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I. INTRODUCTION

A spinfoam sum over a given two-complex σ, formed by faces f joining along edges e in turn meeting at vertices v, is defined by the expression

Z σ = j f ,ie f d j f v A v (j f , i e ), (1) 
where A v (j f , i e ) is the "vertex amplitude" and d j f is the "face amplitude". The sum is over an assignment j f of an irreducible representation of a compact group G to each face f and of an intertwiner i e to each edge e of the two-complex. The expression (1) is often viewed as a possible foundation for a background independent quantum theory of gravity [START_REF] Perez | Spin foam models for quantum gravity[END_REF]. In particular, a vertex amplitude A v (j f , i e ) that might define a quantum theory of gravity has been developed in [START_REF] Barrett | Relativistic spin networks and quantum gravity[END_REF][START_REF] Engle | The loop-quantum-gravity vertex-amplitude[END_REF][START_REF] Engle | Flipped spinfoam vertex and loop gravity[END_REF][START_REF] Pereira | Lorentzian LQG vertex amplitude[END_REF][START_REF] Engle | LQG vertex with finite Immirzi parameter[END_REF][START_REF] Livine | A new spinfoam vertex for quantum gravity[END_REF][START_REF] Freidel | A New Spin Foam Model for 4d Gravity[END_REF][START_REF] Kaminski | Spin-Foams for All Loop Quantum Gravity[END_REF] and is today under intense investigation (see [START_REF] Rovelli | A new look at loop quantum gravity[END_REF]). But what about the "measure factor" given by the face amplitude d j f ? What determines it?

The uncertainty in determining the face amplitude has been repeatedly remarked [START_REF] Pereira | Spin foams from simplicial geometry[END_REF][START_REF] Perez | A spin foam model without bubble divergences[END_REF][START_REF] Perez | Finiteness of a spinfoam model for Euclidean quantum general relativity[END_REF][START_REF] Crane | Perturbative finiteness in spin-foam quantum gravity[END_REF][START_REF] Perini | Self-energy and vertex radiative corrections in LQG[END_REF][START_REF] Bojowald | Spin foam quantization and anomalies[END_REF]. One way of fixing the face amplitude which can be found in the literature, for example, is to derive the sum [START_REF] Perez | Spin foam models for quantum gravity[END_REF] for general relativity (GR) starting from the analogous sum for a topological BF theory, and then implementing the constraints that reduce BF to GR as suitable constraints on the states summed over. For instance, in the Euclidean context GR is a constrained SO(4) BF theory. The state sum (1) is well understood for SO(4) BF theory: its face amplitude is the dimension of the SO(4) representation (j + , j -). The simplicity constraint fixes this to be of the form j ± = γ ± j f where γ ± = 1±γ 2 and γ is the Barbero-Immirzi parameter, and therefore

d j f = (2j + + 1)(2j -+ 1) = (2γ + j f + 1)(2γ -j f + 1). (2)
However, doubts can be raised against this argument. For instance, Alexandrov [START_REF] Alexandrov | The new vertices and canonical quantization[END_REF] has stressed the fact that the implementation of second class constraints into a Feynman path integral in general requires a modification of the measure, and here the face amplitude plays precisely the role of such measure, since A v ∼ e i Action . Do we have an independent way of fixing the face amplitude?

Here we argue that the face amplitude is uniquely determined for any spinfoam sum of the form (1) by three inputs: (a) the choice of the boundary Hilbert space, (b) the requirement that the composition law holds when gluing two-complexes; and (c) a particular "locality" requirement, or, more precisely, a requirement on the local composition of group elements.

