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Background and introduction

It has been argued in numerous publications that combining the basic aspects of Quantum Mechanics and General Relativity strongly suggests a quantum structure of space-time itself near the Planck scale -see for example Ref. [START_REF] Doplicher | The Quantum structure of space-time at the Planck scale and quantum fields[END_REF]. One approach to realize this idea is to replace classical space-time by a quantized, or non-commutative (NC), space-time. Coordinate functions x µ are promoted to Hermitian operators X µ acting on a Hilbert space H, which satisfy certain non-trivial commutation relations [X µ , X ν ] = iθ µν .

(1)

In the simplest case one may consider a Heisenberg algebra, corresponding to constant θ µν which commutes with the X µ . This has been studied extensively in the past (cf. [START_REF] Douglas | Noncommutative field theory[END_REF][START_REF] Szabo | Quantum Field Theory on Noncommutative Spaces[END_REF][START_REF] Rivasseau | Non-commutative renormalization[END_REF] for a review of such "non-commutative" field theories). However, in the context of gravity it seems essential that this commutator θ µν becomes dynamical. Indeed, semi-classically it determines a Poisson structure on space-time, as we will discuss below. It has been shown previously [START_REF] Steinacker | Emergent Gravity from Noncommutative Gauge Theory[END_REF][START_REF] Grosse | Emergent Gravity, Matrix Models and UV/IR Mixing[END_REF][START_REF] Klammer | Fermions and Emergent Noncommutative Gravity[END_REF] that matrix models of Yang-Mills type naturally realize this idea, and incorporate at least some version of (quantized) gravity; see Ref. [START_REF] Steinacker | Emergent Geometry and Gravity from Matrix Models: An Introduction[END_REF] for a review. Hence we start our discussion with the matrix model action

S Y M = -Tr[X a , X b ][X c , X d ]η ac η bd , (2) 
where η ab denotes the (flat) metric of a D dimensional embedding space, with arbitrary signature. The "covariant coordinates" X a are Hermitian matrices, resp. operators acting on a Hilbert space H. It was shown in Ref. [START_REF] Steinacker | Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models[END_REF] that if one considers some of the coordinates to be functions of the remaining ones such that X a ∼ x a = (x µ , φ i (x µ )) in the semi-classical limit, one can interpret the x a as defining the embedding of a 2n-dimensional submanifold M 2n → R D equipped with a non-trivial induced metric

g µν (x) = ∂ µ x a ∂ ν x b η ab , (3) 
via pull-back of η ab . In the present case we consider this submanifold to be a four dimensional space-time M 4 , and following [START_REF] Steinacker | Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models[END_REF] we can interpret [X µ , X ν ] ∼ iθ µν (x) [START_REF] Szabo | Quantum Field Theory on Noncommutative Spaces[END_REF] as a Poisson structure on M 4 . Furthermore, we assume that θ µν is non-degenerate, so that its inverse matrix θ -1 µν defines a symplectic form Θ = θ -1 µν dx µ ∧ dx ν on M 4 . The essential point is now that the Poisson structure θ µν and the induced metric g µν combine to the effective metric

G µν = e -σ θ µρ θ νσ g ρσ , e -σ ≡ det θ -1 µν det G ρσ . (5) 
It is, in fact, this effective metric G µν which is "seen" by matter [START_REF] Steinacker | Emergent Gravity from Noncommutative Gauge Theory[END_REF] (i.e. scalar fields, gauge fields, and fermions possibly up to conformal factors), and which therefore must be interpreted in terms of gravity. In the present work, we restrict ourselves to the special case of G µν = g µν in 4 dimensional space-time M 4 . It is easy to see that this is equivalent to θ -1 µν being (anti)self-dual, by which in the case of Minkowski signature we mean g Θ = ±iΘ. This requires that θ µν is complexified, as discussed in Section 2.2. The Yang-Mills action [START_REF] Doplicher | The Quantum structure of space-time at the Planck scale and quantum fields[END_REF] then reduces in the semi-classical limit to

S Y M = -Tr[X a , X b ][X c , X d ]η ac η bd ∼ 4 √ g , (6) 
which in General Relativity (GR) is interpreted as cosmological constant. We also recall that (2) leads to the following equation of motion for θ µν

∇ η G (e σ θ -1 ην ) = G ρν θ ρµ e -σ ∂ µ η , η ≡ e σ 4 G µν g µν = G=g e σ . (7) 
This equation holds identically for G µν = g µν i.e. for self-dual θ µν , and is therefore not restricted to the model [START_REF] Doplicher | The Quantum structure of space-time at the Planck scale and quantum fields[END_REF].

Einstein-Hilbert action. In a previous paper [START_REF] Blaschke | Curvature and Gravity Actions for Matrix Models[END_REF], we have shown that the following combination of higher order terms in the matrix model semi-classically lead to the Einstein-Hilbert type of action:

S E-H = Tr 2T ab X a X b -T ab H ab ∼ -2 √ g e 2σ R[g] , (8) 
where

T ab = 1 2 [[X a , X c ], [X b , X c ]] + - 1 4 η ab [X c , X d ][X c , X d ] , H ab = 1 2 [[X a , X c ], [X b , X c ]] + , Y ≡ [X a , [X a , Y ]] . (9) 
Latin indices are pulled down with the (flat) background metric η ab (i.e. X a = η ab X b ), and R[g] denotes the Ricci scalar with respect to the metric G = g of the submanifold M 4 . Such actions can be added by hand, but they will also arise upon quantization of the Yang-Mills matrix model [START_REF] Doplicher | The Quantum structure of space-time at the Planck scale and quantum fields[END_REF]. It was argued in [START_REF] Blaschke | Curvature and Gravity Actions for Matrix Models[END_REF] that the factor e 2σ sets the scale and introduces the gravitational constant G.

