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ABSTRACT. We study the asymptotic behavior of vacuum Bianchi type A spacetimes close to their singu-
larity. It has been conjectured that this behavior is driven by a certain circle map, called the Kasner map.
As a step towards this conjecture, we prove that some orbits of the Kasner map do indeed attract some
solutions of the system of ODEs which describes the behavior of vacuum Bianchi type A spacetimes. The
orbits of the Kasner map for which we can prove such a result are those which are not periodic and do
not accumulate on any periodic orbit. This shows the existence of Bianchi spacetimes with an aperiodic
oscillatory asymptotic behavior.

1. INTRODUCTION

1.1. Bianchi spacetimes, the Wainwright-Hsu vector field and the Kasner map. A Bianchi space-
time is a cosmological spacetime which is spatially homogeneous. More precisely, it is a spacetime
(M, g) such that M is diffeomorphic to the product G× I of a simply connected three-dimensional Lie
group G and an interval I of the real line, and g = ht − dt2 where ht is a left-invariant riemannian
metric on G × {t} ' G for every t ∈ I . A vacuum Bianchi spacetime is a Bianchi spacetime (M, g)
satisfying the vacuum Einstein equation Ricg = 0. A type A Bianchi spacetime is a Bianchi spacetime
for which the corresponding three dimensional Lie group G is unimodular. Note that the Lie group G
can be assumed to be simply connected without loss of generality.

A Bianchi spacetime can be described as a one-parameter family (ht)t∈I of left-invariant riemannian
metrics on a three-dimensional Lie group G. The space of left-invariant riemannian metrics on a given
Lie group is finite-dimensional. Therefore, when restricted to the context of Bianchi spacetimes, the
vacuum Einstein equation becomes a system of ODEs on a finite dimensional phase space. J. Wainwright
and L. Hsu have introduced some variables which allow to write this system of ODEs in a simple and
convenient way ([13]). Here, we shall use a slightly different (and closely related) system of variables
(Σ1,Σ2,Σ3, N1, N2, N3), that we still called Wainwright-Hsu variables (the system of variables we
consider is the same as those use by M. Heinzle and C. Uggla in [3]). Very roughly, N1, N2, N3 are the
structure constants of the Lie algebra of the Lie group G × {t} in a certain basis, and Σ1,Σ2,Σ3 are
the components of the normalized traceless second fundamental form of G× {t} in the same basis. The
corresponding phase space is the four-dimensional manifold

B :=
{

(Σ1,Σ2,Σ3, N1, N2, N3) ∈ R6 | Σ1 + Σ2 + Σ3 = 0 , Ω = 0
}

where

Ω = 6− (Σ2
1 + Σ2

2 + Σ2
3) +

1

2
(N2

1 +N2
2 +N2

3 )− (N1N2 +N1N3 +N2N3).
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The vacuum Einstein equation is equivalent to the system of ODEs

(1)



Σ′1 = (2− q)Σ1 −R1

Σ′2 = (2− q)Σ2 −R2

Σ′3 = (2− q)Σ3 −R3

N ′1 = −(q + 2Σ1)N1

N ′2 = −(q + 2Σ2)N2

N ′3 = −(q + 2Σ3)N3

where
q =

1

3

(
Σ2

1 + Σ2
2 + Σ2

3

)
and 

R1 = 1
3

(
2N2

1 −N2
2 −N3

3 + 2N2N3 −N1N3 −N1N2

)
R2 = 1

3

(
2N2

2 −N2
3 −N3

1 + 2N3N1 −N2N1 −N2N3

)
R3 = 1

3

(
2N2

3 −N2
1 −N3

2 + 2N1N2 −N3N2 −N3N1

)
(see e.g. [3] for the construction of the Wainwright-Hsu variables and the expression of the Einstein
equation in these variables). In other words, vacuum Bianchi type A spacetimes can be seen as the
solutions of the system of ODEs (1) on the four-dimensional manifold B. We will call Wainwright-Hsu
vector field, and denote by XB, the vector field on B associated to the system of ODEs (1). We will
denote by Xt

B the time t map of the flow of XB. To measure the distances on the phase space B, we will
use the riemannian metric h = (dΣ1)2 + (dΣ2)2 + (dΣ3)2 + (dN1)2 + (dN2)2 + (dN3)2.

Remark 1.1. We have chosen the “anti-physical” time orientation. With this convention, Bianchi space-
times are future incomplete, but not necessarily past incomplete. The main reason for this choice is that
we want the so-called mixmaster attractor (see below) to be an attractor, rather than a repellor.

The phase space B admits a natural stratification, which is invariant under the flow of the Wainwright-
Hsu vector field XB. There are six strata denoted by BI,BII,BVI0 ,BVII0 ,BVIII,BIX. These strata
correspond to the different possible signs for the variables N1, N2, N3. They also correspond to the
different (isomorphism class of) simply connected unimodular three-dimensional Lie groups. The orbits
of XB contained in BI are called type I orbits, the orbits contained in BII are called type II orbits, etc.
The behavior of the type I, II, VI0 and VII0 orbits of XB is very well understood. On the contrary, the
behavior of the type VIII and IX orbits (which are the generic orbits in B) is, at best, conjectural. In
order to simplify the discussion we will focus our attention on the subset B+ of B where the coordinates
N1, N2, N3 are non-negative:

B+ := {(Σ1,Σ2,Σ3, N1, N2, N3) ∈ B | N1 ≥ 0 , N2 ≥ 0 , N3 ≥ 0}.
Observe that this subset is invariant under the flow of XB.

The stratum BI is more frequently denoted by K. This is a euclidean circle in B ⊂ R6, called the
Kasner circle. It is made of the points of B where N1 = N2 = N3 = 0. This corresponds to the case
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where the Lie group G is abelian (i.e. G = R3).

K = {(Σ1,Σ2,Σ3, N1, N2, N3) ∈ B | N1 = N2 = N3 = 0}(2)

= {(Σ1,Σ2,Σ3, N1, N2, N3) ∈ R6 | N1 = N2 = N3 = 0 ,

Σ1 + Σ2 + Σ3 = 0 , Σ2
1 + Σ2

2 + Σ2
3 = 6}

The vector field XB vanishes on K. Therefore every type I orbit is a fixed point. There are three
points on K, called the special points or the Taub points, which play a very important role in every
attempt to understand the behavior of the solution of the Wainwright-Hsu equations; these are the points
for which (Σ1,Σ2,Σ3) is equal respectively to (2,−1,−1), (−1, 2,−1) and (−1,−1, 2); these points
are usually denoted by T1, T2, T3. For every point p ∈ K, the derivative DXB(p) has four distinct
eigendirections: the direction TpK of the Kanser circle corresponds to a zero eigenvalue (since XB
vanishes on K), and the directions R. ∂

∂N1
(p), R. ∂

∂N2
(p), R. ∂

∂N3
(p) are respectively associated to the

eigenvalues −(2 + 2Σ1), −(2 + 2Σ2), −(2 + 2Σ3). When p is one of the three special points T1, T2, T3,
two of the three eigenvalues −(2 + 2Σ1),−(2 + 2Σ2),−(2 + 2Σ3) vanish; hence, the derivative of
DXB(p) has a triple zero eigenvalue. If p is not one of the three special points T1, T2, T3, then the
eigenvalues −(2 + 2Σ1),−(2 + 2Σ2),−(2 + 2Σ3) are pairwise distinct, two of them are negative, and
the other one is positive; in other words, the derivative DXB(p) has two distinct negative eigenvalue, a
multiplicity one zero eigenvalue, and a positive eigenvalue.

The stratum BII is two-dimensional. It is made of the points of B for which exactly two of the Ni’s
vanish. This corresponds to the case where the Lie group G is isomorphic to the Heisenberg group.

