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Abstract

We demonstrate how various geometries can emerge from Yang-Mills type ma-
trix models with branes, and consider the examples of Schwarzschild and Reissner-
Nordström geometry. We provide an explicit embedding of these branes in R2,5 and
R4,6, as well as an appropriate Poisson resp. symplectic structure which determines the
non-commutativity of space-time. The embedding is asymptotically flat with asymptot-
ically constant θµν for large r, and therefore suitable for a generalization to many-body
configurations. This is an illustration of our previous work [1], where we have shown
how the Einstein-Hilbert action can be realized within such matrix models.
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1 Background and introduction

It has been argued in numerous publications that combining the basic aspects of Quantum
Mechanics and General Relativity strongly suggests a quantum structure of space-time
itself near the Planck scale — see for example Ref. [2]. One approach to realize this idea
is to replace classical space-time by a quantized, or non-commutative (NC), space-time.
Coordinate functions xµ are promoted to Hermitian operators Xµ acting on a Hilbert space
H, which satisfy certain non-trivial commutation relations

[Xµ,Xν ] = iθµν . (1)

In the simplest case one may consider a Heisenberg algebra, corresponding to constant θµν

which commutes with the Xµ. This has been studied extensively in the past (cf. [3, 4, 5]
for a review of such “non-commutative” field theories). However, in the context of gravity
it seems essential that this commutator θµν becomes dynamical. Indeed, semi-classically it
determines a Poisson structure on space-time, as we will discuss below.

It has been shown previously [6, 7, 8] that matrix models of Yang-Mills type naturally
realize this idea, and incorporate at least some version of (quantized) gravity; see Ref. [9]
for a review. Hence we start our discussion with the matrix model action

SY M = −Tr[Xa,Xb][Xc,Xd]ηacηbd , (2)

where ηab denotes the (flat) metric of a D dimensional embedding space, with arbitrary
signature. The “covariant coordinates“ Xa are Hermitian matrices, resp. operators acting
on a Hilbert space H. It was shown in Ref. [10] that if one considers some of the coordinates
to be functions of the remaining ones such that Xa ∼ xa = (xµ, φi(xµ)) in the semi-classical
limit, one can interpret the xa as defining the embedding of a 2n-dimensional submanifold
M2n ↪→ RD equipped with a non-trivial induced metric

gµν(x) = ∂µxa∂νx
bηab , (3)
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via pull-back of ηab. In the present case we consider this submanifold to be a four dimensional
space-time M4, and following [10] we can interpret

[Xµ,Xν ] ∼ iθµν(x) (4)

as a Poisson structure onM4. Furthermore, we assume that θµν is non-degenerate, so that
its inverse matrix θ−1

µν defines a symplectic form Θ = θ−1
µν dxµ ∧ dxν onM4.

The essential point is now that the Poisson structure θµν and the induced metric gµν

combine to the effective metric

Gµν = e−σθµρθνσgρσ , e−σ ≡

√
det θ−1

µν√
detGρσ

. (5)

It is, in fact, this effective metric Gµν which is “seen” by matter [6] (i.e. scalar fields,
gauge fields, and fermions possibly up to conformal factors), and which therefore must be
interpreted in terms of gravity. In the present work, we restrict ourselves to the special case
of Gµν = gµν in 4 dimensional space-timeM4. It is easy to see that this is equivalent to θ−1

µν

being (anti)self-dual, by which in the case of Minkowski signature we mean ?gΘ = ±iΘ.
This requires that θµν is complexified, as discussed in Section 2.2. The Yang-Mills action
(2) then reduces in the semi-classical limit to

SY M = −Tr[Xa,Xb][Xc,Xd]ηacηbd ∼ 4
∫
√

g , (6)

which in General Relativity (GR) is interpreted as cosmological constant. We also recall
that (2) leads to the following equation of motion for θµν

∇η
G(eσθ−1

ην ) = Gρν θρµe−σ∂µη , η ≡ eσ

4
Gµνgµν =

∣∣∣
G=g

eσ . (7)

This equation holds identically for Gµν = gµν i.e. for self-dual θµν , and is therefore not
restricted to the model (2).

Einstein-Hilbert action. In a previous paper [1], we have shown that the following
combination of higher order terms in the matrix model semi-classically lead to the Einstein-
Hilbert type of action:

SE-H = Tr
(
2T ab�Xa�Xb − T ab�Hab

)
∼ −2

∫
√

g e2σR[g] , (8)

where

T ab =
1
2
[[Xa,Xc], [Xb,Xc]]+ −

1
4
ηab[Xc,Xd][Xc,Xd] ,

Hab =
1
2
[[Xa,Xc], [Xb,Xc]]+ ,

�Y ≡ [Xa, [Xa, Y ]] . (9)

Latin indices are pulled down with the (flat) background metric ηab (i.e. Xa = ηabX
b), and

R[g] denotes the Ricci scalar with respect to the metric G = g of the submanifoldM4. Such
actions can be added by hand, but they will also arise upon quantization of the Yang-Mills
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matrix model (2). It was argued in [1] that the factor e2σ sets the scale and introduces the
gravitational constant G.

Under reasonable conditions (such as global hyperbolicity), every 4-dimensional manifold
can be equipped with a self-dual (complexified) symplectic form Θ. Then the classical
embedding theorems [11, 12] imply that one can realize every 4-dimensional geometry as
semi-classical configuration in the matrix model with gµν = Gµν . In the present paper,
we illustrate this general fact by providing an explicit construction of the most important
solution: the Schwarzschild geometry. Subsequently, we also construct Reissner-Nordström
(RN) geometry by following the same steps.

There are several possible actions which extend (8) beyond the case g = G and which
may imply different equations for θµν and for eσ. We therefore restrict ourselves to the
construction of geometries which are solutions to GR, equipped with self-dual θµν . We do
not check here in detail whether the above action (8) admits these spaces with self-dual
θµν as solutions. Indeed additional terms in the action should be expected, leading e.g.
to a potential for σ and possibly to deviations from θµν being self-dual. The point of this
paper is not to present final answers but to illustrate how geometries such as Schwarzschild
are expected to arise within this class of matrix models. In the same vein, we will also
assume that the Yang-Mills resp. vacuum energy term (6) is negligible compared with the
Einstein-Hilbert action (8), thus setting the cosmological constant to zero. There are several
intriguing hints that the role of vacuum energy in this framework may be different than in
GR [9].