Under reasonable conditions (such as global hyperbolicity), every 4-dimensional manifold can be equipped with a self-dual (complexified) symplectic form Θ. Then the classical embedding theorems [START_REF] Clarke | On the Global Isometric Embedding of Pseudo-Riemannian Manifolds[END_REF][START_REF] Friedman | Local isometric embedding of Riemannian manifolds with indenite metric[END_REF] imply that one can realize every 4-dimensional geometry as semi-classical configuration in the matrix model with g µν = G µν . In the present paper, we illustrate this general fact by providing an explicit construction of the most important solution: the Schwarzschild geometry. Subsequently, we also construct Reissner-Nordström (RN) geometry by following the same steps.

There are several possible actions which extend (8) beyond the case g = G and which may imply different equations for θ µν and for e σ . We therefore restrict ourselves to the construction of geometries which are solutions to GR, equipped with self-dual θ µν . We do not check here in detail whether the above action (8) admits these spaces with self-dual θ µν as solutions. Indeed additional terms in the action should be expected, leading e.g. to a potential for σ and possibly to deviations from θ µν being self-dual. The point of this paper is not to present final answers but to illustrate how geometries such as Schwarzschild are expected to arise within this class of matrix models. In the same vein, we will also assume that the Yang-Mills resp. vacuum energy term ( 6) is negligible compared with the Einstein-Hilbert action [START_REF] Klammer | Fermions and Emergent Noncommutative Gravity[END_REF], thus setting the cosmological constant to zero. There are several intriguing hints that the role of vacuum energy in this framework may be different than in GR [START_REF] Steinacker | Emergent Geometry and Gravity from Matrix Models: An Introduction[END_REF].

Furthermore, we only consider the semi-classical limit of the matrix model in the present paper. Thus we will recover precisely the Schwarzschild geometry (resp. RN geometry), and the central singularity will be reflected by an embedding which escapes to infinity as one approaches the center. Of course, the main appeal for this framework compared with other descriptions of gravity is the fact that it goes beyond the classical concepts of geometry: Space-time is not put in by hand but emerges, realized as non-commutative space with an effective geometry, along with gauge fields and matter. Hence one should expect that noncommutative modifications become important as one approaches the singularity. However, this requires to go beyond the semi-classical approximations of this paper, which we will indicate by briefly discussing higher-order terms in the star product in Appendix B.

Finally, we want to emphasize that the actions under consideration are expected to arise upon quantization of Yang-Mills matrix models, such as the IKKT model [START_REF] Ishibashi | A large-N reduced model as superstring[END_REF]. In particular the latter model is a promising candidate for a quantum theory of fundamental interactions including gravity. Of course, much more work remains to be done in order to fully understand this class of models.

The Schwarzschild geometry

We now show how the most important solution of General Relativity can emerge from the class of extended matrix model action presented in the previous section: the Schwarzschild geometry. We will restrict ourselves to the semi-classical limit here, however a possible way to obtain higher-order corrections in θ µν is discussed in Appendix B.

Embedding of Schwarzschild geometry

Our construction involves two steps: 1) the choice of a suitable embedding M 4 ⊂ R D such that the induced geometry on M 4 given by g µν is the Schwarzschild metric, and

2) a suitable non-degenerate Poisson structure on M 4 which solves the e.o.m. ∇ µ θ -1 µν = 0 for self-dual symplectic form Θ.

Both steps are far from unique a priori. However, the freedom is considerably reduced by requiring that the solution should be a "local perturbation" of an asymptotically flat (or nearly flat) "cosmological" background. This is clear on physical grounds, having in mind the geometry near a star in some larger cosmological context: it must be possible to approximately "superimpose" our solution, allowing e.g. for systems of stars and galaxies in a natural way. This eliminates the well-known embeddings of the Schwarzschild geometry in the literature [START_REF] Kasner | Geometrical theorems on Einstein's cosmological equations[END_REF][START_REF]Completion and Embedding of the Schwarzschild Solution[END_REF][START_REF] Kerner | Approximate solutions in General Relativity via deformation of embeddings[END_REF], which are highly non-trivial for large r and cannot be superimposed in any obvious way. In fact we require that the embedding is asymptotically harmonic x a → 0 for r → ∞, in view of the fact that there may be terms in the matrix model which depend on the extrinsic geometry, and which typically single out such harmonic embeddings 1 .

Furthermore, we insist that θ µν is non-degenerate, and θ µν → const. = 0 as r → ∞. This is again motivated by the requirement that physics at large distances should not be affected by a localized mass. In particular, e σ defines essentially the scale of non-commutativity, and certainly enters in some way e.g. the physics of elementary particles (In fact, e σ determines the strength of the gauge coupling in the matrix model [START_REF] Steinacker | Emergent Gravity from Noncommutative Gauge Theory[END_REF][START_REF] Steinacker | Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models[END_REF]). Therefore, e σ should be asymptotically constant and non-vanishing. This is an important difference to previous proposals for a non-commutative Schwarzschild geometry (see in particular [START_REF] Schupp | Exact Black Hole Solutions in Noncommutative Gravity[END_REF][START_REF] Ohl | Symmetry Reduction in Twisted Noncommutative Gravity with Applications to Cosmology and Black Holes[END_REF] and references therein), where the Poisson structure is degenerate and/or not asymptotically constant. Hence θ µν will be viewed as some cosmological background field which is locally perturbed by a mass. Recall that such a background is essentially invisible, since there are no fields in the matrix model which are charged under the corresponding U (1). It enters the effective actions only through the gravitational metric G µν .

Note that these boundary conditions for θ µν are not in conflict with the idea that θ µν may be locally fluctuating and should perhaps be averaged over or integrated out. We will discuss this possibility further below.