B1 ∪ BII = {(Σ1,Σ2,Σ3, N1, N2, N3) ∈ B | N1 = N2 = 0 or N1 = N3 = 0 or N2 = N3 = 0}

One can easily check that BI ∪ BII is the union of three ellipsoids which intersect along the Kasner
circle. The vector field XB commutes with the transformation (N1, N2, N3) 7→ (−N1,−N2,−N3), so
we can work in BII ∩ B+ to simplify the discussion. The intersection BII ∩ B+ is the union of three
disjoint hemi-ellipsoids bounded by the Kasner circle. Type II orbits can be calculated explicitly (see for
example [3]). It is seen that every type II is a heteroclinic orbit connecting a point of K \ {T1, T2, T3}
to another point of K \ {T1, T2, T3}. Moreover, for every point p ∈ K \ {T1, T2, T3}, there is exactly
one type II orbit in B+ which “takes off” at p (this orbit is tangent to the eigendirection associated to the
positive eigenvalue of DXB(p)) and two type II orbits in B+ which “land” at p (these orbits are tangent
to the eigendirections associated to the negative eigenvalues of DXB(p)).

The Kasner map f : K → K is defined as follows. Consider a point p ∈ K. If p is one of the
three special points T1, T2, T3, then f(p) = p. Otherwise, one considers the unique type II orbit which
“springs up” at p; this orbit connects p to another point p′ ∈ K; this point p′ is by definition the image of
p under f . For every p ∈ K \ {T1, T2, T3}, we will denote by Op,f(p) the unique type II orbit connecting
the point p to the point f(p) in B+. Since there are exactly two type II orbits in B+ which land at a given
point p ∈ K, the Kasner map is two-to-one. The exact computation of the type II orbits of XB yields
a nice geometric description of the Kasner map f . Consider the equilateral triangle which is tangent
to K at the three special points T1, T2, T3. Denote by M1,M2,M3 the vertices of this triangle. For
p ∈ K \ {T1, T2, T3}, let Mi be the vertex of K which is the closest to p. The line (pMi) and intersects
the circle K at two points: the point p and the point f(p). See figure 1. Using this geometric description,
it is easy to see f is C1. Moreover, the Kasner map f is non-uniformly expanding. Indeed, the norm of
the derivative of f (calculated with respect to the metric on K induced by the riemannian metric h) at a
point p ∈ K is equal to 1 if p is one of the three special points T1, T2, T3, and is strictly bigger than 1 if p
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FIGURE 1. Construction of an orbit of the Kasner map

is not one of these three special points. It follows that, for every compact set C in K \ {T1, T2, T3} there
exists a constant νC > 1 such that |||Df(p)|||h ≥ νC for every p in C.

The strata BVI0 and BVII0 are three-dimensional. The stratum BVI0 is made of the points of B for
which exactly one of the Ni’s is equal to zero, the two others being of different signs. This corresponds
to the case where the Lie group G is isomorphic to Isom(R1,1) = O(1, 1) nR2. This stratum is disjoint
from B+. The stratum BVII0 is made of the points of B for which exactly one of theNi’s is equal to zero,
the two others being of the same sign. This corresponds to the case where the Lie group G is isomorphic
to Isom(R2) = O(2) nR2.

Finally the strata BVIII and BIX are four-dimensional (these are open subsets of B). The stratum BVIII
is made of the points of B for which the Ni’s are non-zero and do not have the same sign. It corresponds
to the case where the Lie group G is isomorphic to the universal cover of SL(2,R). It is disjoint from
B+. The stratum BIX is made of the points of B for which the Ni’s are either all positive, or all negative.
This corresponds to the case where the Lie group G is isomorphic to SO(3,R).

1.2. Statement of the main results of the paper. Misner has conjectured that the dynamics of type
IX orbits of the Wainwright-Hsu vector field XB “is driven” by the Kasner map ([5]). The idea is that
every type IX orbit should eventually approach the so-called mixmaster attractor A := K∪BII, and then
“follow” a heteroclinic chain q → Oq,f(q) → f(q)→ Of(q),f2(q) → . . . . Conversely, every heteroclinic
chain as above should attract some type IX orbits of XB. Moreover, “generic” type IX orbits should be
attracted by “generic” heteroclinic chains. This would imply that the behavior of generic type IX orbits of
XB is determined by the behavior of generic orbits of the Kasner map. See [3] for a detailed discussion
of various possible precise statements for this conjecture.

In 2001, Ringström proved that A := K ∪ BII is indeed an global attractor: the distance from almost
every type IX orbit of the Wainwright-Hsu vector fieldXB toA tends to 0 as the time goes to∞ ([10], see
also [4]). Ringström’s theorem has important consequences, such as the divergence of the curvature in
Bianchi spacetimes as one approaches their past (or future) singularity. Nevertheless, this theorem does
not tell anything on the relation between the dynamics of Bianchi orbits and the dynamics the Kasner
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map. The purpose of the present paper is to prove that “there are many points q ∈ K such that the
heteroclinic chain q → Oq,f(q) → f(q)→ Of(q),f2(q) → . . . does attract some type IX orbits of XB”.

Definition 1.2. For q ∈ K, we call stable manifold of q, and we denote by W s(q), the set of all points
r ∈ B for which there exists an increasing sequence of real numbers (tn)n≥0 such that

dist(Xtn
B (r), fn(q)) −→

n→∞
0

and such that the Hausdorff distance between the piece of orbit {Xt
B(r) ; tn ≤ t ≤ tn+1} and the typeII

heteroclinic orbit Ofn(q),fn+1(q) tends to 0 as n goes to +∞.

A subset C of K is said to be forward-invariant if f(C) ⊂ C. It is said to be aperiodic if it does not
contain any periodic orbit for f . Our main result can be stated as follows:

Theorem 1.3. If q ∈ K is contained in a closed forward-invariant aperiodic subset of K, then the
intersection of the stable manifold W s(q) with BIX is non-empty. More precisely, W s(q)∩BIX contains
a C1 embedded three-dimensional closed disc. This disc can be chosen to depend continuously on q (for
the C1 topology on the space of C1 embeddings of the closed unit disc of R3 in B) when q ranges in a
closed forward-invariant aperiodic subset of K.

Remark 1.4. Actually, one can prove that W s(q) ∩ BIX is an injectively immersed open disc, and that
this depends continuously on q (for the compact-open C1 topology on the space of C1 immersions of the
open unit disc of R3 in BIX) when q ranges in a closed forward-invariant aperiodic subset of K. Note
that W s(q) ∩ BIX is never a properly embedded open disc.

Remark 1.5. We decided to focus on type IX orbits for sake of simplicity. Nevertheless, the analog of
theorem 1.3 for BVIII instead of BIX is also true. The proof is exactly the same: one just needs to replace
the set B+ by the set B(−,+,+) := B ∩ {N1 ≤ 0} ∩ {N2 ≥ 0} ∩ {N3 ≥ 0}.

Observe that the hypothesis of theorem 1.3 is satisfied by a dense set of points in K :

Proposition 1.6. The union of all the closed forward-invariant aperiodic subsets of K is in dense in K.

Remark 1.7. Let E be the union of all the closed forward-invariant aperiodic subsets of K. According to
the above proposition, E is dense in K. Observe nevertheless that E is a “small” subset of K both from
the topological viewpoint (it is a meager set) and from the measurable viewpoint (it has zero Lebesgue
measure). Also observe that theorem 1.3 does not tell that W s(q) depends continuously on q when q
ranges in E. So, we do not know whether the union of all the stable manifolds W s(q), where q ranges
E, is dense in B (or in an open subset of B) or not.