Furthermore, we only consider the semi-classical limit of the matrix model in the present
paper. Thus we will recover precisely the Schwarzschild geometry (resp. RN geometry), and
the central singularity will be reflected by an embedding which escapes to infinity as one
approaches the center. Of course, the main appeal for this framework compared with other
descriptions of gravity is the fact that it goes beyond the classical concepts of geometry:
Space-time is not put in by hand but emerges, realized as non-commutative space with an
effective geometry, along with gauge fields and matter. Hence one should expect that non-
commutative modifications become important as one approaches the singularity. However,
this requires to go beyond the semi-classical approximations of this paper, which we will
indicate by briefly discussing higher-order terms in the star product in Appendix B.

Finally, we want to emphasize that the actions under consideration are expected to
arise upon quantization of Yang-Mills matrix models, such as the IKKT model [13]. In
particular the latter model is a promising candidate for a quantum theory of fundamental
interactions including gravity. Of course, much more work remains to be done in order to
fully understand this class of models.

2 The Schwarzschild geometry

We now show how the most important solution of General Relativity can emerge from the
class of extended matrix model action presented in the previous section: the Schwarzschild
geometry. We will restrict ourselves to the semi-classical limit here, however a possible way
to obtain higher-order corrections in θµν is discussed in Appendix B.

2.1 Embedding of Schwarzschild geometry

Our construction involves two steps:
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1) the choice of a suitable embeddingM4 ⊂ RD such that the induced geometry onM4

given by gµν is the Schwarzschild metric, and

2) a suitable non-degenerate Poisson structure onM4 which solves the e.o.m. ∇µθ−1
µν = 0

for self-dual symplectic form Θ.

Both steps are far from unique a priori. However, the freedom is considerably reduced
by requiring that the solution should be a “local perturbation” of an asymptotically flat
(or nearly flat) “cosmological” background. This is clear on physical grounds, having in
mind the geometry near a star in some larger cosmological context: it must be possible to
approximately “superimpose” our solution, allowing e.g. for systems of stars and galaxies
in a natural way. This eliminates the well-known embeddings of the Schwarzschild geom-
etry in the literature [14, 15, 16], which are highly non-trivial for large r and cannot be
superimposed in any obvious way. In fact we require that the embedding is asymptotically
harmonic �xa → 0 for r → ∞, in view of the fact that there may be terms in the matrix
model which depend on the extrinsic geometry, and which typically single out such harmonic
embeddings1.

Furthermore, we insist that θµν is non-degenerate, and θµν → const. 6= 0 as r→∞. This
is again motivated by the requirement that physics at large distances should not be affected
by a localized mass. In particular, eσ defines essentially the scale of non-commutativity, and
certainly enters in some way e.g. the physics of elementary particles (In fact, eσ determines
the strength of the gauge coupling in the matrix model [6, 10]). Therefore, eσ should be
asymptotically constant and non-vanishing. This is an important difference to previous
proposals for a non-commutative Schwarzschild geometry (see in particular [18, 19] and
references therein), where the Poisson structure is degenerate and/or not asymptotically
constant. Hence θµν will be viewed as some cosmological background field which is locally
perturbed by a mass. Recall that such a background is essentially invisible, since there are
no fields in the matrix model which are charged under the corresponding U(1). It enters
the effective actions only through the gravitational metric Gµν .

Note that these boundary conditions for θµν are not in conflict with the idea that θµν

may be locally fluctuating and should perhaps be averaged over or integrated out. We will
discuss this possibility further below.

In order to obtain an appropriate embedding, keeping in mind the conditions we have
just discussed, we consider Eddington-Finkelstein coordinates and define:

t = tS + (r∗ − r) , r∗ = r + rc ln
∣∣∣∣
r

rc
− 1
∣∣∣∣ , (10)

where tS denotes the usual Schwarzschild time, rc is the horizon of the Schwarzschild black
hole and r∗ is the well-known tortoise coordinate. The metric in Eddington-Finkelstein
coordinates {t, r, ϑ, ϕ} is

ds2 = −
(
1− rc

r

)
dt2 +

2rc

r
dtdr +

(
1 +

rc

r

)
dr2 + r2dΩ2 (11)

which is asymptotically flat for large r, and manifestly regular at the horizon rc. Thus, we
only need to find a good embedding of this metric. To reproduce the mixed term, consider

1This can hold only asymptotically, since Ricci-flat geometries can in general not be embedded harmon-
ically [17].
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first

φ1 + iφ2 = h(r)ei(ωt+g(r)) (12)

which satisfies

∂tφ
i∂tφ

i = ω2h2 ,

∂tφ
i∂rφ

i = ωg′h2 ,

∂rφ
i∂rφ

i = g′2h2 + h′2 . (13)

So we demand

ωg′h2 =
rc

r
= ω2h2 (14)

which is satisfied for

h(r) =
1
ω

√
rc

r
, g(r) = ωr . (15)

Furthermore, since g′2h2 = ωg′h2 = rc
r , we need to cancel the h′2 term in Eqn. (13) above.

Hence, we need another coordinate
φ3 = h(r), (16)

with time-like embedding. So we have

φ1 + iφ2 = φ3e
iω(t+r) ,

φ3 =
1
ω

√
rc

r
, (17)

and the embedding of M4 ⊂ R7 is given by

xa =




t
r cosϕ sin ϑ
r sinϕ sin ϑ

r cos ϑ
1
ω

√
rc
r cos (ω(t + r))

1
ω

√
rc
r sin (ω(t + r))

1
ω

√
rc
r




, (18)

(i.e. we consider D = 7 in this example). Together with the background metric

ηab = diag(−,+,+,+,+,+,−) , (19)

this induces precisely the Eddington-Finkelstein metric (11) above.
Before we proceed to determine the symplectic form, let us take a closer look at the

properties of this embedding: First, notice that the ω (appearing in the φi) does not enter
the effective four dimensional metric, i.e. it is “hidden” in the three extra dimensions. Fur-
thermore, we must emphazise that φ3 is an additional time-like direction. Asymptotically,
i.e. for r →∞, Eqn. (18) describes flat four dimensional Minkowski space where the extra
dimensions φi ∼ 1

r become infinitesimally small. On the other hand, when one approaches
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the singularity of the Schwarzschild black hole at r = 0, these extra dimensions blow up
and become arbitrarily large. In particular, note that then φ3 should be interpreted as
asymptotic time (which is unbounded), i.e.