In order to obtain an appropriate embedding, keeping in mind the conditions we have just discussed, we consider Eddington-Finkelstein coordinates and define:

t = t S + (r * -r) , r * = r + r c ln r r c -1 , (10) 
where t S denotes the usual Schwarzschild time, r c is the horizon of the Schwarzschild black hole and r * is the well-known tortoise coordinate. The metric in Eddington-Finkelstein coordinates {t, r, ϑ, ϕ} is

ds 2 = -1 - r c r dt 2 + 2r c r dtdr + 1 + r c r dr 2 + r 2 dΩ 2 (11) 
which is asymptotically flat for large r, and manifestly regular at the horizon r c . Thus, we only need to find a good embedding of this metric. To reproduce the mixed term, consider first

φ 1 + iφ 2 = h(r)e i(ωt+g(r)) (12) 
which satisfies

∂ t φ i ∂ t φ i = ω 2 h 2 , ∂ t φ i ∂ r φ i = ωg h 2 , ∂ r φ i ∂ r φ i = g 2 h 2 + h 2 . ( 13 
)
So we demand

ωg h 2 = r c r = ω 2 h 2 (14) 
which is satisfied for

h(r) = 1 ω r c r , g (r) = ωr . (15) 
Furthermore, since g 2 h 2 = ωg h 2 = rc r , we need to cancel the h 2 term in Eqn. ( 13) above. Hence, we need another coordinate

φ 3 = h(r), (16) 
with time-like embedding. So we have

φ 1 + iφ 2 = φ 3 e iω(t+r) , φ 3 = 1 ω r c r , (17) 
and the embedding of M 4 ⊂ R 7 is given by

x a =            t r cos ϕ sin ϑ r sin ϕ sin ϑ r cos ϑ 1 ω rc r cos (ω(t + r)) 1 ω rc r sin (ω(t + r)) 1 ω rc r            , (18) 
(i.e. we consider D = 7 in this example). Together with the background metric

η ab = diag(-, +, +, +, +, +, -) , (19) 
this induces precisely the Eddington-Finkelstein metric [START_REF] Clarke | On the Global Isometric Embedding of Pseudo-Riemannian Manifolds[END_REF] above. Before we proceed to determine the symplectic form, let us take a closer look at the properties of this embedding: First, notice that the ω (appearing in the φ i ) does not enter the effective four dimensional metric, i.e. it is "hidden" in the three extra dimensions. Furthermore, we must emphazise that φ 3 is an additional time-like direction. Asymptotically, i.e. for r → ∞, Eqn. [START_REF] Schupp | Exact Black Hole Solutions in Noncommutative Gravity[END_REF] describes flat four dimensional Minkowski space where the extra dimensions φ i ∼ 1 r become infinitesimally small. On the other hand, when one approaches the singularity of the Schwarzschild black hole at r = 0, these extra dimensions blow up and become arbitrarily large. In particular, note that then φ 3 should be interpreted as asymptotic time (which is unbounded), i.e.

T := φ 3 , r = r c 1 ω 2 T 2 , (20) 
so that

x a =     x 0 x i φ 1 + iφ 2 φ 3     =     t, r c 1 ω 2 T 2 (sin ϑ sin ϕ, sin ϑ cos ϕ, cos ϑ) T e iω(t+rc 1 ω 2 T 2 ) T     (21) 
for large T . This is a helicoid-like (cone-like) geometry in {T, t} with (increasing) radius T and t playing the role of the angle variable, times a contracting sphere of radius 1 T 2 . The geometry of the submanifold M 1,3 ⊂ R 2,5 is completely regular, and the central singularity is reflected by an embedding which escapes to infinity. Near this singularity, the geometry is effectively 2-dimensional. An illustration is given by Figure 1. Of course, quantum effects will play a major role near r = 0. This implies that the semi-classical approximation we are currently considering will break down in the vicinity of that region. We expect that these non-commutative effects will regularize the wouldbe singularity. For example, the contracting sphere of radius 1 T 2 may become fuzzy [START_REF] Madore | The fuzzy sphere[END_REF], so that for large T the present geometry could become effectively 2-dimensional with an extra-dimensional fuzzy sphere.

In order to understand the meaning of the extra dimensions φ i at large distances r → ∞ from the Schwarzschild black hole, it is instructive to consider the following modification resp. higher-dimensional extension of the Schwarzschild geometry. Consider the 6dimensional space R 4 × AdS2 ⊂ R 7 defined by

φ 2 1 + φ 2 2 -φ 2 3 = R 2 . ( 22 
)
Here the φ i describe an AdS 2 space embedded in R 3 , which can be parametrized as

φ 1 + iφ 2 = φ 2 3 + R 2 e iωu , φ 3 = φ 3 . ( 23 
)
The Schwarzschild manifold described above is then recovered by setting

u = t + r , φ 3 = 1 ω r c r , and R = 0 , (24) 
while R = 0 corresponds to a modification of the Schwarzschild geometry. The length element of AdS 2 ⊂ R 3 is given by

ds 2 = dφ 2 1 + dφ 2 2 -dφ 2 3 = ω 2 φ 2 3 + R 2 du 2 - R 2 φ 2 3 + R 2 dφ 2 3 . (25) 
Note that there is no contribution from the time-like coordinate dφ 2 3 for R = 0 since it is embedded in a null direction. The metric on AdS 2 then becomes degenerate and space-like, with very small radius as r → ∞. Hence, this extra AdS 2 can be interpreted as physical extra dimension which naturally becomes "invisible" for large r, i.e. far away from the Schwarzschild black hole. The point is that such an AdS 2 could arise naturally in matrix models similar to fuzzy spheres, and may play an interesting physical role, cf. [START_REF] Ho | Large N expansion from fuzzy AdS(2)[END_REF][START_REF] Alekseev | Brane dynamics in background fluxes and non-commutative geometry[END_REF][START_REF] Iso | Noncommutative gauge theory on fuzzy sphere from matrix model[END_REF][START_REF] Aschieri | Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking[END_REF].

Symplectic form

As mentioned in the introduction we consider the simple class of self-dual geometries where the effective metric G µν equals the induced metric g µν . Hence we need to find an (anti)selfdual symplectic form Θ so that

G µν = e σ θ µρ θ νσ g ρσ = g µν . ( 26 
)
At this point, we recall that

J η γ = e -σ/2 θ ηγ g γ γ ( 27 
) satisfies J 2 = -1 ⇔ Θ = ±iΘ ⇔ g µν = G µν , (28) 
so that we are dealing with an almost complex manifold. Moreover, the symplectic structure is necessarily complexified in a way which is determined by J 2 = -1. Thus the last relation specifies 2 the "real form" of θ µν .