The origin of the hypothesis of theorem 1.3 is purely technical: if p belongs to a closed forward-
invariant aperiodic subset of K, we can find a coordinate system in which the vector field XB depends
linearly of all the coordinates but one; this makes the estimates on the flow ofXB near such a point much
easier. We do not know if such linearizing coordinate systems exists near a point of K which is periodic
or preperiodic under the Kasner map. Nevertheless, it should be noticed that the estimates on the flow
of XB that we need to construct stable manifolds are much weaker than the existence of a linearizing
coordinate system. So, we do think that theorem 1.3 can be extended to any point q ∈ K such that
the orbit of q under the Kasner map does not accumulate one any of the three special points T1, T2, T3.
Understanding the behavior of the orbits which pass arbitrary close to the three special points seems to
be a much harder problem.
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Remark 1.8. A consequence of theorem 1.3 (and proposition 1.6) is that the Wainwright-Hsu vec-
tor field is, at least partially, sensitive to initial conditions: there is a dense subset E of the Kas-
ner circle K such that, for every point q ∈ E, arbitrarily closed to q, one can find two points
r1, r2 ∈ BIX such that the orbits of r1 and r2 will not have the same “asymptotic behavior” (for ex-
ample, lim sup

t→+∞
disth

(
Xt
B(r1) , Xt

B(r2)
)
> 1/10.

As we were finishing to write the present paper, M. Georgi, J. Härterich, S. Liebscher and K. Webster
put on the arXiv a preprint in which they prove that the period three orbits of f admit non-trivial stable
manifolds ([2]). At the end of this preprint, they claim that their techniques can be used to extend their
result to any periodic orbit of f , and even to any orbit of f which does not accumulate one any of the
three special points T1, T2, T3. Such a extension would imply our result.

While the paper was under review, M. Reiterer and E. Trubowitz put on the arXiv a paper in which
they prove that there is a full measure subsets of points on the Kasner circle which admit a non-empty
stable manifold ([7]). Their techniques do not seem to allow to obtain any precise information on the
geometry of the stable manifolds they get. Nevertheless, the hypothesis of their result is clearly much
more general than those of our main theorem. In particular, they are able to deal with points on the
Kasner circle whose orbits under the Kasner map come arbitrarily close to the special points.

1.3. Idea of the proof and organization of the paper. Let us try to sketch the key idea of the proof
of our main theorem 1.3. Let C be a closed forward-invariant aperiodic subset of the Kasner circle,
and denote by Ĉ the union of C and all the type II orbits connecting two points of C in B+. We will
construct a kind of Poincaré section adapted to Ĉ: a hypersurface with boundary MC which intersects
transversally every type II orbit connecting two points of C in B+. Theorem 1.3 will follow from the
existence of non-trivial local stable manifolds for the Poincaré map ΦC : MC → MC . We will use a
classical stable manifold theorem for hyperbolic compact set; so, we will be left to prove that the compact
set Ĉ ∩MC is a hyperbolic set for the Poincaré map ΦC . The key point is to understand the behavior
of the orbits of the Wainwright-Hsu vector field XB close to a point p ∈ C. Roughly speaking, we will
prove the following: when an orbit of XB passes close to a point p ∈ C, the distance of this orbit to the
mixmaster attractor A = K ∪ BII decreases super-linearly, while the drift of this orbit tangentially to A
is as small as wanted. We do not have any precise control of what happens to the orbits of XB far from
the Kasner circle, but we do not need to. Indeed, the duration of the excursion of the orbits ofXB outside
any given neighborhood of K is universally bounded. A consequence is that everything that happens
far from K is dominated by the super-linear contraction of the distance to A that occurs when an orbit
passes close to C. This will be enough to obtain the desired hyperbolicity result. As already explained,
the reason why we need to consider an aperiodic subset of K is purely technical: close to a point of K
which is not preperiodic under the Kasner map, we have a “nice” coordinate system which is convenient
to study precisely the behavior of the orbits of XB.

Let us now explain the organization of the paper. Consider a vector field X on some manifold and
a point p such that X(p) = 0. We say that X satisfies Sternberg’s condition at p if the non purely
imaginary eigenvalues of DX(p), counted with multiplicities, are linearly independent over Q. Takens
has proved a generalization of Sternberg’s theorem which states that, if X satisfies Sternberg’s condition
at p, there exists a C1 local “linearizing” coordinate system for X on a neighborhood of p. A precise
statement of this theorem will be given in section 2. The purpose of section 3 is to apply Takens’ theorem
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to the Wainwright-Hsu vector field. It will be proved that the Wainwright-Hsu vector field XB satisfies
Sternberg’s condition at some point p of the Kasner circle if and only if p is not preperiodic under the
Kasner map. In section 4, the “linearizing” coordinate system provided by Takens’ theorem will be used
to study the behavior of the orbits of the Wainwright-Hsu vector field close to a point of the Kasner circle
which is not periodic under the Kasner map. Now consider a closed forward-invariant aperiodic subset C
of the Kasner circleK is considered, and denote by Ĉ the union of C and all the type II orbits connecting
two points of C in B+. A Poincaré section MC adapted to Ĉ will be constructed in section 5; we will
denote by ΦC the corresponding Poincaré map. The existence of non-trivial stable manifolds for the
corresponding Poincaré map ΦC : MC →MC will be proved in section 6, using the results of section 4.
The proof of theorem 1.3 will be completed in section 7. Finally, the last section of the paper is devoted
to the proof of proposition 1.6.

Acknowledgements. I would like to thank Lars Andersson for some stimulating discussion, and for his
encouragements to write the present paper.

2. TAKENS’ LINEARIZATION THEOREM

Let X be a C∞ vector field on some manifoldM, and p be a point inM such that X(p) = 0. The
linear space TpM admits a unique decomposition

TpM = Es ⊕ Ec ⊕ Eu

where Es, Ec, Eu are DX(p)-invariant linear subspaces, the eigenvalues of DX(p)|Es have negative
real parts, the eigenvalues of DX(p)|Ec are purely imaginary, and the eigenvalues of DX(p)|Eu are
positive. We denote by s, c and u the dimensions of the linear subspaces Es, Ec and Eu.

Definition 2.1. The vector fieldX satisfies Sternberg’s condition at p if the eigenvalues ofDX(p)|Es⊕Eu
(counted with multiplicities) are linearly independent over Q.

F. Takens as proved the following generalization of the classical Sternberg linearization theorem:

Theorem 2.2 (see [11], page 144). Assume that X satisfies Sternberg’s condition at p. Then, for every
r ≥ 0, one can find a neighborhood U and a Cr coordinate system (x1, . . . , xs, y1, . . . , yc, z1, . . . , zu)
on U centered at p, such that, in this coordinate system, X reads:

(3) X =
s∑

i,j=1

ai,j(y1, . . . , yc)xj
∂

∂xi
+

c∑
i=1

φi(y1, . . . , yc)
∂

∂yi
+

u∑
i,j=1

bi,j(y1, . . . , yc)zj
∂

∂zi

where the eigenvalues of the matrix (ai,j(0, . . . , 0))1≤i,j≤s have negative real parts, the eigenval-
ues of the matrix

(∂φi
∂yj

(0, . . . , 0)
)

1≤i,j≤c are purely imaginary, and the eigenvalues of the matrix
(bi,j(0, . . . , 0))1≤i,j≤u have positive real parts.

Note that, in general, the size of the neighborhood U does depend on the integer r, and it is not
possible to find any C∞ local coordinate system centered at p such that (3) holds. In this sense, Takens’
theorem is not a true generalization of Sternberg’s theorem.

Also observe that the name ”Takens’ linearization theorem” is slightly incorrect: indeed, the vector
field X is not linear in the (x1, . . . , xs, y1, . . . , yc, z1, . . . , zu) coordinate system. Nevertheless, X de-
pends linearly on the coordinates x1, . . . , xs and z1, . . . , zu. Also note that the submanifold defined by
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the equation (y1, . . . , yc) = (0, . . . , 0) is invariant under the flow of X , and that the restriction of X
to this submanifold is linear. For (ζ1, . . . , ζc) 6= (0, . . . , 0), the submanifold defined by the equation
(y1, . . . , yc) = (ζ1, . . . , ζc) is not invariant under the flow of X , but the projection of X on the tangent
space of this submanifold is linear.