We argue below that these requirements are implemented if Z is given by the expression

Z σ = dU v f v A v (U v f ) f δ(U v1 f ...U v k f ), (3) 
where

U v f ∈ G, v 1 .
..v k are the vertices surrounding the face f , and A v (U v f ) is the vertex amplitude A v (j f , i e ) expressed in the group element basis [START_REF] Bianchi | Spinfoams in the holomorphic representation[END_REF]. Then we show that this expression leads directly to (1), with arbitrary vertex amplitude, but a fixed choice of face amplitude, which turns out to be the dimension of the representation j of the group G,

d j = dim(j). (4) 
In particular, for quantum gravity this implies that the BF face amplitude (2) is ruled out, and should be replaced (both in the Euclidean and in the Lorentzian case) by the SU (2) dimension

d j = 2j + 1. (5) 
Equation ( 3) is the key expression of this paper; we begin by showing that SO(4) BF theory (the prototypical spinfoam model) can be expressed in this form (Section II). Then we discuss the three requirements above and we show that (3) implements these requirements. (Section III). Finally we show that (3) gives (1) with the face amplitude (4) (Section IV).

The problem of fixing the face amplitude has been discussed also by Bojowald and Perez in [START_REF] Bojowald | Spin foam quantization and anomalies[END_REF]. Bojowald and Perez demand that the amplitude be invariant under suitable refinements of the two-complex. This request is strictly related to the composition law that we consider here, and the results we obtain are consistent with those of [START_REF] Bojowald | Spin foam quantization and anomalies[END_REF].
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and Ue associated to a portion of a face f of the two-complex.

II. BF THEORY

It is well known that the partition function [START_REF] Perez | Spin foam models for quantum gravity[END_REF] for BF theory can be rewritten in the form (see [START_REF] Perez | Spin foam models for quantum gravity[END_REF])

Z σ = dU e f δ(U e1 ...U e k ), (6) 
where U e are group elements associated to the oriented edges of σ, and (e 1 , ..., e k ) are the edges that surround the face f . Let us introduce group elements h ve , labelled by a vertex v and an adjacent edge e, such that

U e = h ve h -1 v e (7) 
where v and v are the source and the target of the edge e (see Figure 1). Then we can trivially rewrite [START_REF] Engle | LQG vertex with finite Immirzi parameter[END_REF] as

Z σ = dh ve f δ (h v1e1 h -1 v2e1 ) ... (h v k e k h -1 v1e k ) . ( 8 
)
Now define the group elements

U v f = h -1 ve h ve (9)
associated to a single vertex v and two edges e and e that emerge from v and bound the face f (see Figure 1). Using these, we can rewrite [START_REF] Engle | LQG vertex with finite Immirzi parameter[END_REF] as

Z σ = dh ve dU v f v,f v δ(U v f , h -1 ve h ve ) f δ(U v1 f ...U v k f ),
where the first product is over faces f v that belong to the vertx v, and then a product over all the vertices of the two-complex. Notice that this expression has precisely the form (3), where the vertex amplitude is

A v (U v f ) = dh ve f v δ(U v f , h ve h -1 ve ), (11) 
which is the well-known expression of the 15j Wigner symbol (the vertex amplitude of BF in the spin network basis) in the basis of the group elements.

We have shown that the BF theory spinfoam amplitude can be put in the form [START_REF] Engle | The loop-quantum-gravity vertex-amplitude[END_REF]. We shall now argue that (3) is the general form of a local spinfoam model that obeys the composition law.

III. THREE INPUTS

(a) Hilbert space structure. Equation ( 1) is a coded expression to define the amplitudes

W σ (j l , i n ) = j f ,ie f d j f v A v (j f , i e ; j l , i n ), (12) 
defined for a two-complex σ with boundary, where the boundary graph Γ = ∂σ if formed by links l and nodes n. The spins j l are associated to the links l, as well as to the faces f that are bounded by l; the intertwiners i n are associated to the nodes n, as well as to the edges e that are bounded by n. The amplitude of the vertices that are adjacent to these boundary faces and edges depend also on the external variables (j l , i n ).

In a quantum theory, the amplitude W (j l , i n ) must be interpreted as a (covariant) vector in a space H Γ of quantum states. 1 We assume that this space has a Hilbert space structure, which we know. In particular, we assume that

H Γ = L 2 [G L , dU l ] ( 13 
)
where L is the number of links in Γ and dU l is the Haar measure. Thus we can interpret [START_REF] Perez | A spin foam model without bubble divergences[END_REF] as

W σ (j l , i n ) = j l , i n | W ( 14 
)
where |j l , i n is the spin network function

U l | j l , i n = ψ j l ,in (U l ) = l R j l (U l ) • n i n . ( 15 
)
Here R j (U l ) are the representation matrices in the representation j and the i form an orthonormal basis in the intertwiner space. See for instance [START_REF] Rovelli | A new look at loop quantum gravity[END_REF][START_REF] Rovelli | Quantum Gravity[END_REF] for details.