T := φ3 , r = rc
1

ω2T 2
, (20)

so that

xa =




x0

xi

φ1 + iφ2

φ3


 =




t,
rc

1
ω2T 2 (sinϑ sinϕ, sin ϑ cosϕ, cos ϑ)

T eiω(t+rc
1

ω2T2 )

T


 (21)

for large T . This is a helicoid-like (cone-like) geometry in {T, t} with (increasing) radius T
and t playing the role of the angle variable, times a contracting sphere of radius 1

T 2 . The
geometry of the submanifoldM1,3 ⊂ R2,5 is completely regular, and the central singularity
is reflected by an embedding which escapes to infinity. Near this singularity, the geometry
is effectively 2-dimensional. An illustration is given by Figure 1.

Figure 1: Embedded Schwarzschild black hole. On the top, a schematic view of the outer
region of the Schwarzschild black hole is shown. After passing through the horizon r = rc,
the extra dimensions φi “blow up” in a cone-like manner. As indicated in the lower half
of this figure, every point of the cone is in fact a sphere whose radius r becomes smaller
towards the bottom of the cone (i.e. T ∝ 1/

√
r). The twisted vertical lines drawn in the

cone are lines of equal time t.

Of course, quantum effects will play a major role near r = 0. This implies that the
semi-classical approximation we are currently considering will break down in the vicinity
of that region. We expect that these non-commutative effects will regularize the would-
be singularity. For example, the contracting sphere of radius 1

T 2 may become fuzzy [20],
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so that for large T the present geometry could become effectively 2-dimensional with an
extra-dimensional fuzzy sphere.

In order to understand the meaning of the extra dimensions φi at large distances r →∞
from the Schwarzschild black hole, it is instructive to consider the following modifica-
tion resp. higher-dimensional extension of the Schwarzschild geometry. Consider the 6-
dimensional space R4 ×AdS2 ⊂ R7 defined by

φ2
1 + φ2

2 − φ2
3 = R2 . (22)

Here the φi describe an AdS2 space embedded in R3, which can be parametrized as

φ1 + iφ2 =
√

φ2
3 + R2 eiωu ,

φ3 = φ3 . (23)

The Schwarzschild manifold described above is then recovered by setting

u = t + r , φ3 =
1
ω

√
rc

r
, and R = 0 , (24)

while R 6= 0 corresponds to a modification of the Schwarzschild geometry. The length
element of AdS2 ⊂ R3 is given by

ds2 = dφ2
1 + dφ2

2 − dφ2
3 = ω2

(
φ2

3 + R2
)
du2 − R2

φ2
3 + R2

dφ2
3 . (25)

Note that there is no contribution from the time-like coordinate dφ2
3 for R = 0 since it is

embedded in a null direction. The metric on AdS2 then becomes degenerate and space-like,
with very small radius as r → ∞. Hence, this extra AdS2 can be interpreted as physical
extra dimension which naturally becomes “invisible” for large r, i.e. far away from the
Schwarzschild black hole. The point is that such an AdS2 could arise naturally in matrix
models similar to fuzzy spheres, and may play an interesting physical role, cf. [21, 22, 23, 24].

2.2 Symplectic form

As mentioned in the introduction we consider the simple class of self-dual geometries where
the effective metric Gµν equals the induced metric gµν . Hence we need to find an (anti)self-
dual symplectic form Θ so that

Gµν = eσθµρθνσgρσ

= gµν . (26)

At this point, we recall that
J η

γ = e−σ/2 θηγ′
gγ′γ (27)

satisfies
J 2 = −1 ⇔ ?Θ = ±iΘ ⇔ gµν = Gµν , (28)

so that we are dealing with an almost complex manifold. Moreover, the symplectic structure
is necessarily complexified in a way which is determined by J 2 = −1. Thus the last relation
specifies2 the “real form” of θµν .

2In the case of general geometries gµν 6= Gµν this is replaced by a quartic relation for J [25].
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Furthermore, we require Θ = θ−1
µν dxµ ∧ dxν to lead to an asymptotically constant e−σ

since, as mentioned previously, we would like to describe everything as a local perturbation
of flat Moyal space. To be more specific, we demand

lim
r→∞

e−σ = const. 6= 0 . (29)

In order to find such a symplectic form Θ, we consider the following: The Schwarzschild
metric has two Killing vector fields Vts = ∂tS and Vϕ = ∂ϕ. Hence, in Schwarzschild
coordinates this leads to the ansatz

Θ = iΘE + ΘB = iE ∧ dtS + ΘB ,

E = iVtsΘE = Erdr + Eϑdϑ + Eϕdϕ,

ΘB = Brdϑ ∧ dϕ + Bϑdr ∧ dϕ + Bϕdϑ ∧ dr

= ?ΘE , (30)

which implements self-duality, i.e.

?Θ = iΘ , (31)

supplemented by the conditions

LVtsΘ = 0 ,

LVϕΘ = 0 . (32)

A solution which satisfies the required asymptotics (29) is then given by

E = c1

(
cos ϑdr − r(1− rc

r
) sinϑdϑ

)
= d(f(r) cos ϑ) ,

B = c1

(
r2 sinϑ cosϑdϑ + r sin2 ϑdr

)
=

c1

2
d(r2 sin2 ϑ) ,

Θ = iE ∧ dtS + B ∧ dϕ ,

with f(r) = c1r(1−
rc

r
), f ′ = c1 = const. , (33)

from which one finds

e−σ = c2
1

(
1− rc

r
sin2 ϑ

)
. (34)

Details of the computation are given in Appendix A. This can be interpreted as a (com-
plexified) electromagnetic field with asymptotically constant fields E,B pointing in the z
direction, and e−σ is indeed asymptotically constant. Other solutions are of course obtained
by acting with the rotation group on the asymptotic E resp. B field.

