canonically conjugated momenta
πij , πN , πi, πA and πB , respectively. For the spatial metric and the field B we have the momenta

πij =
δSF (R̃)

δġij
=
√

g(3)
[
BGijklKkl −

µ

N
g(3)ij

(
Ḃ − N i∂iB

)]
, (28)

πB =
δSF (R̃)

δḂ
= −2µ

√
g(3)K . (29)

We assume µ 6= 0 so that the momentum (29) does not vanish. Because the action does not depend on the time
derivative of N , N i or A, the rest of the momenta form the set of primary constraints:

πN ≈ 0 , πi(x) ≈ 0 , πA(x) ≈ 0 . (30)
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We consider N to be projectable, i.e. N = N(t), and therefore also the momentum πN = πN (t) is constant on
Σt for each t. The Poisson brackets are postulated in the form (equal time t is understood)

{g(3)
ij (x), πkl(y)} =

1
2
(
δk
i δl

j + δl
iδ

k
j

)
δ(x − y) ,

{N, πN} = 1 , {Ni(x), πj(y)} = δj
i δ(x − y) ,

{A(x), πA(y)} = δ(x − y) , {B(x), πB(y)} = δ(x − y) , (31)

with all the other Poisson brackets vanishing. We shall continue to omit the argument (x) of the fields when
there is no risk of confusion. In order to obtain the Hamiltonian, we first solve (28)–(29) for Kij and Ḃ,

Kij =
1√
g(3)

[
1
B

(
g
(3)
ik g

(3)
jl πkl − 1

3
g
(3)
ij g

(3)
kl πkl

)
− 1

6µ
g
(3)
ij πB

]
,

Ḃ = N i∂iB − N

3µ
√

g(3)

(
g
(3)
ij πij +

1 − 3λ

2µ
BπB

)
, (32)

and further obtain ġ
(3)
ij = 2NKij +∇(3)

i Nj +∇(3)
j Ni. Therefore both g

(3)
ij and B are dynamical variables and no

more primary constraints are needed. The Hamiltonian is then defined

H =
∫

d3x
(
πij ġ

(3)
ij + πBḂ

)
− L =

∫
d3x

(
NH0 + NiHi

)
, (33)

where the Lagrangian L is defined by the action (27), SF (R̃) =
∫

dtL, and the so called Hamiltonian constraint
and the momentum constraint are found to be

H0 =
1√
g(3)

[
1
B

(
g
(3)
ik g

(3)
jl πijπkl − 1

3

(
g
(3)
ij πij

)2
)
− 1

3µ
g
(3)
ij πijπB − 1 − 3λ

12µ2
Bπ2

B

]

+
√

g(3)
[
B
(
EijGijklE

kl + A
)
− F (A) + 2µg(3)ij∇(3)

i ∇(3)
j B

]
,

Hi = −2∇(3)
j πij + g(3)ij∇(3)

j BπB

= −2∂jπ
ij − g(3)ij

(
2∂kg

(3)
jl − ∂jg

(3)
kl

)
πkl + g(3)ij∂jBπB , (34)

respectively. Again we assume that the boundary term resulting from an integration by parts vanishes. We define
the total Hamiltonian by

HT = H + λNπN +
∫

d3x
(
λiπ

i + λAπA

)
, (35)

where the primary constraints (30) are multiplied by the Lagrange multipliers λN , λi, λA. Note that there is no
space integral over the product λNπN since they depend only on the time coordinate t due to the projectability
of N .