Furthermore, we require Θ = θ -1 µν dx µ ∧ dx ν to lead to an asymptotically constant e -σ since, as mentioned previously, we would like to describe everything as a local perturbation of flat Moyal space. To be more specific, we demand lim r→∞ e -σ = const. = 0 .

(29)

In order to find such a symplectic form Θ, we consider the following: The Schwarzschild metric has two Killing vector fields V ts = ∂ t S and V ϕ = ∂ ϕ . Hence, in Schwarzschild coordinates this leads to the ansatz

Θ = iΘ E + Θ B = iE ∧ dt S + Θ B , E = i Vts Θ E = E r dr + E ϑ dϑ + E ϕ dϕ, Θ B = B r dϑ ∧ dϕ + B ϑ dr ∧ dϕ + B ϕ dϑ ∧ dr = Θ E , (30) 
which implements self-duality, i.e.

Θ = iΘ , (31) 
supplemented by the conditions

L Vts Θ = 0 , L Vϕ Θ = 0 . (32) 
A solution which satisfies the required asymptotics ( 29) is then given by

E = c 1 cos ϑdr -r(1 - r c r ) sin ϑdϑ = d(f (r) cos ϑ) , B = c 1 r 2 sin ϑ cos ϑdϑ + r sin 2 ϑdr = c 1 2 d(r 2 sin 2 ϑ) , Θ = iE ∧ dt S + B ∧ dϕ , with f (r) = c 1 r(1 - r c r ), f = c 1 = const. , (33) 
from which one finds

e -σ = c 2 1 1 - r c r sin 2 ϑ . (34) 
Details of the computation are given in Appendix A. This can be interpreted as a (complexified) electromagnetic field with asymptotically constant fields E, B pointing in the z direction, and e -σ is indeed asymptotically constant. Other solutions are of course obtained by acting with the rotation group on the asymptotic E resp. B field. Note in particular that we have obtained metric-compatible Darboux coordinates (resp. Hamiltonian reduction) x µ D = {H ts , t S , H ϕ , ϕ} corresponding to V ts , V ϕ where the symplectic form is constant:

Θ = ic 1 dH ts ∧ dt S + c 1 dH ϕ ∧ dϕ , = c 1 d (iH ts dt S + H ϕ dϕ) , H ts = r cos ϑ(1 - r c r ) , H ϕ = 1 2 r 2 sin 2 ϑ . (35) 
The Schwarzschild metric in Darboux coordinates reads

ds 2 = -1 - r c r dt 2 S + e σ 1 -rc r dH 2 ts + r 2 sin 2 ϑdϕ 2 + e σ r 2 sin 2 ϑ dH 2 ϕ , (36) 
with e σ = c 2 1 e σ = 1 -rc r sin 2 ϑ -1 . Notice that no dH ts dH ϕ -term appears, i.e. the two Darboux blocks do not mix. The relations to the Killing vector fields are:

E = c 1 dH ts = c 1 E µ dx µ = i Vts Θ , E µ = V ν ts θ -1 νµ , B = c 1 dH ϕ = c 1 B µ dx µ = i Vϕ Θ , B µ = V ν ϕ θ -1 νµ , (37) 
(cf. Eqn. (33) above). In order to obtain the Poisson brackets between the Cartesian matrix coordinates, we will transform t S to Eddington-Finkelstein time t and invert it so as to derive θ µν . Subsequently, we will extend the θ-matrix to the seven dimensional embedding space of Eqn. [START_REF] Schupp | Exact Black Hole Solutions in Noncommutative Gravity[END_REF] as that will provide us with the leading order commutator relations between the coordinates, i.e. [X a , X b ] ∼ iθ ab . As shown in Appendix B, this leads to the following semi-classical commutation relations for the 7-dimensional coordinates X a ∼ x a = {t, x, y, z, φ 1 , φ 2 , φ 3 }:

θ ab = e σ             0 -rcy r 2 rcx r 2 -i iz r f + 12 (0) iz r f - 21 (0) izφ 3 2r 2 rcy r 2 0 e -σ -rcyz r 3 -y r f + 12 (r c ) -y r f - 21 (r c ) -yγφ 3 2r 2 -rcx r 2 -e -σ 0 rcxz r 3 x r f + 12 (r c ) x r f - 21 (r c ) xγφ 3 2r 2 i rcyz r 3 -rcxz r 3 0 -iωφ 2 iωφ 1 0 -iz r f + 12 (0) y r f + 12 (r c ) -x r f + 12 (r c ) iωφ 2 0 - iωzφ 2 3 2r 2 -iωzφ 3 φ 2 2r 2 -iz r f - 21 (0) y r f - 21 (r c ) -x r f - 21 (r c ) -iωφ 1 iωzφ 2 3 2r 2 0 iωzφ 3 φ 1 2r 2 -izφ 3 2r 2 yγφ 3 2r 2 -xγφ 3 2r 2 0 iωzφ 3 φ 2 2r 2 -iωzφ 3 φ 1 2r 2 0             , (38) 
with

f ± ij (r c ) = γ 2r φ i ± ωφ j , γ = 1 - r c r , e -σ = e -σ c 2 1 = 2 e -σ . (39) 
This defines a Poisson structure on M 4 , but it could also be viewed as a Poisson structure on the 6-dimensional space defined by φ 2 1 + φ 2 2 = φ 2 3 which admits M 4 as symplectic leaf. As a consistency check, the interested reader may verify that relation ( 26) is indeed fulfilled (on the 4-dimensional submanifold M 4 ), and that the Jacobi identity holds as well.