Note in particular that we have obtained metric-compatible Darboux coordinates (resp.
Hamiltonian reduction) xµ

D = {Hts, tS ,Hϕ, ϕ} corresponding to Vts, Vϕ where the symplec-
tic form is constant:

Θ = ic1dHts ∧ dtS + c1dHϕ ∧ dϕ ,

= c1d (iHtsdtS + Hϕdϕ) ,

Hts = r cos ϑ(1− rc

r
) , Hϕ =

1
2
r2 sin2 ϑ . (35)
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The Schwarzschild metric in Darboux coordinates reads

ds2 = −
(
1− rc

r

)
dt2S +

eσ̄

(
1− rc

r

)dH2
ts + r2 sin2 ϑdϕ2 +

eσ̄

r2 sin2 ϑ
dH2

ϕ , (36)

with eσ̄ = c2
1e

σ =
(
1− rc

r sin2 ϑ
)−1. Notice that no dHtsdHϕ-term appears, i.e. the two

Darboux blocks do not mix. The relations to the Killing vector fields are:

E = c1dHts = c1Eµdxµ = iVtsΘ , Eµ = V ν
tsθ
−1
νµ ,

B = c1dHϕ = c1Bµdxµ = iVϕΘ , Bµ = V ν
ϕ θ−1

νµ , (37)

(cf. Eqn. (33) above). In order to obtain the Poisson brackets between the Cartesian
matrix coordinates, we will transform tS to Eddington-Finkelstein time t and invert it
so as to derive θµν . Subsequently, we will extend the θ-matrix to the seven dimensional
embedding space of Eqn. (18) as that will provide us with the leading order commutator
relations between the coordinates, i.e. [Xa,Xb] ∼ iθab. As shown in Appendix B, this
leads to the following semi-classical commutation relations for the 7-dimensional coordinates
Xa ∼ xa = {t, x, y, z, φ1, φ2, φ3}:

θab= εeσ̄




0 − rcy
r2

rcx
r2 −i iz

r f+
12(0)

iz
r f−21(0)

izφ3

2r2

rcy
r2 0 e−σ̄ − rcyz

r3 −y
rf+

12(rc) −y
rf−21(rc) −yγφ3

2r2

− rcx
r2 −e−σ̄ 0 rcxz

r3
x
r f+

12(rc) x
r f−21(rc) xγφ3

2r2

i rcyz
r3 − rcxz

r3 0 −iωφ2 iωφ1 0
− iz

r f+
12(0)

y
rf+

12(rc) −x
r f+

12(rc) iωφ2 0 − iωzφ2
3

2r2 − iωzφ3φ2

2r2

− iz
r f−21(0)

y
rf−21(rc) −x

r f−21(rc) −iωφ1
iωzφ2

3
2r2 0 iωzφ3φ1

2r2

− izφ3

2r2
yγφ3

2r2 −xγφ3

2r2 0 iωzφ3φ2

2r2 − iωzφ3φ1

2r2 0




,

(38)

with

f±ij (rc) =
( γ

2r
φi ± ωφj

)
,

γ =
(
1− rc

r

)
,

e−σ̄ =
e−σ

c2
1

= ε2e−σ . (39)

This defines a Poisson structure onM4, but it could also be viewed as a Poisson structure
on the 6-dimensional space defined by φ2

1 + φ2
2 = φ2

3 which admits M4 as symplectic leaf.
As a consistency check, the interested reader may verify that relation (26) is indeed fulfilled
(on the 4-dimensional submanifoldM4), and that the Jacobi identity holds as well.

2.3 Star product

So far, we have worked only in the semi-classical limit. In order to see some effects of the
space-time quantization, we may for instance compute the next-to-leading order commu-
tation relations. For this purpose, recall the Darboux coordinates xµ

D = {tS ,Hts, ϕ,Hϕ}
we derived in (35). Since in these coordinates the Poisson structure θµν (of the 4 dim.
submanifoldM4) is constant, we can easily define a Moyal-type star product [3, 4] as

(g ? h)(xD) = g(xD)e−
i
2

“←−
∂ µθµν

D

−→
∂ ν

”
h(xD) , (40)
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with

θµν
D = ε




0 i 0 0
−i 0 0 0
0 0 0 1
0 0 −1 0


 , (41)

where ε = 1/c1 � 1 denotes the expansion parameter. In order to derive a star prod-
uct in terms of the Cartesian coordinates xµ = {t, x, y, z}, all we need is the coordinate
transformation (76) of Appendix B leading to

(g ? h)(x) = g(x) exp

[
iε

2

((
←−
∂ t

irczeσ̄

r(r − rc)
+
←−
∂ zie

σ̄

)
∧
−→
∂ t

+
((←−

∂ t −
←−
∂ z

z

r

) rce
σ̄

r2
+
(←−

∂ xx +
←−
∂ yy

) 1
x2 + y2

)
∧
(
x
−→
∂ y − y

−→
∂ x

))]
h(x) ,

(42)

where the wedge stands for “antisymmetrized”, and when considering the expansion one
must take care with the sequence of operators and the side they act on (left or right). One
can then compute next-to-leading order contributions to the commutation relations (38).
Some of the relations can be computed to all orders3, i.e.

[t ?, z] = εeσ̄ , [x ?, y] = iε ,

[t ?, φ3] = −εeσ̄ zφ3

2r2
, [z ?, φ3] = 0 , (43)

while the others receive corrections — see Eqns. (78)-(83) in Appendix B for the full
expressions. Hence, also the embedding constraint φ2

1 + φ2
2 = φ2

3 is modified under the star
product, i.e. we have

1
2

[φ1 + iφ2
?, φ1 − iφ2]+ = φ1 ? φ1 + φ2 ? φ2

= φ2
3 + ε2φ2

3

ω2e2σ̄

8r2

(
1− 3

eσ̄z2

r2

)
+O

(
ε4
)

, (44)

while φ3 ? φ3 = φ2
3 to all orders. This could be interpreted as non-commutative correction

to the embedding geometry.