Using the scalar product defined by ( 13), we have

j l , i n | j l , i n = dU l ψ j l ,in (U l )ψ j l ,i n (U l ) = l dim(j l ) δ j l j l n δ ini n . ( 16 
)
where dim(j) is the dimension of the representation j. Therefore the spin-network functions ψ j l ,in (U l ) are not

v 1 v 2 v k U v1 f U vk f U v2 f U l l l . . . f FIG. 2:
Cutting of a face of the two-complex. The holonomy U l is attached to a link of the boundary spin-network and satisfies equation (23).

normalized. (These dim(j) normalization factors are due to the convention chosen: they have nothing to do with the dimension of the representation that appears in [START_REF] Engle | Flipped spinfoam vertex and loop gravity[END_REF].)

The resolution of the identity in this basis is

1 1 = j l ,in l dim(j l ) |j l , i n j l , i n |. ( 17 
)
(b) Composition law. In non relativistic quantum mechanics, if U (t 1 , t 0 ) is the evolution operator from time t 0 to time t 1 , the composition law reads

U (t 2 , t 0 ) = U (t 2 , t 1 )U (t 1 , t 0 ). (18) 
That is, if |n is an orthonormal basis,

f |U (t 2 , t 0 )| i = n f |U (t 2 , t 1 )| n n |U (t 1 , t 0 )| i .
Let us write an analogous condition of the spinfoam sum. Consider for simplicity a two-complex σ = σ 1 ∪ σ 2 without boundary, obtained by gluing two two-complexes σ 1 and σ 2 along their common boundary Γ. Then we require that W satisfies the composition law

Z σ1∪σ2 = W σ2 | W σ1 , ( 20 
)
as discussed by Atiyah in [START_REF] Atiyah | Topological Quantum Field Theories[END_REF]. Notice that to formulate this condition we need the Hilbert space structure in the space of the boundary states.

(c) Locality. As a vector in H Γ , the amplitude W (j l , i n ) can be expressed on the group element basis

W (U l ) = U l | W (21) = j l ,in l dim(j l ) ψ j l ,in (U l )W (j l , i n ).
Similarly, the vertex amplitude can be expanded in the group element basis

A v (U v f ) = U v f | A v (22) = j v f ,i v n f v dim(j v f ) ψ j v f ,i v n (U v f )A v (j v f , i v n ).
Notice that here the group element U v f and the spin j v f are associated to a vertex v and a face f adjacent to v.

Similarly, the intertwiner i v n is associated to a vertex v and a node n adjacent to v. Consider a boundary link l that bounds a face f (see Figure 2). Let v 1 ...v k be the vertices that are adjacent to this face. We say that the model is local if the relation between the boundary group element U l and the vertices group elements U v f is given by

U l = U v1 f ... U v k f . ( 23 
)
In other words: if the boundary group element is simply the product of the group elements around the face.

Notice that a spinfoam model defined by ( 3) is local and satisfies composition law in the sense above. In fact, (3) generalizes immediately to

W σ (U l ) = dU v f v A v (U v f ) internal f δ(U v1 f ...U v k f ) × external f δ(U v1 f ...U v k f U -1 l ). ( 24 
)
Here the first product over f is over the ("internal") faces that do not have an external boundary; while the second is over the ("external") faces f that are also bounded by the vertices v 1 , ..., v k and by the the link l. It is immediate to see that locality is implemented, since the second delta enforces the locality condition (23). Furthermore, when gluing two amplitudes along a common boundary we have immediately that

dU l W σ1 (U l ) W σ2 (U l ) = Z σ1∪σ2 (25)
because the two delta functions containing U l collapse into a single delta function associated to the face l, which becomes internal. Thus, (3) is a general form of the amplitude where these conditions hold.