Star product

So far, we have worked only in the semi-classical limit. In order to see some effects of the space-time quantization, we may for instance compute the next-to-leading order commutation relations. For this purpose, recall the Darboux coordinates x µ D = {t S , H ts , ϕ, H ϕ } we derived in (35). Since in these coordinates the Poisson structure θ µν (of the 4 dim. submanifold M 4 ) is constant, we can easily define a Moyal-type star product [START_REF] Douglas | Noncommutative field theory[END_REF][START_REF] Szabo | Quantum Field Theory on Noncommutative Spaces[END_REF] as

(g h)(x D ) = g(x D )e -i 2 " ← - ∂ µθ µν D -→ ∂ ν " h(x D ) , (40) 
with

θ µν D =     0 i 0 0 -i 0 0 0 0 0 0 1 0 0 -1 0     , (41) 
where = 1/c 1 1 denotes the expansion parameter. In order to derive a star product in terms of the Cartesian coordinates x µ = {t, x, y, z}, all we need is the coordinate transformation (76) of Appendix B leading to

(g h)(x) = g(x) exp i 2 ← - ∂ t ir c ze σ r(r -r c ) + ← - ∂ z ie σ ∧ -→ ∂ t + ← - ∂ t - ← - ∂ z z r r c e σ r 2 + ← - ∂ x x + ← - ∂ y y 1 x 2 + y 2 ∧ x - → ∂ y -y - → ∂ x h(x) , (42) 
where the wedge stands for "antisymmetrized", and when considering the expansion one must take care with the sequence of operators and the side they act on (left or right). One can then compute next-to-leading order contributions to the commutation relations (38). Some of the relations can be computed to all orders3 , i.e.

[t

, z] = e σ , [x , y] = i , [t , φ 3 ] = -e σ zφ 3 2r 2 , [z , φ 3 ] = 0 , (43) 
while the others receive corrections -see Eqns. ( 78)-(83) in Appendix B for the full expressions. Hence, also the embedding constraint φ 2 1 + φ 2 2 = φ 2 3 is modified under the star product, i.e. we have

1 2 [φ 1 + iφ 2 , φ 1 -iφ 2 ] + = φ 1 φ 1 + φ 2 φ 2 = φ 2 3 + 2 φ 2 3 ω 2 e 2σ 8r 2 1 -3 e σ z 2 r 2 + O 4 , (44) 
while φ 3 φ 3 = φ 2 3 to all orders. This could be interpreted as non-commutative correction to the embedding geometry.

The Reissner-Nordström geometry

In this section, we continue by presenting the semi-classical quantization of another geometry: the Reissner-Nordström (RN) geometry.

Embedding of the geometry

We start by considering the usual RN metric in spherical coordinates x µ = {t, r, ϑ, ϕ}:

ds 2 = -1 - 2m r + q 2 r 2 d t2 + 1 1 -2m r + q 2 r 2 dr 2 + r 2 dΩ , (45) 
where m denotes the mass and q is the charge of the black hole. This geometry has two concentric horizons at

r h = m ± m 2 -q 2 , ( 46 
)
and in the following, we assume that q 2 < m 2 . In order to transform this metric into coordinates which are similar to Eddington-Finkelstein, we consider radial null geodesics. These are given by

0 = -1 - 2m r + q 2 r 2   d t2 - 1 1 -2m r -q 2 r 2 2 dr 2    ≡ -1 - 2m r + q 2 r 2 d t2 -(dr * ) 2 , ( 47 
)
defining the tortoise-like coordinate r * . The in and outgoing geodesics are V = t + r * and U = t -r * . Explicitly, we have

r * = r + m ln r 2 -2mr + q 2 + 2m 2 -q 2 2 m 2 -q 2 ln m 2 -q 2 -(r -m) m 2 -q 2 + (r -m) . ( 48 
)
As in the Schwarzschild case, we use this coordinate to shift the time-coordinate according to

t = t + (r * -r) , (49) 
and arrive at the transformed RN metric

ds 2 = -1 - 2m r + q 2 r 2 dt 2 + 2 2m r - q 2 r 2 dtdr + 1 + 2m r - q 2 r 2 dr 2 + r 2 dΩ . (50)
Observe, that the metric (50) has exactly the same form as the Eddington-Finkelstein metric [START_REF] Clarke | On the Global Isometric Embedding of Pseudo-Riemannian Manifolds[END_REF] of Schwarzschild geometry, but with the replacement

r c r → 2m r - q 2 r 2 . ( 51 
)
Hence, motivated by the Schwarzschild geometry case, we can use the 10-dimensional embedding M 1,3 → R 4,6 with the additional coordinates φ i given by

φ 1 + iφ 2 = φ 3 e iω(t+r) , φ 3 = 1 ω 2m r , φ 4 + iφ 5 = φ 6 e iω(t+r) , φ 6 = q ωr . ( 52 
)
Note that φ 3 , φ 4 and φ 5 are time-like coordinates, i.e. we consider the background metric η ab = diag(-, +, +, +, +, +, -, -, -, +) .

(53)

Like in the previous case, ω does not enter the induced metric (50), but is hidden in the extra dimensions φ i . For r → ∞, the φ i become infinitesimally small and hence asymptotically, the four dimensional subspace becomes flat Minkowski space-time.

A general remark on these embeddings and the signature of R D is in order. As discussed in [START_REF] Steinacker | Emergent Geometry and Gravity from Matrix Models: An Introduction[END_REF], 10-dimensional embedding spaces R 10 are strongly preferred from the point of view of quantization, and indeed it is known [START_REF] Friedman | Local isometric embedding of Riemannian manifolds with indenite metric[END_REF] that all 4-dimensional analytic metrics can be (locally) realized as embeddings in R 10 with suitable signature [START_REF] Friedman | Local isometric embedding of Riemannian manifolds with indenite metric[END_REF]. Clearly, our embedding [START_REF] Schupp | Exact Black Hole Solutions in Noncommutative Gravity[END_REF] of the Schwarzschild geometry in R 2,5 can be extended to R 4,6 which is used for the Reissner-Nordström case. Nevertheless, one may question whether all relevant 4-dimensional geometries can be embedded in a given R 10 with fixed signature. However, we emphasize that it is enough to embed physically relevant geometries as realized in nature, rather than all conceivable 4-dimensional geometries. Moreover, the above embeddings are of course not unique, even with the additional requirement of being asymptotically trivial. For example, it is easy to find an embedding of the Reissner-Nordström geometry in R 2,5 similar as in the Schwarzschild case up to the inner horizon (46). In "real" black holes this inner horizon is presumably extremely small as m q, so that other effects (non-commutative resp. quantum effects, corrections to the Ricci-flat geometry, deviations from θ µν being self-dual, etc.) are expected to become important and shed a different light on this issue. In view of the examples presented in this paper, it is certainly plausible that the present setting provides enough freedom to accommodate all physically relevant geometries up to the required precision.