3 The Reissner-Nordström geometry

In this section, we continue by presenting the semi-classical quantization of another geom-
etry: the Reissner-Nordström (RN) geometry.

3It is also interesting to note, that the quantities {z, φ3, Hϑ2}, where

Hϕ = 1
2
x+x− = 1

2
(x2 + y2) = 1

4
[x+

?, x−]+ , x± = x ± iy ,

commute with each other to all orders in ε.
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3.1 Embedding of the geometry

We start by considering the usual RN metric in spherical coordinates xµ = {t, r, ϑ, ϕ}:

ds2 = −
(

1− 2m
r

+
q2

r2

)
dt̃2 +

1(
1− 2m

r + q2

r2

)dr2 + r2dΩ , (45)

where m denotes the mass and q is the charge of the black hole. This geometry has two
concentric horizons at

rh =
(
m±

√
m2 − q2

)
, (46)

and in the following, we assume that q2 < m2. In order to transform this metric into
coordinates which are similar to Eddington-Finkelstein, we consider radial null geodesics.
These are given by

0 = −
(

1− 2m
r

+
q2

r2

)

dt̃2 − 1

(
1− 2m

r −
q2

r2

)2 dr2




≡ −
(

1− 2m
r

+
q2

r2

)(
dt̃2 − (dr∗)2

)
, (47)

defining the tortoise-like coordinate r∗. The in and outgoing geodesics are V = t̃ + r∗ and
U = t̃− r∗. Explicitly, we have

r∗ = r + m ln
∣∣r2 − 2mr + q2

∣∣+ 2m2 − q2

2
√

m2 − q2
ln

∣∣∣∣∣

√
m2 − q2 − (r −m)√
m2 − q2 + (r −m)

∣∣∣∣∣ . (48)

As in the Schwarzschild case, we use this coordinate to shift the time-coordinate according
to

t = t̃ + (r∗ − r) , (49)

and arrive at the transformed RN metric

ds2 = −
(

1− 2m
r

+
q2

r2

)
dt2 + 2

(
2m
r
− q2

r2

)
dtdr +

(
1 +

2m
r
− q2

r2

)
dr2 + r2dΩ . (50)

Observe, that the metric (50) has exactly the same form as the Eddington-Finkelstein metric
(11) of Schwarzschild geometry, but with the replacement

rc

r
→ 2m

r
− q2

r2
. (51)

Hence, motivated by the Schwarzschild geometry case, we can use the 10-dimensional em-
beddingM1,3 ↪→ R4,6 with the additional coordinates φi given by

φ1 + iφ2 = φ3e
iω(t+r) , φ3 =

1
ω

√
2m
r

,

φ4 + iφ5 = φ6e
iω(t+r) , φ6 =

q

ωr
. (52)
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Note that φ3, φ4 and φ5 are time-like coordinates, i.e. we consider the background metric

ηab = diag(−,+,+,+,+,+,−,−,−,+) . (53)

Like in the previous case, ω does not enter the induced metric (50), but is hidden in the extra
dimensions φi. For r → ∞, the φi become infinitesimally small and hence asymptotically,
the four dimensional subspace becomes flat Minkowski space-time.

A general remark on these embeddings and the signature of RD is in order. As dis-
cussed in [9], 10-dimensional embedding spaces R10 are strongly preferred from the point
of view of quantization, and indeed it is known [12] that all 4-dimensional analytic metrics
can be (locally) realized as embeddings in R10 with suitable signature [12]. Clearly, our
embedding (18) of the Schwarzschild geometry in R2,5 can be extended to R4,6 which is
used for the Reissner-Nordström case. Nevertheless, one may question whether all relevant
4-dimensional geometries can be embedded in a given R10 with fixed signature. However,
we emphasize that it is enough to embed physically relevant geometries as realized in nature,
rather than all conceivable 4-dimensional geometries. Moreover, the above embeddings are
of course not unique, even with the additional requirement of being asymptotically trivial.
For example, it is easy to find an embedding of the Reissner-Nordström geometry in R2,5

similar as in the Schwarzschild case up to the inner horizon (46). In “real” black holes this
inner horizon is presumably extremely small as m� q, so that other effects (non-commuta-
tive resp. quantum effects, corrections to the Ricci-flat geometry, deviations from θµν being
self-dual, etc.) are expected to become important and shed a different light on this issue.
In view of the examples presented in this paper, it is certainly plausible that the present
setting provides enough freedom to accommodate all physically relevant geometries up to
the required precision.

3.2 Symplectic form

A self-dual symplectic form Θ can be computed in the same way as in the Schwarzschild
case leading to metric compatible Darboux coordinates xµ

D = {Ht̃, t̃, Hϕ, ϕ} with

Ht̃ = rγ cos ϑ = zγ , Hϕ = α
r2

2
sin2 ϑ = α

x2 + y2

2
,

Θ = idHt̃ ∧ dt̃ + dHϕ ∧ ϕ ,

e−σ̄ = γ sin2 ϑ + α2 cos2 ϑ = γ

(
1− q2z2

r4

)
+ αη

z2

r2
,

γ =
(

1− 2m
r

+
q2

r2

)
, α =

(
1− q2

r2

)
, η = 2

(
m

r
− q2

r2

)
, (54)

and the RN metric in Darboux coordinates reads

ds2 = −γdt̃2 +
eσ̄

γ
dH2

t̃
+ r2 sin2 ϑdϕ2 +

eσ̄

r2 sin2 ϑ
dH2

ϕ , (55)

a form similar to the according Schwarzschild metric (36). In the limit q → 0 these ex-
pressions reduce to those in the Schwarzschild case. Furthermore, one can easily check that
?Θ = iΘ and Gµν = gµν .
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3.3 Star product

A Moyal type star product can easily be defined in Darboux coordinates as

(g ? h)(xD) = g(xD)e−
i
2

“←−
∂ µθµν

D

−→
∂ ν

”
h(xD) , (56)

with

θµν
D = ε




0 i 0 0
−i 0 0 0
0 0 0 1
0 0 −1 0


 , ε ∈ R . (57)