The primary constraints (30) have to be preserved under time evolution of the system:

π̇N = {πN , HT } = −
∫

d3xH0 ,

π̇i = {πi, HT } = −Hi ,

π̇A = {πA, HT } =
√

g(3)N (−B + F ′(A)) . (36)

Therefore we impose the secondary constraints:

Φ0 ≡
∫

d3xH0 ≈ 0 ,

Φi
S(x) ≡ Hi(x) ≈ 0 ,

ΦA(x) ≡ B(x) − F ′(A(x)) ≈ 0 . (37)
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Here the Hamiltonian constraint Φ0 is global and the other two, the momentum constraint Φi
S(x) and the

constraint ΦA(x), are local. It is convenient to introduce a globalized version of the momentum constraints Φi
S :

ΦS(ξi) ≡
∫

d3xξiHi ≈ 0 , (38)

where ξi, i = 1, 2, 3 are three arbitrary smearing functions — the choices ξi = δj
i δ(x − y) will produce the three

local constraints Hj which in turn imply the smeared one.
The total Hamiltonian (35) can be written in terms of the constraints as

HT = NΦ0 + ΦS(Ni) + λNπN +
∫

d3x
(
λiπ

i + λAπA

)
. (39)

The consistency of the system requires that also the secondary constraints Φ0, ΦS(ξi) and ΦA(x) have to be
preserved under time evolution:

Φ̇0 = {Φ0, HT } = N{Φ0, Φ0} + {Φ0, ΦS(Ni)} +
∫

d3xλA(x){Φ0, πA(x)} ≈ 0 ,

Φ̇S(ξi) = {ΦS(ξi), HT } = N{ΦS(ξi), Φ0} + {ΦS(ξi), ΦS(Ni)} ≈ 0

Φ̇A(x) = {ΦA(x), HT } = N{ΦA(x), Φ0} + {ΦA(x), ΦS(Ni)} +
∫

d3yλA(y){ΦA(x), πA(y)} ≈ 0 , (40)

where we have used the fact that the constraints πN and πi have strongly vanishing Poisson brackets with every
constraint. We need to calculate the rest of the algebra of the constraints under the Poisson bracket. The Poisson
brackets between the constraint ΦS(ξi) and the canonical variables are

{ΦS(ξi), B} = −ξi∂iB ,

{ΦS(ξi), πB} = −∂i

(
ξiπB

)
,

{ΦS(ξk), g(3)
ij } = −ξk∂kg

(3)
ij − g

(3)
ik ∂jξ

k − g
(3)
jk ∂iξ

k ,

{ΦS(ξk), πij} = −∂k

(
ξkπij

)
+ πik∂kξj + πjk∂kξi , (41)

where ξi = g(3)ijξj , and trivially zero for A and πA,

{ΦS(ξi), A} = 0 , {ΦS(ξi), πA} = 0 . (42)

Thus ΦS(ξi) generates the spatial diffeomorphisms for the variables B, πB , g
(3)
ij , πij , and consequently for any

function or functional constructed from these variables, and treates the variables A, πA as constants. By using
this result (41)–(42) we obtain the Poisson brackets for the constraints Φ0 and ΦS(ξi):

{Φ0, Φ0} = 0 , {ΦS(ξi), Φ0} = 0 , {ΦS(ξi), ΦS(ηi)} = ΦS(ξj∂jηi − ηj∂jξi) ≈ 0 . (43)

For the constraints πA and ΦA(x) the Poisson brackets that do not vanishing strongly are:

{πA(x), Φ0} = −
√

g(3)ΦA(x) ≈ 0 , {πA(x), ΦA(y)} = F ′′(A(x))δ(x − y)

{Φ0, ΦA(x)} =
1

3µ
√

g(3)

(
g
(3)
ij πij +

1 − 3λ

2µ
BπB

)
, {ΦS(ξi), ΦA(x)} = −ξi∂iB . (44)

Thus, in order to satisfy the consistency conditions (40), we have to impose the tertiary constraint

Φter ≡ N i∂iB − N

3µ
√

g(3)

(
g
(3)
ij πij +

1 − 3λ

2µ
BπB

)
− λAF ′′(A) ≈ 0 . (45)

Since F ′′(A) = 0 would essentially reproduce the original projectable Hořava-Lifshitz gravity, we assume that
F ′′(A) 6= 0. The first two terms in (45), i.e. the expression for Ḃ in (32), does not vanish due to the established
constraints (30) and (37). Therefore (45) is a restriction on the Lagrange multiplier λA, and we can solve it from
Φter = 0:

λA =
1

F ′′(A)