Symplectic form

A self-dual symplectic form Θ can be computed in the same way as in the Schwarzschild case leading to metric compatible Darboux coordinates x µ D = {H t, t, H ϕ , ϕ} with

H t = rγ cos ϑ = zγ , H ϕ = α r 2 2 sin 2 ϑ = α x 2 + y 2 2 , Θ = idH t ∧ d t + dH ϕ ∧ ϕ , e -σ = γ sin 2 ϑ + α 2 cos 2 ϑ = γ 1 - q 2 z 2 r 4 + αη z 2 r 2 , γ = 1 - 2m r + q 2 r 2 , α= 1 - q 2 r 2 , η = 2 m r - q 2 r 2 , (54) 
and the RN metric in Darboux coordinates reads

ds 2 = -γd t2 + e σ γ dH 2 t + r 2 sin 2 ϑdϕ 2 + e σ r 2 sin 2 ϑ dH 2 ϕ , (55) 
a form similar to the according Schwarzschild metric (36). In the limit q → 0 these expressions reduce to those in the Schwarzschild case. Furthermore, one can easily check that Θ = iΘ and G µν = g µν .

Star product

A Moyal type star product can easily be defined in Darboux coordinates as

(g h)(x D ) = g(x D )e -i 2 " ← - ∂ µθ µν D -→ ∂ ν " h(x D ) , (56) 
with

θ µν D =     0 i 0 0 -i 0 0 0 0 0 0 1 0 0 -1 0     , ∈ R . (57) 
Transforming these Darboux coordinates back to the Cartesian ones, where

t = t + (r * -r) , r 2 = x 2 + y 2 + z 2 , (58) 
we eventually find

∂ t = ∂ t , ∂ ϕ = -y∂ x + x∂ y , (59a) 
and

∂ H t = e σ α z r 1 γ -1 ∂ t + 1 - q 2 z 2 r 4 ∂ z - q 2 z r 4 (x∂ x + y∂ y ) , ∂ Hϕ = e σ r (γ -1) ∂ t -η z r ∂ z + e σ-ς x 2 + y 2 (x∂ x + y∂ y ) , e -ς = γ + η z 2 r 2 , (59b) 
(cf. the abbreviations defined in Eqn. ( 54)). The star product in Cartesian coordinates hence reads

(g h)(x) = g(x) exp i 2 i ← - ∂ H t ∧ - → ∂ t + ← - ∂ Hϕ ∧ - → ∂ ϕ h(x) , (60) 
with Eqn. (59a) and Eqn. (59b), where once more the wedge stands for "antisymmetrized", and when considering the expansion one must take care with the sequence of operators and the side they act on (left or right). The first order results for the star commutators between the 10-dimensional embedding coordinates are given by Eqns. (61):

-i [x µ , x ν ] ≈ θ µν = e σ     0 -(1-γ)y r + iq 2 xz r 4
(1-γ)x r

+ iq 2 yz r 4 -iβ (1-γ)y r 0 e -ς -yzη r 2 -(1-γ)x r -e -ς 0 xzη r 2 iβ yzη r 2 -xzη r 2 0      , (61a) 
-i [φ i , x µ ] ≈ e σ           -izαf + 12 ( 1 2 ) r yf + 12 ( γ 2 ) r -iq 2 xzωφ 2 r 4 -xf + 12 ( γ 2 ) r -iq 2 yzωφ 2 r 4 iωφ 2 β -izαf - 21 ( 1 2 ) r yf - 21 ( γ 2 ) r + iq 2 xzωφ 1 r 4 -xf - 21 ( γ 2 ) r + iq 2 yzωφ 1 r 4 -iωφ 1 β -izφ 3 α 2r 2 yγφ 3 2r 2 -xγφ 3 2r 2 0 -izαf + 45 (1) r yf + 45 (γ) r -iq 2 xzωφ 5 r 4 -xf + 45 (γ) r -iq 2 yzωφ 5 r 4 iωφ 5 β -izαf - 54 (1) r yf - 54 (γ) r + iq 2 xzωφ 4 r 4 -xf - 54 (γ) r + iq 2 yzωφ 4 r 4 -iωφ 4 β -izφ 6 α r 2 yγφ 6 r 2 -xγφ 6 r 2 0            , ( 61b 
) -i [φ i , φ j ] ≈ e σ          0 -iωzφ 2 3 α 2r 2 -iωzφ 3 φ 2 α 2r 2 -iωzφ 1 φ 5 α 2r 2 -iωzαg φ 2r 2 -iωzφ 3 φ 5 α r 2 iωzφ 2 3 α 2r 2 0 iωzφ 3 φ 1 α 2r 2 -iωzαg φ 2r 2 iωzφ 2 φ 4 α 2r 2 iωzφ 3 φ 4 α r 2 iωzφ 3 φ 2 α 2r 2 -iωzφ 3 φ 1 α 2r 2 0 iωzφ 3 φ 5 α 2r 2 -iωzφ 3 φ 4 α 2r 2 0 iωzφ 1 φ 5 α 2r 2 iωzαg φ 2r 2 -iωzφ 3 φ 5 α 2r 2 0 -iωzφ 2 6 α r 2 -iωzφ 5 φ 6 α r 2 iωzαg φ 2r 2 -iωzφ 2 φ 4 α 2r 2 iωzφ 3 φ 4 α 2r 2 iωzφ 2 6 α r 2 0 iωzφ 4 φ 6 α r 2 iωzφ 3 φ 5 α r 2 -iωzφ 3 φ 4 α r 2 0 iωzφ 5 φ 6 α r 2 -iωzφ 4 φ 6 α r 2 0           , (61c) 
with

f ± ij (Y ) = Y r φ i ± ωφ j , β = 1 - q 2 z 2 r 4 , g φ = (φ 3 φ 6 + φ 1 φ 5 ) = (φ 3 φ 6 + φ 2 φ 4 ) , (61d) 
and the abbreviations defined in Eqn. (54). Although some of these commutators are exact to all orders, i.e.