Transforming these Darboux coordinates back to the Cartesian ones, where

t = t̃ + (r∗ − r) , r2 = x2 + y2 + z2 , (58)

we eventually find

∂t = ∂t̃ , ∂ϕ = −y∂x + x∂y , (59a)

and

∂Ht̃
= eσ̄

[
α

z

r

(
1
γ
− 1
)

∂t +
(

1− q2z2

r4

)
∂z −

q2z

r4
(x∂x + y∂y)

]
,

∂Hϕ =
eσ̄

r

[
(γ − 1) ∂t − η

z

r
∂z

]
+

eσ̄−ς

x2 + y2
(x∂x + y∂y) ,

e−ς =
(

γ + η
z2

r2

)
, (59b)

(cf. the abbreviations defined in Eqn. (54)). The star product in Cartesian coordinates
hence reads

(g ? h)(x) = g(x) exp

[
iε

2

(
i
←−
∂ Ht̃
∧
−→
∂ t +

←−
∂ Hϕ ∧

−→
∂ ϕ

)]
h(x) , (60)

with Eqn. (59a) and Eqn. (59b), where once more the wedge stands for “antisymmetrized”,
and when considering the expansion one must take care with the sequence of operators and
the side they act on (left or right). The first order results for the star commutators between
the 10-dimensional embedding coordinates are given by Eqns. (61):

−i [xµ ?, xν ] ≈ θµν = εeσ̄




0 −(1−γ)y
r + iq2xz

r4
(1−γ)x

r + iq2yz
r4 −iβ

(1−γ)y
r 0 e−ς −yzη

r2

−(1−γ)x
r −e−ς 0 xzη

r2

iβ yzη
r2

−xzη
r2 0


, (61a)

− i [φi
?, xµ] ≈ εeσ̄




−izαf+
12( 1

2)
r

yf+
12( γ

2 )
r − iq2xzωφ2

r4

−xf+
12( γ

2 )
r − iq2yzωφ2

r4 iωφ2β
−izαf−

21( 1
2)

r

yf−
21( γ

2 )
r + iq2xzωφ1

r4

−xf−
21( γ

2 )
r + iq2yzωφ1

r4 −iωφ1β
−izφ3α

2r2
yγφ3

2r2
−xγφ3

2r2 0
−izαf+

45(1)
r

yf+
45(γ)
r − iq2xzωφ5

r4

−xf+
45(γ)
r − iq2yzωφ5

r4 iωφ5β
−izαf−

54(1)
r

yf−
54(γ)
r + iq2xzωφ4

r4

−xf−
54(γ)
r + iq2yzωφ4

r4 −iωφ4β
−izφ6α

r2
yγφ6

r2
−xγφ6

r2 0




,

(61b)
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− i [φi
?, φj ] ≈ εeσ̄




0 −iωzφ2
3α

2r2
−iωzφ3φ2α

2r2
−iωzφ1φ5α

2r2

−iωzαgφ

2r2
−iωzφ3φ5α

r2

iωzφ2
3α

2r2 0 iωzφ3φ1α
2r2

−iωzαgφ

2r2
iωzφ2φ4α

2r2
iωzφ3φ4α

r2

iωzφ3φ2α
2r2

−iωzφ3φ1α
2r2 0 iωzφ3φ5α

2r2 − iωzφ3φ4α
2r2 0

iωzφ1φ5α
2r2

iωzαgφ

2r2
−iωzφ3φ5α

2r2 0 −iωzφ2
6α

r2
−iωzφ5φ6α

r2

iωzαgφ

2r2
−iωzφ2φ4α

2r2
iωzφ3φ4α

2r2

iωzφ2
6α

r2 0 iωzφ4φ6α
r2

iωzφ3φ5α
r2

−iωzφ3φ4α
r2 0 iωzφ5φ6α

r2
−iωzφ4φ6α

r2 0




,

(61c)

with

f±ij (Y ) =
(

Y

r
φi ± ωφj

)
, β =

(
1− q2z2

r4

)
,

gφ = (φ3φ6 + φ1φ5) = (φ3φ6 + φ2φ4) , (61d)

and the abbreviations defined in Eqn. (54). Although some of these commutators are exact
to all orders, i.e.

[z ?, φ3] = [z ?, φ6] = [φ3
?, φ6] = 0 , [t ?, z] = −iεeσβ ,

[t ?, φ3] = iεeσ̄ zφ3α

2r2
, [t ?, φ6] = iεeσ̄ zφ6α

r2
, (62)

higher order corrections in other commutators and relations appear as in the Schwarzschild
case above. For example

φ1 ? φ1 + φ2 ? φ2 6= φ3 ? φ3 ,

φ4 ? φ4 + φ5 ? φ5 6= φ6 ? φ6 , (63)

which again could be interpreted as non-commutative correction to the embedding geometry.

4 Discussion and conclusion

In this paper, we have provided explicit realizations of the Schwarzschild and the Reissner-
Nordstöm geometry as non-commutative spaces in the framework of matrix models. Our
construction is based on suitable embeddings of these classical geometries M4 ⊂ RD

(“branes”) in higher-dimensional flat spaces. These 4-dimensional branes are equipped
with certain self-dual symplectic structures, which define the non-commutative form of
these spaces via a star product. These embeddings and the corresponding symplectic struc-
ture are chosen such that they are asymptotically constant. To be more precise, for r →∞
they reduce to the usual Groenewold-Moyal quantum plane which is trivially embedded in
RD. At the semi-classical level, the central singularity is reflected by the fact that the em-
bedding escapes to infinity. Non-commutative effects are expected to modify this behavior,
which is however not addressed in the present paper.

The requirement of asymptotic triviality is not satisfied by the standard embeddings e.g.
of the Schwarzschild geometry in the literature [14, 15, 16]. This requirement is strongly
suggested by the matrix model framework, because the effective action may contain terms
which depend on the embedding ofM⊂ RD and not only on its intrinsic geometry. In fact,
flat Groenewold-Moyal quantum planes are always solutions of this class of matrix models,
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independent of e.g. vacuum energy contributions. Asymptotic triviality is also natural since
we want to consider our solution as a perturbation of some larger cosmological context
through a localized mass. In other words, the embedding presented here should naturally
generalize to many-particle configurations.