In [START_REF] Bojowald | Spin foam quantization and anomalies[END_REF], Bojowald and Perez have considered the possibility of fixing the face amplitude by requiring the amplitude of a given spin/intertwiner configuration to be equal to the amplitude of the same spin/intertwiner configuration on a finer two-simplex where additional faces carry the trivial representation. This requirement imply essentially that the amplitude does not change by splitting a face into two faces. It is easy to see that (3) satisfies this condition. Therefore (3) satisfies also the Bojowald-Perez condition.

IV. FACE AMPLITUDE

Finally, let us show that (3) implies ( 1) and (4). To this purpose, it is sufficient to insert (22) into (3). This gives

Z σ = dU v f v j v f ,i v n f v dim(j v f ) ψ j v f ,i v n (U v f )A v (j v f , i v n ) × f δ(U v1 f ...U v k f ). ( 26 
)
Expand then the delta function in a sum over characters

Z σ = dU v f v j v f ,i v n f v dim(j v f ) ψ j v f ,i v n (U v f )A v (j v f , i v n ) × f j f dim(j f ) Tr(R j f (U v1 f ) • • • R j f (U v k f )).
We can now perform the group integrals. Each U v f appears precisely twice in the integral: once in the sum over j v f and the other in the sum over j f . Each integration gives a delta function δ j v f ,j f , which can be used to kill the sum over j v f dropping the v subscript. Following the contraction path of the indices, it is easy to see that these contract the two intertwiners at the opposite side of each edge. Since intertwiners are orthonormal, this gives a delta function δ i v n ,i v n which reduces the sums over intertwiners to a single sum over i n := i v n = i v n . Bringing everything together, and noticing that the dim(j) factor from the group integrations cancels the one in the integral, we have

Z σ = j f in f dim(j f ) v A v (j v f , i v n ). (27) 
This is precisely equation (1), with the face amplitude given by (4). Notice that the face amplitude is well defined, in the sense that it cannot be absorbed into the vertex amplitude (as any edge amplitude can). The reason is that any factor in the vertex amplitude depending on the spin of the face contributes to the total amplitude at a power k,

where k is the number of sides of the face. The face amplitude, instead, is a contribution to the total amplitude that does not depend on k. This is also the reason why the normalization chosen for the spinfoam basis does not affect the present discussion: it affects the expression for the vertex amplitude, not that for the face amplitude.

By an analogous calculation one can show that the same result holds for the amplitudes W : equation [START_REF] Perez | A spin foam model without bubble divergences[END_REF] follows from (24) expanded on a spin network basis.

In conclusion, we have shown that the general form (3) of the partition function, which implements locality and the composition law, implies that the face amplitude of the spinfoam model is given by the dimension of the representation of the group G which appears in the boundary scalar product [START_REF] Perez | Finiteness of a spinfoam model for Euclidean quantum general relativity[END_REF].

In general relativity, in both the Euclidean and the Lorentzian cases, the boundary space is

H Γ = L 2 [SU (2) L , dU l ], (28) 
therefore the face amplitude is d j = dim SU(2) (j) = 2j +1, and not the SO( 4) dimension (2), as previously supposed.

Notice that such d j = 2j + 1 amplitude defines a theory that is far less divergent than the theory defined by [START_REF] Barrett | Relativistic spin networks and quantum gravity[END_REF]. In fact, the potential divergence of a bubble is suppressed by a power of j with respect to [START_REF] Barrett | Relativistic spin networks and quantum gravity[END_REF]. In [START_REF] Perini | Self-energy and vertex radiative corrections in LQG[END_REF], it has been shown that the d j = 2j + 1 face amplitude yields a finite main radiative correction to a five-valent vertex if all external legs set to zero.

If Γ has two disconnected components interpreted as "in" and an "out" spaces, then H Γ can be identified as the tensor product of the "in" and an "out" spaces of non-relativistic quantum mechanics. In the general case, H Γ is the boundary quantum state in the sense of the boundary formulation of quantum theory [

[START_REF] Oeckl | A 'general boundary' formulation for quantum mechanics and quantum gravity[END_REF][START_REF] Rovelli | Quantum Gravity[END_REF].
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