[z

, φ 3 ] = [z , φ 6 ] = [φ 3 , φ 6 ] = 0 , [t , z] = -i e σ β , [t , φ 3 ] = i e σ zφ 3 α 2r 2 , [t , φ 6 ] = i e σ zφ 6 α r 2 , (62) 
higher order corrections in other commutators and relations appear as in the Schwarzschild case above. For example

φ 1 φ 1 + φ 2 φ 2 = φ 3 φ 3 , φ 4 φ 4 + φ 5 φ 5 = φ 6 φ 6 , (63) 
which again could be interpreted as non-commutative correction to the embedding geometry.

Discussion and conclusion

In this paper, we have provided explicit realizations of the Schwarzschild and the Reissner-Nordstöm geometry as non-commutative spaces in the framework of matrix models. Our construction is based on suitable embeddings of these classical geometries M 4 ⊂ R D ("branes") in higher-dimensional flat spaces. These 4-dimensional branes are equipped with certain self-dual symplectic structures, which define the non-commutative form of these spaces via a star product. These embeddings and the corresponding symplectic structure are chosen such that they are asymptotically constant. To be more precise, for r → ∞ they reduce to the usual Groenewold-Moyal quantum plane which is trivially embedded in R D . At the semi-classical level, the central singularity is reflected by the fact that the embedding escapes to infinity. Non-commutative effects are expected to modify this behavior, which is however not addressed in the present paper. The requirement of asymptotic triviality is not satisfied by the standard embeddings e.g. of the Schwarzschild geometry in the literature [START_REF] Kasner | Geometrical theorems on Einstein's cosmological equations[END_REF][START_REF]Completion and Embedding of the Schwarzschild Solution[END_REF][START_REF] Kerner | Approximate solutions in General Relativity via deformation of embeddings[END_REF]. This requirement is strongly suggested by the matrix model framework, because the effective action may contain terms which depend on the embedding of M ⊂ R D and not only on its intrinsic geometry. In fact, flat Groenewold-Moyal quantum planes are always solutions of this class of matrix models, independent of e.g. vacuum energy contributions. Asymptotic triviality is also natural since we want to consider our solution as a perturbation of some larger cosmological context through a localized mass. In other words, the embedding presented here should naturally generalize to many-particle configurations.

Another important aspect is that e -σ , which essentially sets the scale of non-commutativity, is also asymptotically constant and non-vanishing. This must be so because e -σ determines the strength of the non-Abelian gauge coupling in the matrix model [START_REF] Steinacker | Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models[END_REF]. We found that g µν = G µν (i.e. the embedding metric coincides with the effective metric, which is certainly very natural) is indeed compatible with asymptotically constant θ µν and e -σ . However, e -σ becomes non-trivial as one approaches the horizon. In fact, it turns out to vanish on a circle on the horizon, where the "would-be U (1) gauge fields" corresponding to θ -1 µν vanish. This result, if taken literally, is somewhat problematic from the physics point of view: if θ µν is really a rigid condensate determined by its asymptotics at infinity, then the rotation on the earth with respect to such a background would lead to small variations of the gauge coupling constant during a revolution (however other quantities may also depend on e -σ and lead to cancellations of such an effect). There are stringent bounds on the variations of the fine-structure constants [START_REF] Rosenband | Frequency Ratio of Al + and Hg + Single-Ion Optical Clocks; Metrology at the 17th Decimal Place[END_REF], which might exclude such an effect. If so, this would not rule out the framework, but it would strongly support the idea that the Poisson structure θ µν should be integrated out resp. averaged over, rather than being a large-scale physical condensate. This is indeed very natural, since some of the degrees of freedom in θ µν essentially decouple from the other fields [START_REF] Steinacker | Emergent Geometry and Gravity from Matrix Models: An Introduction[END_REF]. The effective action would then only depend on a single effective metric G µν . This is a very attractive possibility which will be pursued elsewhere.

We also remind the reader that the appropriate equations governing θ µν and therefore e -σ depend on the precise form of the action. G µν = g µν is certainly natural and appropriate for Yang-Mills models, but was simply assumed here; this will be clarified in a forthcoming paper [START_REF] Blaschke | Curvature and Gravity Actions for Matrix Models II[END_REF]. There are a lot of other obvious issues arising from our construction which deserve further studies, and the present paper should be seen as first step of a more general line of investigation. In any case, we have shown how realistic gravity can arise within this class of matrix models, in a very explicit and accessible manner. This should be enough motivation for further work.