(
N i∂iB − N

3µ
√

g(3)

(
g
(3)
ij πij +

1 − 3λ

2µ
BπB

))
. (46)
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Introducing (46) into the Hamiltonian (39) ensures that now all the constraints of the system are consistent.
According to the Poisson brackets (43)–(44) between the constraints, we can set the second-class constraints

πA(x) and ΦA(x) to vanish strongly, and as a result turn the Hamiltonian constraint Φ0 and the momentum
constraint ΦS(ξi) into first-class constraints. For this end, we replace the Poisson bracket with the Dirac bracket,
which is given by

{f(x), h(y)}DB = {f(x), h(y)}+
∫

d3z
1

F ′′(A(z))
({f(x), πA(z)}{ΦA(z), h(y)} − {f(x), ΦA(z)}{πA(z), h(y)}) ,

(47)
where f and h are any functions of the canonical variables. Assuming we can solve the constraint ΦA(x) = 0, i.e.
B = F ′(A), for A = Ã(B), where Ã is the inverse of the function F ′, we can eliminate the variables A and πA.
Thus the final variables of the system are g

(3)
ij , πij , B, πB . The lapse N and the shift vector Ni, together with

λN and λi, are non-dynamical multipliers. Then since every dynamical variable has a vanishing Poisson bracket
with the constraint πA, the Dirac bracket (47) reduces to the Poisson bracket,

{f(x), h(y)}DB = {f(x), h(y)} . (48)

Finally the total Hamiltonian is the sum of the first-class constraints

HT = NΦ0 + ΦS(Ni) + λNπN +
∫

d3xλiπ
i . (49)

It defines the equations of motion for every function f(x) (or functional f) of the canonical variables

ḟ(x) = {f(x), HT} = N{f(x), Φ0} + {f(x), ΦS(Ni)} + λN{f(x), πN} +
∫

d3yλi(y){f(x), πi(y)} . (50)

We have calculated the Hamitonian (33)–(34) of the proposed modified Hořava-Lifshitz F (R)-gravity and
established the preservation of the primary constraints (30) by imposing the required secondary constraints (37),
including the Hamiltonian constraint and the momentum constraint. In order to ensure the consistency of the
secondary constraints we introduced the tertiary constraint (45) that was used to fix the Lagrange multiplier λA

of the primary constraint πA. Finally, we eliminated the pair of variables A, πA by imposing the second-class
constraints πA and ΦA, and introduced the Dirac bracket (47) that reduced to (48). The total Hamiltonian was
obtained in its final form (49) as a sum of the first-class constraints. We conclude that the proposed action (17) of
this modified F (R) Hořava-Lifshitz gravity, which obeys the projectability condition, defines a consistent theory.
This conclusion agrees with the recent analysis of our theory presented in ref. [18].

IV. FRW COSMOLOGY FOR SOME VERSIONS OF MODIFIED HOŘAVA-LIFSHITZ

F (R)-GRAVITY.

This section is devoted to the study of the FRW Eqs. (19) and (20) which admit a de Sitter universe solution.
We now neglect the matter contribution by putting p = ρ = 0. Then by assuming H = H0, both of Eq. (19) and
(20) lead to the same equation

0 = F
(
3 (1 − 3λ + 6µ) H2

0

)
− 6 (1 − 3λ + 3µ)H2

0F ′ (3 (1 − 3λ + 6µ) H2
0

)
, (51)

as long as the integration constant vanishes (C = 0) in Eq. (22).
First we consider the popular case that

F
(
R̃
)
∝ R̃ + βR̃2 . (52)

Then Eq. (51) gives

0 = H2
0

{
1 − 3λ + 9β (1 − 3λ + 6µ) (1− 3λ + 2µ) H2

0

}
. (53)
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In the case of usual F (R)-gravity, where λ = µ = 1 and therefore 1−3λ+2µ = 0, there is only the trivial solution
H2

0 = 0, although the R2-term could generate the inflation when more gravitational terms, like RµνRµν etc., are
added. For our general case, however, there exists the non-trivial solution

H2
0 = − 1 − 3λ

β (1 − 3λ + 6µ) (1− 3λ + 2µ)
, (54)

as long as the r.h.s. of (54) is positive. If the magnitude of this non-trivial solution is small enough, this solution
might correspond to the accelerating expansion in the present universe. Hence, the R2-term may generate the
late-time acceleration. On the other hand, the above solution may serve as an inflationary solution for the early
universe (with the corresponding choice of parameters).