Of course, equality (3) together with the signs of the real parts of the eigenvalues of the matrices
(ai,j(0, . . . , 0))1≤i,j≤s,

(∂φi
∂yj

(0, . . . , 0)
)

1≤i,j≤c and (bi,j(0, . . . , 0))1≤i,j≤u implies that:

– the vectors ∂
∂x1

(p), . . . , ∂
∂xs

(p) span the linear subspace Es,
– the vectors ∂

∂y1
(p), . . . , ∂

∂yc
(p) span the linear subspace Ec,

– the vectors ∂
∂z1

(p), . . . , ∂
∂zu

(p) span the linear subspace Eu.

3. LINEARIZATION OF WAINWRIGHT-HSU VECTOR FIELD NEAR A POINT OF THE KASNER CIRCLE
WHICH IS NOT PREPERIODIC UNDER THE KASNER MAP

The purpose of this section is to apply Takens’ theorem to the Wainwright-Hsu vector field at a point
of the Kasner circle. For this purpose, we will need to characterize the points p on the Kasner circle
such that the Wainwirght-Hsu vector field XB satisfies Sternberg’s condition at p. We will see that these
are exactly the points p ∈ K which are not preperiodic under the Kasner map f . In order to relate the
arithmetic properties of the eigenvalues of the derivative of DXB(p) and the behavior of the orbit of p
under f , we will use the so-called Kasner parameter.

3.1. Kasner parameter. Let q = (Σ1,Σ2,Σ3, 0, 0, 0) be a point of the Kasner circle. The Kasner
parameter of q is the unique real number u = u(q) ∈ [1,∞] which satisfies the following equality:

(4)
(
2 + Σ1

)(
2 + Σ2

)(
2 + Σ3

)
=
−216 u2

(
1 + u

)2(
1 + u+ u2

)3 .

The map q 7→ u(q) is not one-to-one. Nevertheless, the point q is characterized by its Kasner parameter
up to permutations of the coordinates Σ1,Σ2,Σ3. More precisely, equality (4) together with the equation
of the Kasner circle (2) imply that:

(5)
(

2 + Σ1 , 2 + 2Σ2 , 2 + 2Σ3

) up to
=

permutation

(
−6u

1 + u+ u2
,

6(1 + u)

1 + u+ u2
,

6u(1 + u)

1 + u+ u2

)
.

Note that u =∞ if and only if q is one of the three special points T1, T2, T3. The main advantage of the
Kasner parameter is the fact that the Kasner map f admits a nice expression in terms of this parameter:
for every q ∈ K, one has u(f(q)) = f̄(u(q)) where f̄ : [1,+∞]→ [1,∞] is defined by

(6) f̄(u) =


∞ if u = 1 or∞

u− 1 if u ≥ 2

1
u−1 if 1 < u ≤ 2

(see, for example, [3]).
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3.2. Characterization of the points of the Kasner circle where Sternberg’s condition is satisfied.
The proposition below gives a necessary and sufficient condition for the Wainwright-Hsu vector fieldXB
to satisfy Sternberg’s condition at a point p ∈ K, in terms of the behavior of the orbit of p under the
Kasner map. The hypothesis of our main theorem 1.3 comes directly from this condition.

Proposition 3.1. Let p be a point of the Kasner circle K which is not one of the three special
points T1, T2, T3. The three following conditions are equivalent :

(1) the vector field XB satisfies Sternberg’s condition at p ;
(2) the Kasner parameter u(p) is neither a rational number, nor a quadratic irrational number1 ;
(3) the orbit of p under the Kasner map f is not preperiodic.

Proof. Denote by (Σ1,Σ2,Σ3, 0, 0, 0) the coordinates of p. Since p is not one of the three special points,
the derivative DXB(p) has two distinct negative eigenvalues, one zero eigenvalue, and one positive
eigenvalue. The three non-zero eigenvalues ofDXB(p) are equal to−(2+Σ1),−(2+Σ2) and−(2+Σ3).

Let us prove the equivalence between (1) and (2). The vector field XB satisfies Sternberg’s condition
at p if and only if the real numbers −(2 + Σ1), −(2 + Σ2) and −(2 + Σ3) are linearly independent
over Q. Using formula (5), one sees that this is equivalent to the fact that the real numbers u(p), 1+u(p)
and u(p)(1 + u(p)) are independent over Q. Clearly, this is equivalent to the fact the real number u(p)
is neither a rational number, nor a quadratic irrational number.

Now, let us prove the equivalence between (2) and (3). Recall that, for every q on the Kasner circle,
one has u(f(q)) = f̄(u(q)) where f̄ : [1,+∞] → [1,∞] is given by (6). Observe that both the set of
rational numbers and the set of irrational numbers are invariant under f̄ . So we can treat the case where
u(p) is rational and the case where u(p) is irrational separately.

First consider the case where u(p) is rational. Then it is very easy to prove that the orbit of u(p) under
f̄ “ends up” at∞. Now recall that u(q) =∞ if and only if q is one of the three special points. Hence the
orbit of p under f “ends up” at one of the three special points. In particular, the orbit of p is preperiodic.

Now consider the case where u(p) is irrational. Looking again at (6), one sees that the orbit of u(p)
under f̄ returns an infinite number of times in the interval (1, 2]. Let k : (1,∞) \ Q → N \ {0} be the
return time function of f̄ in the interval (1, 2], and F : (1, 2] \Q→ (1, 2] \Q be the first return map of
f̄ in the interval (1, 2], that is

k(u) = inf{n > 0 such that f̄n(u) ∈ (1, 2]} and F (u) = f̄k(u)(u).

Then,

k(u) =

⌊
1

u− 1

⌋
− 1 and F (u) =

{
1

u− 1

}
+ 1,

where bxc is the integer part of x and {x} := x − bxc is the fractional part of x. The point p is
preperiodic under the Kasner map f if and only if either u(p) is a preperiodic under f̄ , that is if and only
if f̄k(u(p))(u(p)) is preperiodic under F . Now observe that F is just the Gauss map u 7→

{
1
u

}
conjugated

by the translation u 7→ u+1, and that k(u−1)+1 is the first term of the continuous development fraction
of u. On the one hand, the preperiodic points of the Gauss map u 7→

{
1
u

}
are exactly the real numbers

u ∈ (0, 1] such that the sequence of integers which appear in the continuous fraction development of u
is preperiodic. On the other hand, it is well-known that the continuous fraction development of u ∈ R is

1We recall that a quadratic irrational number is an irrational root of some quadratic equation whose coefficients are integers.
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preperiodic if and only if u is a quadratic irrational number. This shows that the orbit of p is a preperiodic
under the Kasner map f if and only if u(p) is a quadratic irrational number. �

3.3. Linearization of the Wainwright-Hsu vector field. According to proposition 3.1, if p is not a
preperiodic point for the Kasner map, the hypotheses of Takens linearization theorem 2.2 are satisfied by
XB at p. This theorem provides us with a local coordinate system on a neighborhood of p in which XB
is “almost linear”:

Proposition 3.2. Let p be a point of the Kasner circle K which is not preperiodic under the Kasner map
(in particular, p is not a special point). Then there exists a neighborhood U of p in B and aC1 coordinate
system (x1, x2, y, z) on U , centered at p, and such that, in this coordinate system, XB reads:

(7) XB (x1, x2, y, z) = λs1(y)x1
∂

∂x1
+ λs2(y)x2

∂

∂x2
+ λu(y)z

∂

∂z

where λs1(y) < λs2(y) < 0 and λu(y) > 0 for every y.