Another important aspect is that e−σ, which essentially sets the scale of non-commu-
tativity, is also asymptotically constant and non-vanishing. This must be so because e−σ

determines the strength of the non-Abelian gauge coupling in the matrix model [25]. We
found that gµν = Gµν (i.e. the embedding metric coincides with the effective metric, which
is certainly very natural) is indeed compatible with asymptotically constant θµν and e−σ.
However, e−σ becomes non-trivial as one approaches the horizon. In fact, it turns out to
vanish on a circle on the horizon, where the “would-be U(1) gauge fields” corresponding to
θ−1
µν vanish. This result, if taken literally, is somewhat problematic from the physics point of

view: if θµν is really a rigid condensate determined by its asymptotics at infinity, then the
rotation on the earth with respect to such a background would lead to small variations of
the gauge coupling constant during a revolution (however other quantities may also depend
on e−σ and lead to cancellations of such an effect). There are stringent bounds on the
variations of the fine-structure constants [26], which might exclude such an effect. If so, this
would not rule out the framework, but it would strongly support the idea that the Poisson
structure θµν should be integrated out resp. averaged over, rather than being a large-scale
physical condensate. This is indeed very natural, since some of the degrees of freedom in θµν

essentially decouple from the other fields [9]. The effective action would then only depend
on a single effective metric Gµν . This is a very attractive possibility which will be pursued
elsewhere.

We also remind the reader that the appropriate equations governing θµν and therefore
e−σ depend on the precise form of the action. Gµν = gµν is certainly natural and appropriate
for Yang-Mills models, but was simply assumed here; this will be clarified in a forthcoming
paper [27]. There are a lot of other obvious issues arising from our construction which
deserve further studies, and the present paper should be seen as first step of a more general
line of investigation. In any case, we have shown how realistic gravity can arise within this
class of matrix models, in a very explicit and accessible manner. This should be enough
motivation for further work.
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Appendix A: Derivation of the symplectic form Eqn. (33)

Considering Eqn. (30) we can make the additional ansatz that Θ is invariant under the
Killing vector fields, i.e. LVtsΘ = 0, and moreover LVts? = ?LVts . This implies dE = 0 =
LVtsE, and together with LVϕE = 0 we obtain

E = Er(r, ϑ)dr + Eϑ(r, ϑ)dϑ = dχE(r, ϑ) . (64)
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Similarly, LVϕΘ = 0 implies ΘB = B ∧ dϕ with

B = Brdϑ + Bϑdr = dχB(r, ϑ) . (65)

Now we need to work out

?Θ =
1

2
√
|g|

gαα′gββ′εα′β′µνθ−1
µν dxα ∧ dxβ , (66)

where in Schwarzschild coordinates

gtt = (1− rc

r
), grr = (1− rc

r
)−1 ,

gϑϑ = r2, gϕϕ = r2 sin2 ϑ,
√
|g| = r2 sinϑ . (67)

So if we define

ΘB := ?ΘE = ?(Erdr + Eϑdϑ) ∧ dt

=
1

r2 sinϑ

(
r4 sin2 ϑErdϑdϕ− r2(1− rc

r
)−1 sin2 ϑEϑdrdϕ

)

= sinϑ
(
r2Erdϑ− (1− rc

r
)−1Eϑdr

)
∧ dϕ

= (Brdϑ + Bϑdr) ∧ dϕ , (68)

and if that is closed, then Θ = iΘE + ?ΘE is self-dual. Explicitly, for

E = d(f(r) cos ϑ) = f ′ cos ϑdr − f sinϑdϑ = Erdr + Eϑdϑ (69)

we need

0 = d
(
r2Er sinϑdϑ− (1− rc

r
)−1Eϑ sinϑdr

)

= d
(
r2f ′ sinϑ cos ϑdϑ + f(1− rc

r
)−1 sin2 ϑdr

)

= ∂r(r2f ′) sinϑ cos ϑdr ∧ dϑ + 2f(1− rc

r
)−1 sinϑ cos ϑdϑ ∧ dr , (70)

so

∂r(r2f ′) = 2f(1− rc

r
)−1 ,

r2f ′′ + 2rf ′ − 2f(1− rc

r
)−1 = 0 , (71)

which has the solution

f(r) = c1r(1−
rc

r
) + c2

1
r2
c

(
1− rc

2r
+ (

r

rc
− 1) ln(1− rc

r
)
)

. (72)

For c2 = 0 we get Eqn. (33) which has the desired asymptotics as an asymptotically constant
external field. Then

√
|θ−1| = Pfaff(θ−1

µν ) =
1
8
εµνρσθ−1

µν θ−1
ρσ

= (θ−1
rt θ−1

ϑϕ − θ−1
ϑt θ−1

rϕ )

= (ErBr −EϑBϑ)

=
(
f ′2r2 cos2 ϑ sinϑ + f2 sin3 ϑ(1− rc

r
)−1
)

= c2
1r

2 sinϑ
(
1− sin2 ϑ

rc

r

)
, (73)
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which yields (34).

Appendix B: Commutation relations for Schwarzschild
geometry

From Eqn. (35) we can immediately read off θ−1
µν in Darboux coordinates, and its inverse

leads to the Poisson brackets

{xµ
D, xν

D} = ε




0 i 0 0
−i 0 0 0
0 0 0 1
0 0 −1 0


 , (74)

where ε = 1/c1. Using the relations

Hts = rγ cos ϑ = z
(
1− rc

r

)
,

Hϕ =
1
2
r2 sin2 ϑ =

1
2
(
x2 + y2

)
,

tS = t− rc ln
∣∣∣∣
r

rc
− 1
∣∣∣∣ ,

r =
√

x2 + y2 + z2 , (75)

we transform the set of coordinates to {Hts, tS ,Hϕ, ϕ} → {t, x, y, z}, and get

∂Hts = eσ̄

(
rcz

r (r − rc)
∂t + ∂z

)
,

∂tS = ∂t ,

∂Hϕ = eσ̄
( rc

r2
∂t −

rcz

r3
∂z

)
+

1
x2 + y2

(x∂x + y∂y) ,

∂ϕ = −y∂x + x∂y , (76)

where e−σ̄ = εe−σ is the Jacobian determinant of the transformation. We hence arrive at
the following Poisson brackets in terms of the Cartesian coordinates xµ = {t, x, y, z}:

{xµ, xν} = εeσ̄




0 − rcy
r2

rcx
r2 −i

rcy
r2 0 e−σ̄ − rcyz

r3

− rcx
r2 −e−σ̄ 0 rcxz

r3

i rcyz
r3 − rcxz

r3 0


 . (77)

Using these, one easily works out the remaining Poisson brackets with the embedding func-
tions φi of Eqn. (17), namely {xµ, φi(x)} and {φi(x), φj(x)}, leading finally to (38).
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Next-to-leading order commutation relations: To third order in the expansion pa-
rameter ε one finds the star commutators

[t ?, x] = −iε
rce

σ̄

r2
y − ε3yFtxy +O

(
ε5
)

,

[t ?, y] = iε
rce

σ̄

r2
x + ε3xFtxy +O

(
ε5
)

,

[t ?, z] = εeσ̄ ,

[x ?, y] = iε ,

[x ?, z] = −iεy
rczeσ̄

r3
− ε3yFzxy +O

(
ε5
)

,

[y ?, z] = −iεx
rczeσ̄

r3
+ ε3xFzxy +O

(
ε5
)

, (78)

with the abbreviations

Ftxy =
rce

5σ̄

24r14

(
γ2r6(3r2

c − 9rcr + 8r2)− γrcr
4(6γrc + 17r)z2

+ r2
c (3r

2
c + 3rcr + 2r2)z4

)
,

Fzxy =
rcze5σ̄

8r15

(
γ2r6(r2

c − 4rcr + 5r2) + 2γ(γ2 − 3)rcr
5z2 + r4

cz
4

)
. (79)

Notice, that some expressions (i.e. the ones where O (εn) is omitted) are exact to all orders4.
Furthermore, we find for the embedding functions φi to third order in ε:

[t ?, φ1] = −εeσ̄ z

r
f+
12(0) +O

(
ε5
)

= −εeσ̄ z

r

(
φ1

2r
+ ωφ2

)
+ ε3φ2Ftφ12 +O

(
ε5
)

,

[t ?, φ2] = −εeσ̄ z

r
f−21(0) +O

(
ε5
)

= −εeσ̄ z

r

(
φ2

2r
− ωφ1

)
− ε3φ1Ftφ12 +O

(
ε5
)

,

[t ?, φ3] = −εeσ̄ zφ3

2r2
,

[x ?, φ1] = −iεeσ̄ y

r
f+
12(rc) + ε3yFxy(φ1, φ2) +O

(
ε5
)

,

[x ?, φ2] = −iεeσ̄ y

r
f−21(rc) + ε3yFxy(−φ2, φ1) +O

(
ε5
)

,

[x ?, φ3] = −iεeσ̄ yγφ3

2r2
+ ε3yFφ3xy +O

(
ε5
)

,

[y ?, φ1] = iεeσ̄ x

r
f+
12(rc)− ε3xFxy(φ1, φ2) +O

(
ε5
)

,

[y ?, φ2] = iεeσ̄ x

r
f−21(rc)− ε3xFxy(−φ2, φ1) +O

(
ε5
)

,

[y ?, φ3] = iεeσ̄ xγφ3

2r2
− ε3xFφ3xy +O

(
ε5
)

,

4However, while this is the case for the commutator [x ?, y] = iε, the according anticommutator does in
fact have higher order contributions, i.e.

[x ?, y]+ = 2xy − xy

„
ε2

(x2 + y2)2
− ε4

4(x2 + y2)4

«
+ O

`
ε6

´
.
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[z ?, φ1] = εeσ̄ωφ2 + ε3φ2Fzφ12 +O
(
ε5
)

,

[z ?, φ2] = −εeσ̄ωφ1 − ε3φ1Fzφ12 +O
(
ε5
)

,

[z ?, φ3] = 0 , (80)

with

Ftφ12 =
rczω3e2σ̄

24γ3r6

(
27e3σ̄(z2 + r2γ(1 + γ))− 6γr2 + eσ̄(3(7 + γ(9 + 5γ))r2 + 2z2)

− 3e2σ̄
(
(9 + 2γ(8 + 7γ))r2 + 7z2

) )
,

Fφ3xy = ie5σ̄ γφ3

64r10

(
15γ4r4 − 2γ (8 + γ (9 + γ(15γ − 32))) r2z2

+ (1− γ)2 (20 + γ(15γ − 34)) z4
)

,

Fzφ12 =
ω3e3σ̄

8r4
(eσ̄ − 1)

(
(9eσ̄ − 4)z2 − r2

)
, (81)

and

Fxy(φi, φj) = − ie5σ̄

192r14

(
8e−2σ̄ω3φjr

11 − 12ω2φir
3
[
(rc − 3r)γ2r6 + 2r2

cz
2γr3 + r2

c (rc + 3r)z4
]

− 2ωφjr
4
[(

15r2
c − 40rrc + 33r2

)
γ2r3 + 2rc

(
15r2

c − 16rrc − 33r2
)
z2γ + r2

c

(
15r2

c + 8rrc + 9r2
)

z4

r3

]

− 3γφi

[
15γ4r8 + 2rc

(
15r2

c − 13rrc − 10r2
)
z2γr3 + r2

c

(
15r2

c + 4rrc + r2
)
z4

] )
. (82)

Finally we also have

[φ1
?, φ2] = εeσ̄ ωzφ2

3

2r2
+ ε3e3σ̄ ω3zφ2

3

16r6

(
4eσ̄(r2 + z2)− r2 − 9z2e2σ̄

)
+O

(
ε5
)
,

[φ1
?, φ3] = εeσ̄ ωzφ3φ2

2r2
+ ε3φ2Fφ312 +O

(
ε5
)

,

[φ2
?, φ3] = −εeσ̄ ωzφ3φ1

2r2
− ε3φ1Fφ312 +O

(
ε5
)

, (83)

with

Fφ312 = e3σ̄ ω3zφ3

64r6

(
(1− 22eσ̄ + 36e2σ̄)(x2 + y2)− (7− 38eσ̄ + 36e2σ̄)r2

)
. (84)
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