Similarly, L

Vϕ Θ = 0 implies Θ B = B ∧ dϕ with B = B r dϑ + B ϑ dr = dχ B (r, ϑ) . (65) 
Now we need to work out

Θ = 1 2 |g| g αα g ββ ε α β µν θ -1 µν dx α ∧ dx β , (66) 
where in Schwarzschild coordinates

g tt = (1 - r c r ), g rr = (1 - r c r ) -1 , g ϑϑ = r 2 , g ϕϕ = r 2 sin 2 ϑ, |g| = r 2 sin ϑ . (67) 
So if we define

Θ B := Θ E = (E r dr + E ϑ dϑ) ∧ dt = 1 r 2 sin ϑ r 4 sin 2 ϑE r dϑdϕ -r 2 (1 - r c r ) -1 sin 2 ϑE ϑ drdϕ = sin ϑ r 2 E r dϑ -(1 - r c r ) -1 E ϑ dr ∧ dϕ = (B r dϑ + B ϑ dr) ∧ dϕ , (68) 
and if that is closed, then 

Θ = iΘ E + Θ E is self-dual. Explicitly, for E = d(f (r) cos ϑ) = f cos ϑdr -f sin ϑdϑ = E r dr + E ϑ dϑ (69) 
For c 2 = 0 we get Eqn. (33) which has the desired asymptotics as an asymptotically constant external field. Then

|θ -1 | = Pfaff(θ -1 µν ) = 1 8 ε µνρσ θ -1 µν θ -1 ρσ = (θ -1 rt θ -1 ϑϕ -θ -1 ϑt θ -1 rϕ ) = (E r B r -E ϑ B ϑ ) = f 2 r 2 cos 2 ϑ sin ϑ + f 2 sin 3 ϑ(1 - r c r ) -1 = c 2 1 r 2 sin ϑ 1 -sin 2 ϑ r c r , (73) 
which yields (34).

Appendix B: Commutation relations for Schwarzschild geometry

From Eqn. (35) we can immediately read off θ -1 µν in Darboux coordinates, and its inverse leads to the Poisson brackets

{x µ D , x ν D } =     0 i 0 0 -i 0 0 0 0 0 0 1 0 0 -1 0     , (74) 
where = 1/c 1 . Using the relations

H ts = rγ cos ϑ = z 1 - r c r , H ϕ = 1 2 r 2 sin 2 ϑ = 1 2 x 2 + y 2 , t S = t -r c ln r r c -1 , r = x 2 + y 2 + z 2 , (75) 
we transform the set of coordinates to {H ts , t S , H ϕ , ϕ} → {t, x, y, z}, and get 

∂
where e -σ = e -σ is the Jacobian determinant of the transformation. We hence arrive at the following Poisson brackets in terms of the Cartesian coordinates x µ = {t, x, y, z}: 

{x µ , x ν } = e σ     0 -rcy
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 1 Figure 1: Embedded Schwarzschild black hole. On the top, a schematic view of the outer region of the Schwarzschild black hole is shown. After passing through the horizon r = r c , the extra dimensions φ i "blow up" in a cone-like manner. As indicated in the lower half of this figure, every point of the cone is in fact a sphere whose radius r becomes smaller towards the bottom of the cone (i.e. T ∝ 1/ √ r). The twisted vertical lines drawn in the cone are lines of equal time t.
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 214431323612252321 one easily works out the remaining Poisson brackets with the embedding functions φ i of Eqn.[START_REF] Nielsen | Minimal Immersions, Einstein's Equations and Mach's Principle[END_REF], namely {x µ , φ i (x)} and {φ i (x), φ j (x)}, leading finally to (38).[z , φ 1 ] = e σ ωφ 2 + 3 φ 2 F zφ12 + O 5 , [z , φ 2 ] = -e σ ωφ 1 -3 φ 1 F zφ12 + O 5 , [z , φ 3 ] = 0 ,(80)withF tφ12 = r c zω 3 e 2σ 24γ 3 r 6 27e 3σ (z 2 + r 2 γ(1 + γ)) -6γr 2 + e σ (3(7 + γ(9 + 5γ))r 2 + 2z 2 ) -3e 2σ (9 + 2γ(8 + 7γ))r 2 + 7z 2 , F φ3xy = ie 5σ γφ 3 64r 10 15γ 4 r 4 -2γ (8 + γ (9 + γ(15γ -32))) r 2 z γ) 2 (20 + γ(15γ -34)) z 4 , F zφ12 = ω 3 e 3σ 8r 4 (e σ -1) (9e σ -4)z 2 -r 2 ,(81)andF xy (φ i , φ j ) = -ie 5σ 192r 14 8e -2σ ω 3 φ j r 11 -12ω 2 φ i r 3 (r c -3r)γ 2 r 6 + 2r 2 c z 2 γr 3 + r 2 c (r c + 3r)z 2ωφ j r 4 15r 2 c -40rr c + 33r 2 γ 2 r 3 + 2r c 15r 2 c -16rr c -33r 2 z 2 γ + r 2 c 15r 2 c + 8rr c + 9r 2 z 3γφ i 15γ 4 r 8 + 2r c 15r 2 c -13rr c -10r 2 z 2 γr 3 + r 2 c 15r 2 c + 4rr c + r 2 z 4 . (82) 4e σ (r 2 + z 2 ) -r 2 -9z 2 e 2σ + O 5 , φ312 + O 5 ,(83)with F φ312 = e 3σ ω 3 zφ 3 64r 6 (1 -22e σ + 36e 2σ )(x 2 + y 2 ) -(7 -38e σ + 36e 2σ )r 2 .(84)

This can hold only asymptotically, since Ricci-flat geometries can in general not be embedded harmonically[START_REF] Nielsen | Minimal Immersions, Einstein's Equations and Mach's Principle[END_REF].

In the case of general geometries gµν = Gµν this is replaced by a quartic relation for J[START_REF] Steinacker | Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models[END_REF].

It is also interesting to note, that the quantities {z, φ3, H ϑ 2 }, whereHϕ = 1 2 x+x-= 1 2 (x 2 + y 2 ) = 1

[x+ , x-] + , x ± = x ± iy ,commute with each other to all orders in .
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Appendix A: Derivation of the symplectic form Eqn. (33)

Considering Eqn. (30) we can make the additional ansatz that Θ is invariant under the Killing vector fields, i.e. L Vts Θ = 0, and moreover L Vts = L Vts . This implies dE = 0 = L Vts E, and together with L Vϕ E = 0 we obtain

Next-to-leading order commutation relations: To third order in the expansion parameter one finds the star commutators

with the abbreviations

Notice, that some expressions (i.e. the ones where O ( n ) is omitted) are exact to all orders 4 . Furthermore, we find for the embedding functions φ i to third order in :

4 However, while this is the case for the commutator [x , y] = i , the according anticommutator does in fact have higher order contributions, i.e. ´.