Remarks 3.3. Let U be a neighborhood of the point p and (x1, x2, y, z) be a C1 coordinate system on U
centered at p, such that XB satisfies (7) with λs1(y) < λs2(y) < 0 and λu(y) > 0. Then:

(i) The vector field XB vanishes on the one-dimensional submanifold {x1 = x2 = z = 0} and
nowhere else. It follows that this submanifold is the intersection of the Kasner circle with U :

K ∩ U = {x1 = x2 = z = 0}.

(ii) For every y, the real numbers λs1(y), λs2(y), λu(y) are the three non-zero eigenvalues of the
derivative of XB at the point of coordinates (0, 0, y, 0) ∈ K. Recall that this derivative also
has one zero eigenvalue (corresponding to the direction of the Kasner circle).

(iii) For every ζ, the three-dimensional sub-manifold {y = ζ} is invariant under the flow of XB and
the restriction of XB to this submanifold is linear.

(iv) The three-dimensional submanifolds {x1 = 0}, {x2 = 0} and {z = 0} are invariant under the
flow of XB, and contain K ∩ U . It follows that these submanifolds coincide up to permutation
with the submanifolds {N1 = 0}, {N2 = 0} and {N3 = 0}. As a consequence, the two-
dimensional submanifolds {x1 = x2 = 0}, {x1 = z = 0} and {x2 = z = 0} coincide up to
permutation with the submanifolds {N1 = N2 = 0}, {N1 = N3 = 0} and {N2 = N3 = 0}. In
particular,

(BII ∩ K) ∩ U = {x1 = x2 = 0} ∪ {x1 = z = 0} ∪ {x2 = z = 0}.

(v) The right-hand side of (7) is unchanged if one replaces x1 (resp. x2 and z) by −x1 (resp. by
−x2 and −z). Therefore, we may assume that

B+ ∩ U = {x1 ≥ 0 , x2 ≥ 0 , z ≥ 0}.

(vi) On the one hand, according to item (i), the metric induced on the one-dimensional submanifold
K∩U by the riemannian metric (dx1)2 + (dx2)2 + (dy)2 + (dz)2 is simply (dy)2. On the other
hand, the right-hand side of (7) is unchanged if one replaces y by ϕ(y) where ϕ : R → R is
any diffeomorphism such that ϕ(0) = 0. Therefore, up to replacing the coordinate y by ϕ(y) for
some appropriate diffeomorphism ϕ, we may assume that the metrics induced on the piece of
circle K∩U by the riemannian metrics (dx1)2 + (dx2)2 + (dy)2 + (dz)2 andby the riemannian
metric h = (dΣ1)2 + (dΣ2)2 + (dΣ3)2 + (dN1)2 + (dN2)2 + (dN3)2 coincide.
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Proof of proposition 3.2. The derivative DXB(p) has two negative, one zero, and one positive eigen-
value. According to proposition 3.1, the vector field XB satisfies Sternberg’s condition at p. There-
fore, a crude application of Takens’ theorem 2.2 implies that there exists a C1 local coordinate system
(x1, x2, y, z) on a neighborhood U of p in B, centered at p, such that :

(8) XB(x1, x2, y, z) =
2∑
i=1

∑
j=1

2ai,j(y)xj
∂

∂xi
+ φ(y)

∂

∂y
+ b(y)z

∂

∂z

for some real valued functions φ, a1,1, a1,2, a2,1, a2,2, b defined on a neighborhood of 0 in R. Moreover,
the eigenvalues of the matrix (ai,j(0)) are negative, and b(0) is positive. Replacing U by a smaller
neighborhood of p if necessary, we can assume that the three Taub points T1, T2, T3 are not in U .

Now, (8) implies that the curve {x1 = x2 = z = 0} is the only curve in U containing the point p,
invariant under the flow of XB, and such that DXB(p) vanishes on the tangent space at p of this curve.
Hence, the curve {x1 = x2 = z = 0} has to be the intersection of the Kasner circle K with U . Since XB
vanishes on K, it follows that φ = 0.

For ζ small enough, let qζ be the point of coordinates (x1, x2, y, z) = (0, 0, ζ, 0). This is a point of the
Kasner circle K, which is not a Taub point. Hence, the derivative DX(qζ) has four distinct eigenvalues :
two distinctive negative eigenvalues λs1(ζ) < λs2(ζ) < 0, one zero eigenvalue associated to the direction
of the Kasner circle, and one positive eigenvalue λu(ζ) > 0. The set (y = ζ) is a three-dimensional
manifold, transversal to the Kasner circle. Looking at (8), we see that this three-dimensional submanifold
is invariant under the flow of XB, and that the restriction of XB to this invariant manifold is linear.This
shows that b(ζ) = λu(ζ), and that λs1(ζ) and λs2(ζ) are the eigenvalues of the matrix (ai,j(ζ))i,j=1,2.
Since λs1(ζ) and λs2(ζ) are distinct, there exists a linear change of coordinates (x1, x2, z) → (x̂1, x̂2, z)
on the submanifold (y = ζ), so that

XB(x̂1, x̂2, ζ, z) = λs1(ζ)x̂1
∂

∂x̂1
+ λs2(ζ)x̂2

∂

∂x̂2
+ λu(ζ)z

∂

∂z
.

Since eigenvalues and eigendirections of the point qζ depend in a smooth way of ζ, one may perform the
above change of coordinates simultaneously for every ζ, and get a C1 coordinate system (x̂1, x̂2, y, z)
defined on U , such that

XB(x̂1, x̂2, y, z) = λs1(y)x̂1
∂

∂x̂1
+ λs2(y)x̂2

∂

∂x̂2
+ λu(y)z

∂

∂z
.

The proposition is proven. �

3.4. Choice of a linearizing coordinate system. From now on, for every point p of the Kasner cir-
cle which is not preperiodic under the Kasner map, we fix a neighborhood Up of p in B, and a C1

local coordinate system (xp1, x
p
2, y

p, zp) on Up, centered at p, such that, in this coordinate system, the
Wainwright-Hsu vector field XB reads:

(9) XB (xp1, x
p
2, y

p, zp) = λs1(yp)xp1
∂

∂xp1
+ λs2(yp)xp2

∂

∂xp2
+ λu(yp)zp

∂

∂zp

with λs1(yp) < λs2(yp) < 0 and λu(yp) > 0. According to item (ii) of remarks 3.3, the real numbers
λs1(yp), λs2(yp), λu(yp) are the non-zero eigenvalues of the point (0, 0, yp, 0). According to items (i),
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(iv), (v) of remarks 3.3, up to changing the sign of the coordinates xp1, xp2 and zp, we may (and we will)
assume that

K ∩ Up = {xp1 = xp2 = z = 0}(10)
(BII ∪ K) ∩ Up = {xp1 = xp2 = 0} ∪ {xp1 = zp = 0} ∪ {xp2 = zp = 0},(11)

B+ ∩ Up = {xp1 ≥ 0 , xp2 ≥ 0 , zp ≥ 0}(12)

Note that the derivative DXB(q) has three non-zero eigenvalues for every point q ∈ K ∩ Up; this shows
that the neighborhood Up is disjoint from the three special points. We will consider the riemannian
metric gp on Up defined by

(13) gp := (dxp1)
2

+ (dxp2)
2

+ (dyp)2 + (dzp) 2.

According to item (vi) of remarks 3.3, up to replacing the coordinate yp by ϕ(yp) for some appropriate
diffeomorphism ϕ, we may (and we will) assume that gp induces the same metric on the piece of Kasner
circle K ∩ Up as the riemannian metric h = (dΣ1)2 + (dΣ2)2 + (dΣ3)2 + (dN1)2 + (dN2)2 + (dN3)2.