Instead of (52) one may consider the following model:

F
(
R̃
)
∝ R̃ + βR̃2 + γR̃3 . (55)

Then Eq. (51) becomes

0 = H2
0

{
1 − 3λ + 9β (1 − 3λ + 6µ) (1 − 3λ + 2µ)H2

0 + 9γ (1 − 3λ + 6µ)2 (5 − 15λ + 12µ)H4
0

}
, (56)

which has the following two non-trivial solutions,

H2
0 = − (1 − 3λ + 2µ)β

2 (1 − 3λ + 6µ) (5 − 15λ + 12µ) γ

(
1 ±

√
1 − 4 (1 − 3λ) (5 − 15λ + 12µ) γ

9 (1 − 3λ + 2µ)2 β2

)
, (57)

as long as the r.h.s. is real and positive. If
∣∣∣∣∣
4 (1 − 3λ) (5 − 15λ + 12µ) γ

9 (1 − 3λ + 2µ)2 β2

∣∣∣∣∣� 1 , (58)

one of the two solutions is much smaller than the other solution. Then one may regard that the larger solution
corresponds to the inflation in the early universe and the smaller one to the late-time acceleration, similarly to the
modified gravity model [19], where such unification has been first proposed. The fact that such two solutions are
connected could be demonstrated by numerical calculation. Note that some of the above models may possess the
future singularity in the same way as the usual F (R)-gravity. However, it would be possible to demonstrate that
adding terms wtih even higher derivatives might cure this singularity, similarly as the addition of the R2-term did
in the usual F (R)-gravity. Hence, we have suggested the qualitative possibility to unify the early-time inflation
with the late-time acceleration in the modified Hořava-Lifshitz F (R)-gravity.

V. MORE GENERAL ACTION

In the formulation of F (R) Hořava-Lifshitz-like gravity, we do not require full diffeomorphism-invariance,
but only invariance under “foliation-preserving” diffeomorphisms (13). Therefore there are many invariants or
covariant quantities made from the metric like K, Kij , ∇(3)

i Kjk , · · · , ∇(3)
i1

∇(3)
i2

· · ·∇(3)
in

Kjk, R(3), R
(3)
ij , R

(3)
ijkl ,

∇(3)
i R

(3)
jk , · · · , ∇µ (nµ∇νnν − nν∇νnµ), · · · , etc. Then the action composed of such invariants as

SgHL =
∫

d4x
√

g(3)NF
(
g
(3)
ij , K, Kij ,∇(3)

i Kjk, · · · ,∇(3)
i1

∇(3)
i2

· · · ∇(3)
in

Kjk,

· · · , R(3), R
(3)
ij , R

(3)
ijkl,∇

(3)
i R

(3)
jk , · · · ,∇µ (nµ∇νnν − nν∇νnµ)

)
, (59)

could be a rather general action for the generalized Hořava-Lifshitz gravity. Note that one can also include the
(cosmological) constant in the above action. Here it has been assumed that the action does not contain derivatives
higher than the second order with respect to the time coordinate t. In the usual F (R)-gravity, there appears the
extra scalar mode since the equations given by the variation over the metric tensor contain the fourth derivative.
Now we avoid such extra modes except the one scalar mode.
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In the FRW space-time (14) with the flat spatial part and non-trivial N = N(t), we find

Γ0
00 =

Ṅ

N
, Γ0

ij =
a2H

N2
δij , Γi

j0 = Hδi
j other Γµ

νρ = 0 ,

Kij =
a2H

N
δij , ∇(3)

i = 0 , R
(3)
ijkl = 0 , ∇µ (nµ∇νnν − nν∇νnµ) =

3
a3N

d
dt

(
a3H

N

)
. (60)