4. DULAC MAP FOR WAINWRIGHT-HSU VECTOR FIELD NEAR A POINT OF THE KASNER CIRCLE
WHICH IS NOT PREPERIODIC UNDER THE KASNER MAP

Let p be a point of the Kasner circle which is not preperiodic for the Kasner map. The purpose of the
present section is to analyze the behavior of the orbits of the Wainwright-Hsu vector field XB close to p.
More precisely, we want to consider an orbit of XB which passes close to p, and to study the evolution
of the distance from this orbit to the mixmaster attractor A = K∪BII, as well as the drift of this orbit in
the direction tangent to the mixmaster attractor.

4.1. The flow of XB inside Up. We consider the neighborhood Up, and the coordinate system
(xp1, x

p
2, y

p, zp) defined in subsection 3.4. Using the expression (9), one can calculate explicitly the
time tmap Xt

B of the flow of the Wainwright-Hsu vector field XB in the (xp1, x
p
2, y

p, zp) coordinate sys-
tem. It reads

(14) Xt
B (xp1, x

p
2, y

p, zp) =
(
xp1e

λs1(yp)t , xp2e
λs2(yp)t , yp , zpeλ

u(yp)t
)
.

Of course, this expression is only valid as long as the orbit remains in the neighborhood Up.

4.2. The box V p. Now, we fix some constants α < β and γ > 0, and we consider the subset V p

of Up ∩ B+ defined by:

(15) V p = V p(α, β, γ) = {0 ≤ xp1 ≤ γ , 0 ≤ xp2 ≤ γ , 0 ≤ zp ≤ γ and α ≤ yp ≤ β}.
We assume that α, β, γ are small enough, so that V p is contained in the interior of Up.

Remark 4.1. The set V p is a neighborhood of the point p in B+ if and only if α < 0 < β. It is important
to note that the results of the present section are valid even if p is not in V p.

In the (xp1, x
p
2, y

p, zp) coordinate system, the set V p is a 4-dimensional box, i.e. the cartesian product
of four closed intervals. The boundary of V p is made of eight faces. Three of these eight faces will play
an important role in the remainder of the paper:

(16) Mp
1 := V p ∩ {xp1 = γ} Mp

2 := V p ∩ {xp2 = γ} Np := V p ∩ {zp = γ}.
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Looking at (9), we notice that XB is transversal to Mp
1 , Mp

2 and Np, and is tangent to the five other faces
of V p. Moreover, we notice that XB is pointing inward V p along Mp

1 and Mp
2 ; it is pointing outward V p

along Np. It follows that:

• an orbit of XB can enter in V p by crossing either the face Mp
1 or by crossing the face Mp

2 ;
• an orbit of XB can only exit V p by crossing the face Np.

4.3. Behavior of type II orbits. We will study the behavior of the orbits of XB in V p. First, we focus
our attention on type II orbits. We want to understand which type II orbit intersect the hypersurfaces
(with boundary and corners) Mp

1 , Mp
2 and Np. Recall that every type II orbit O of XB is a heteroclinic

orbit connecting a point α(O) ∈ K \ {T2, T2, T3} to the point ω(O) = f(α(O)) ∈ K \ {T2, T2, T3}.

Proposition 4.2. Let q be a point B+
II, and denote by O the orbit of q. Let α(q) = α(O) denote the

unique α-limit point of O, and ω(q) = ω(O) = f(α(O)) denote the unique ω-limit point of O.

(1) The orbit O intersects the hypersurface Np if and only if the point α(q) is in V p.
(2) The orbit of O intersects the hypersurface Mp

1 ∪M
p
2 if and only if the point ω(q) is in V p.

Proof. We prove the first statement; the second one follows from similar arguments. Of course, we will
work in the (xp1, x

p
2, y

p, zp) coordinate system. According to (10), (11), (15) and (16),

K ∩ V p = {xp1 = xp2 = 0 , α ≤ yp ≤ β , zp = 0},
BII ∩Np = {xp1 = xp2 = 0 , α ≤ yp ≤ β , zp = γ}.

Suppose that the orbit O intersects the hypersurface Np at some point q̄ = (0, 0, ζ, γ), with α ≤ ζ ≤ β.
Then, according to (14), the past orbit of q̄ is contained in V p, and converges to the point α(q) =
(0, 0, ζ, 0) ∈ K ∩ V p. In particular, the point α(q) is in V p. Conversely, suppose that the point α(q) is
in V p. Then α(q) = (0, 0, ζ, 0) for some ζ ∈ [α, β]. Using again (14), we see that the only orbit of XB
in V p converging towards the point (0, 0, ζ, 0) as t→ −∞ is the curve t 7→ (0, 0, ζ, eλ

u(ζ)t). Hence, the
orbit O intersects the hypersurface Np at the point q̄ = (0, 0, ζ, γ). �

This proposition allows to define two maps

αp : B+
II ∩N

p −→ K ∩ V p ωp : B+
II ∩ (Mp

1 ∪M
p
2 ) −→ K ∩ V p

q 7−→ α(q) q 7−→ ω(q)

The map αp is one-to-one (there is only one type II orbit in B+ which “starts” at a given point of
K\{T2, T2, T3}), whereas the map ωp is two-to-one (there are two type II orbits in B+ which “arrive” at
a given point of K \ {T2, T2, T3}). The restriction of ωp to B+

II ∩M
p
1 (resp. to B+

II ∩M
p
2 ) is one-to-one.

Proposition 4.3. The maps αp and ωp are local isometries with respect to the metrics induced on
B+

II∩N
p, B+

II∩(Mp
1∪M

p
2 ) andK∩V p by the riemannian metric gp = (dxp1)2+(dxp2)2+(dyp)2+(dzp)2.

Proof. The proof of proposition 4.2 shows that, in the (xp1, x
p
2, y

p, zp) coordinate system, the map αp

reads αp(0, 0, yp, γ) = (0, 0, yp, 0). Similarly, the map ωp reads ωp(γ, 0, yp, 0) = (0, 0, yp, 0). �
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4.4. The Dulac map ∆p
1 : Mp

1 → Np. Now, we want to study the behavior of arbitrary orbits of XB
which enter in V p. Let q be a point on the face Mp

1 . Denote by (γ, xp2, y
p, zp) the coordinates of q. If the

zp > 0 (which is typically the case if q ∈ BIX), then (14) shows that the forward orbit of q will eventually
exit V p by crossing the face Np. If zp = 0 (which is typically the case if q ∈ BII), then (14) shows
that the forward orbit of q will remain in V p forever. It will converge towards the point ω(q) ∈ K ∩ V p.
According to proposition 4.2, the heteroclinic orbit Oω(q),f(ω(q)) will eventually exit V p, by crossing the
face Np. So, we may define a map ∆p

1 : Mp
1 −→ Np as follows :

• if zp > 0 then ∆p
1(q) is the first intersection point of the orbit of q with the hypersurfaceNp ;

• if zp = 0 then ∆p
1(q) is the first (and unique) intersection point of the type II heteroclinic orbit

Oω(q),f(ω(q)) with the hypersurface Np.

We call ∆p
1 a Dulac map since it is the exact analog, in our situation, of the classical Dulac maps used to

study planar vector fields. Formula (14) show that, in the (xp1, x
p
2, y

p, zp) coordinate system, the map ∆p
1

reads :

∆p
1 (γ , xp2 , y

p , zp) =

γ.(zp
γ

)− λs1(yp)
λu(yp)

, xp2.

(
zp

γ

)− λs2(yp)
λu(yp)

, yp , γ

 if zp > 0(17)

∆p (γ , xp2 , y
p , 0) = (0 , 0 , yp , γ)(18)

Remark 4.4. Given a point q in Mp
1 such that zp(q) > 0, one can consider the exit time of q, that is the

real number t(q) such that ∆p
1(q) = Xt(q)(q). Using (14), it is easy to see

t (γ , xp2 , y
p , zp) = − 1

λu(yp)
log

(
zp

γ

)
For every q ∈Mp

1 , we decompose TqMp as a direct sum of two linear subspaces F sq ⊕ F uq where

F sq := R.
∂

∂xp2
(q)⊕ R.