Then one gets

g
(3)
ij = a2δij , K =

3H

N
, ∇(3)

i Kjk = · · · = ∇(3)
i1

∇(3)
i2

· · · ∇(3)
in

Kjk = · · · = 0 ,

R(3) = R
(3)
ij = R

(3)
ijkl = ∇(3)

i R
(3)
jk = · · · = 0 , (61)

and since F must be a scalar under the spatial rotation, the action (59) reduces to

SgHL =
∫

d4x
√

g(3)NF

(
H

N
,

3
a3N

d
dt

(
a3H

N

))
. (62)

Therefore, if we consider the FRW cosmology, the function F should depend on only two variables, H
N and

3
a3N

d
dt

(
a3H
N

)
. For instance, R̃ in (18) is given by this combination. As an illustrative example, we may consider

the following one:

F = f0

(
KijKij − λK2

)
+ f1∇µ (nµ∇νnν − nν∇νnµ)2 . (63)

Then in the FRW space-time (2), by the variation of the scale factor a, we obtain the following equation:

0 = 2f0 (1 − 3λ)
(
H2 + Ḣ

)
+ 3f1

(
27H4 + 54H2Ḣ + 15Ḣ2 + 18HḦ + 2

...
H
)

. (64)

If we assume a de Sitter universe H = H0 with constant H0, Eq. (64) reduces to

0 = 2f0 (1 − 3λ) H2 + 81f1H
4 , (65)

which has the non-trivial solution

H2 = −
2f0 (1 − 3λ)

81f1
, (66)

as long as the r.h.s. is positive. In the same way, a large class of modified Hořava-Lifshitz gravities may
be constructed. For instance, one can construct Hořava-Lifshitz-like generalizations of F (G)-gravity where
the action is the Einstein-Hilbert term plus a function F of the Gauss-Bonnet invariant G, non-local grav-
ity, F (R, RµνRµν , RµναβRµναβ), etc. It is remarkable that some special subclass of such Hořava-Lifshitz-like
theories will have the same spatially-flat FRW background dynamics as the corresponding traditional modified
gravity.

VI. DISCUSSION

We have suggested a quite general approach for the modification of Hořava-Lifshitz gravity. We concentrated
mainly on the F (R)-gravity version. The consistency of its spatially-flat FRW field equations has been demon-
strated. The Hamiltonian and the corresponding constraints of the modified F (R) Hořava-Lifshitz gravity have
been derived. It has been shown that these constraints are consistent under the dynamics of the system, and that
they do not constrain the physical degrees of freedom too much. It is demonstrated that a degenerate subclass of
the proposed general modified F (R) Hořava-Lifshitz gravity corresponds to the earlier proposed F (R) extension
of Hořava-Lifshitz gravity. The preliminary study of FRW cosmology indicates a possibility to describe or even
to unify the early-time inflation with the late-time acceleration [20]. The motivation to consider such a theory
is clear: it includes conventional F (R)-gravity and Hořava-Lifshitz gravity as limiting cases. The former offers
interesting cosmological solutions, while the latter may hold the promise of UV-completeness.
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Our proposal opens the bridge between the conventional modified gravity and its Hořava-Lifshitz counterpart.
Indeed, it is demonstrated that our model with a special choice of parameters (λ = µ = 1) leads to the same
spatially-flat FRW dynamics as its traditional counterpart, which is fully diffeomorphism-invariant. Moreover,
we eventually proposed the most general construction for a modified gravity that is invariant under foliation-
preserving diffeomorphisms. In this way, any traditional modified gravity has its counterpart, where the Lorentz
symmetry is broken. The explicit construction may be made using the results of Section V. Having in mind
that a number of traditional modified theories of gravity are cosmologically viable and pass the local tests,
one can expect that it will eventually be possible to realize any accelerating FRW cosmology in this modified
Hořava-Lifshitz theory. This will be studied elsewhere.
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