∂

∂zp
(q)(19)

F uq := R.
∂

∂yp
(q).(20)

Similarly, for every r ∈ Np, we decompose TrNp as a direct sum of two linear subspaces Gsr ⊕ F ur
where

Gsr := R.
∂

∂xp1
(r)⊕ R.

∂

∂xp2
(r)(21)

Gur := R.
∂

∂yp
(r).(22)

We can now state the properties of the Dulac map ∆p
1 which will be the core of our proof of theorem 1.3:

Proposition 4.5. The Dulac map ∆p
1 : Mp

1 → Np is C1. Moreover, for every point q ∈Mp
1 ∩ {zp = 0},

the derivative of the map ∆p
1 at q satisfies:

• D∆p
1(q).v = 0 for every vector v ∈ F sq ;

• D∆p
1(q) maps F uq on Gu

∆p
1(q)

, and ‖D∆p
1(q).v‖gp = ‖v‖gp for every vector v ∈ F uq .
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This proposition roughly says the following: when an orbit of XB passes close to the point p ∈ K, the
distance from this orbit to the mixmaster attractorA = K∪BII is contracted super-linearly (this distance
is measured by the coordinates xp1, xp2 and zp), whereas there is no drift in the direction tangent to the
attractor (this drift is measured by the coordinate yp). The key point of the proof of proposition 4.5 is the
following elementary observation:

Lemma 4.6. For every yp, we have
∣∣∣∣λs1(yp)

λu(yp)

∣∣∣∣ > 1 and
∣∣∣∣λs2(yp)

λu(yp)

∣∣∣∣ > 1.

This lemma says that, at every point q̄ of K \ {T2, T2, T3}, the positive eigenvalue of the derivative
DX(q̄) is dominated by the contracting eigenvalues.

Proof of lemma 4.6. Fix yp, and denote by q be the point of coordinates (0, 0, yp, 0) in the (xp1, x
p
2, y

p, zp)
coordinate system. Denote by (Σ1,Σ2,Σ3, 0, 0, 0) the coordinates of q in the Wainwright-Hsu coordinate
system, and by u the Kasner parameter of q. The real numbers λs1(yp), λs2(yp), λu(yp) are the three non-
zero eigenvalues the derivativeDXB(q). Hence, these numbers are equal up to permutation to−(2+Σ1),
−(2 + Σ2), −(2 + Σ3). Using (5) and the inequalities λs1(yp) < λs2(yp) < 0 < λu(yp), we deduce that

(λs1(yp) , λs2(yp) , λu(yp)) =

(
−6u(1 + u)

1 + u+ u2
,
−6(1 + u)

1 + u+ u2
,

6u

1 + u+ u2

)
.

The lemma follows since 1+u
u > 1 and (1 + u) > 1 for every u ≥ 1. �

Proof of proposition 4.5. The fact that ∆p
1 is C1 (and even analytical) in restriction to Mp

1 ∩ {zp > 0}
is an immediate consequence of formula (17). The fact that ∆p

1 is C1 on Mp
1 ∩ {zp = 0} follows

from (17), (18) and lemma 4.6. The same ingredients actually show that, for every point q ∈Mp∩{zp =
0},

D∆p
1(q).

∂

∂xp2
(q) = D∆p

1(q).
∂

∂zp
(q) = 0 and D∆p

1(q).
∂

∂yp
(q) =

∂

∂yp
(∆p

1(q)).

The proposition follows. �

Remark 4.7. We do not know if ∆p
1 is C1+ε for any given ε > 0, unless we have some a priori lower

bounds for the distance between the ratios λs1(yp)
λu(yp) and λs2(yp)

λu(yp) and 1. This is the reason why, in the state-
ment of theorem 1.3, we cannot guarantee that the stable manifold W s(q) contains a C1+ε-embedded
disc for any given ε. Actually such an ε exists for every q but it does depend on q, and tends to 0 if q
approaches one of the three special points tends to 0.

4.5. The Dulac map ∆p
2 : Mp

2 → Np. The coordinates xp1 and xp2 play similar roles in the expression of
the vector fieldXB and in the definition of V p. So, we have to consider a second Dulac map ∆p

2 : Mp
2 −→

Np defined as follows. Let q be a point on the face Mp
1 . Denote by (γ, xp2, y

p, zp) the coordinates of q.

• if zp(q) > 0 then ∆p
2(q) is the first intersection point of the orbit of q with the hypersurfaceNp ;

• if zp(q) = 0 then ∆p
2(q) is the first (and unique) intersection point of the type II heteroclinic orbit

Oω(q),f(ω(q)) with the hypersurface Np.
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In the (xp1, x
p
2, y

p, zp) coordinate system, the Dulac map ∆p
2 reads:

∆p
2 (xp1 , γ , y

p , zp) =

xp1.(zpγ
)− λs1(yp)

λu(yp)

, γ.

(
zp

γ

)− λs2(yp)
λu(yp)

, yp , γ

 if zp > 0(23)

∆p
2 (xp1 , γ , y

p , 0) = (0 , 0 , yp , γ)(24)

For every q ∈Mp
2 , we will write TqM

p
2 as a direct sum of two linear subspaces F sq ⊕ F uq where

F sq := R.
∂

∂xp1
(q)⊕ R.

∂

∂zp
(q)(25)

F uq := R.
∂

∂yp
(q).(26)

Then, we can summarize the key properties of the map ∆p
2 as follow :

Proposition 4.8. The map ∆p
2 : Mp

2 → Np is C1. Moreover, for every q ∈ Mp
2 ∩ {zp = 0}, the

derivative of of the map ∆p
2 at q satisfies :

• D∆p
2(q).v = 0 for every vector v ∈ F sq ;

• D∆p
2(q) maps F uq on Gu

∆p
2(q)

, and ‖D∆p
2(q).v‖gp = ‖v‖gp for every vector v in F uq .

5. CONSTRUCTION OF A “POINCARÉ MAP” ASSOCIATED TO A CLOSED FORWARD-INVARIANT
APERIODIC SET OF THE KASNER CIRCLE

From now on until the end of section 7, we consider a closed forward-invariant aperiodic subset C of
the Kasner circle K.

Observe that C is necessarily totally discontinuous. Indeed the points of K that are preperiodic under
the Kasner map f are dense in K (this can be proved in several different ways; this follows for example
the equivalence 2⇔ 3 of proposition 3.1). We shall denote by Ĉ the union of C and all the type II orbits
connecting two points of C:

Ĉ := C ∪
⋃
q∈C
Oq,f(q).

We want to prove that, for every point q ∈ C, the stable manifold W s(q) contains a 3-dimensional disc
(see definition 1.2 and theorem 1.3). To this end, we will consider a kind of “Poincaré section” for Ĉ,
and study the Poincaré map associated with this section2.

For every p ∈ C, we consider a neighborhood Up of p, and a local coordinate system (xp1, x
p
2, y

p, zp)
on Up, as in the previous section. For each p ∈ C, we choose αp0 < 0 < βp0 and γp0 > 0 small enough,
so that

V p
0 := V p(αp0, β

p
0 , γ

p
0) = {0 ≤ xp1 ≤ γ

p
0 , 0 ≤ xp2 ≤ γ

p
0 , 0 ≤ zp ≤ γp0 and αp0 ≤ y

p ≤ βp0}.
is contained in the interior ofUp. Up to slightly modifying αp0, β

p
0 , γ

p
0 we can assume that the boundary of

V p
0 is disjoint from C (i.e that the points of coordinates (0, 0, α, 0) and (0, 0, β, 0) in the (xp1, x

p
2, y

p, zp)

2The set Ĉ cannot admit a true Poincaré section, since it contains some singularities of XB (namely, the points of C).
Nevertheless, we will consider a hypersurface N such that every type II orbit in Ĉ intersects N transversally. The hypersurface
N will play the role of a Poincaré section.
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coordinate system are not in C): this is possible since C is totally discontinuous. Observe that V p
0 is a

neighborhood of p, since αp0 < 0 < βp0 (see remark 4.1).

SinceC is compact, one can find a finite number of points p1, . . . , pn ∈ C such that the neighborhoods
V p1

0 , . . . , V pn
0 cover C. Now, we modify these neighborhoods in order to make them pairwise disjoint:

• we set (αp1 , βp1 , γp1) := (αp10 , β
p1
0 , γp10 ), and V p1 := V p1(αp1 , βp1 , γp1) = V p1

0 ;
• then, we can find some constants α2, β2, γ2 such that V p2 := V p2(α2, β2, γ2) is contained in
V p2

0 \ V p1 , and such that C ∩ (V p2
0 \ V p1) is contained in the interior of V p2 ;

• then, we can find some constants α3, β3, γ3 such that V p3 := V p3(α3, β3, γ3) is contained in
V p3

0 \ (V p1 ∪ V p2), and such that C ∩ (V p3
0 \ (V p1 ∪ V p2)) is contained in the interior of V p3 ;

• etc.

At the end of this process, we get n pairwise disjoint domains V p1 , . . . , V pn , such that C is contained in
the interior of V p1 ∪ · · · ∪ V pn . For each i, V pi is contained in the interior of Upi , and there are some
constants αi, βi, γi such that V pi = V pi(αi, βi, γi). Hence, the result of section 4 apply to V pi . It may
happen that, for some i, the point pi is not in V pi (i.e. that αi or βi is non-positive), but we do not care.

Now, we denote

V C := V p1 t · · · t V pn ,

MC
1 := Mp1

1 t · · · tM
pn
1 ,

MC
2 := Mp1

2 t · · · tM
pn
2 ,

MC := MC
1 ∪MC

2

NC := Np1 t · · · tNpn .

Then V C is a neighborhood of C in B+. The hypersurfaces MC
1 , MC

2 and NC are transverse to XB. An
orbit of XB can only enter in V C by crossing MC = MC

1 ∪MC
2 , and can only exit V C by crossing NC .

Moreover, according to proposition 4.2, we have the following important properties :

Proposition 5.1. Every type II orbit whose ω-limit point is inC intersectsMC . Every type II orbit whose
α-limit point is in C intersects NC .

We will see MC as a kind of “Poincaré section” for Ĉ. Let us define the “Poincaré map” Φ associated
to this section. First, we consider the “Dulac map”

∆C : MC → NC

defined by ∆C
|Mpi

1

= ∆pi
1 and ∆C

|Mpi
2

= ∆pi
2 . For q ∈MC :

• if the forward orbit of q exits V C by crossing NC (which is typically the case if q ∈ BIX), then
∆C(q) is by definition the first intersection point of the orbit of q with the hypersurface NC ;
• if the forward orbit of q remains in V C forever (which is typically the case for every q ∈ BII),

then ∆C(q) is the first intersection point of the type II heteroclinic orbit Oω(q),f(ω(q)) with the
hypersurface NC .

Now, we consider the “transition map”

ΘC : NC →MC
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partially defined as follows. Given a point q in NC , if the forward orbit of q re-enters in V C , then ΘC(q)
is the first point of this forward orbit of q which is in V C (this point is automatically on the hypersurface
MC); otherwise ΘC(q) is not defined. The “Poincaré map” ΦC associated with the section MC is by
definition the product of the “Dulac map” ∆C and the “transition map” ΘC :

ΦC := ΘC ◦∆C : MC →MC .

In the next section, we will study the dynamics of the Poincaré map ΘC . For this purpose, we will use
a riemannian metric on gC on B such that, for i = 1, . . . , n,

gC|Vi = gpi = (dxpi1 )2 + (dxpi2 )2 + (dypi)2 + (dzpi)2.

6. STABLE MANIFOLDS FOR THE POINCARÉ MAP ASSOCIATED TO A CLOSED
FORWARD-INVARIANT APERIODIC SET OF THE KASNER CIRCLE

The purpose of this section is to prove that, for every point q ∈ Ĉ ∩MC , the stable manifold of q for
the “Poincaré map” ΦC contains a two-dimensional disc. To this end, we will prove that Ĉ ∩MC is a
hyperbolic set for the map ΦC , and we will use a classical result on stable manifolds for hyperbolic sets.

Definition 6.1. Let (M, g) be a riemannian manifold and Φ : M → M be a C1 map. A hyperbolic
set for the map Φ is a compact Φ-invariant subset C of M such that, for every q ∈ C, there is splitting
TqM = F sq ⊕ F uq which depends continuously on q and such that, for some constant µ ∈ (0, 1) and
ν > 1 :

DΦ(q).F sq ⊂ F sΦ(q) and ‖DΦ(x).v‖ ≤ µ‖v‖ for every q ∈ C and v ∈ F sq(27)

DΦ(q).F uq = F uΦ(q) and ‖DΦ(q).v‖ ≥ ν‖v‖ for every q ∈ C and v ∈ F uq .(28)

The dimension of the vector space F sq is called the index of C. The constant µ is called a contraction
rate of Φ on C.

Theorem 6.2. (see e.g. [6, page 167]) Let Φ : M → M be a C1 map of a manifold M , and C be a
compact subset of M which is a hyperbolic of index s for the map Φ. Then, for every ε small enough, for
every q ∈ C, the set

W s
ε (Φ, q) := {r ∈M | dist(Φn(r),Φn(r)) ≤ ε for every n ≥ 0}

is a C1 embedded s-dimensional disc, tangent to F sq at q, depending continuously on q (for the C1

topology on the space of embeddings). Moreover, if µ is a contraction constant for Φ on C, then there
exists a constant κ such that, for every ε small enough, for every q ∈ C and every r ∈W s

ε (Φ, q),

distg (Φn(r),Φn(q)) ≤ κµn.

We want to apply this theorem to the Poincaré map ΦC : MC → MC . So we need to prove that
Ĉ ∩MC is a hyperbolic set for ΦC . Recall that MC = MC

1 ∪MC
2 where MC

1 = Mp1
1 t · · · tM

pn
2 and

MC
2 = Mp1

2 t · · · tM
pn
2 . For every q ∈ MC , we have already defined a splitting TqMC = F sq ⊕ F uq

in section 4 (recall that MC = (Mp1
1 ∪ · · · ∪M

pn
1 ) ∪ (Mp1

2 ∪ · · · ∪M
pn
2 ) and observe that q is not in

(Mp1
1 ∪· · ·∪M

pn
1 )∩(Mp1

2 ∪· · ·∪M
pn
2 )). It remains to prove that ΦC satisfies (27) and (28) with respect

to these splitting. For this purpose, we will use the decomposition of ΦC as a product :

ΦC = ΘC ◦∆C .
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The behavior of the derivative of “Dulac map” ∆C was already studied in section 4 ; more precisely, we
can rephrase propositions 4.5 and 4.8 as follows :

Proposition 6.3. The map ∆C : MC → NC is C1. Moreover, for every q ∈ Ĉ ∩MC , the derivative of
D∆C(q) : TqM → T∆C(q)N of the map Φ at q satisfies :

• D∆C(q).v = 0 for every vector v ∈ F sq ;
• D∆C(q) maps F uq on Gu

∆C(q)
, and ‖D∆C(q).v‖gp = ‖v‖gp for every vector v in F uq .

It remains to study the behavior of the derivative of the “transition map” ΘC : NC →MC . We recall
that ΘC(q) is well-defined only if the forward orbit of q intersects MC . So our first task is to show that
ΘC is well-defined at least on a neighborhood of Ĉ ∩NC in NC .

Proposition 6.4. There exists a neighborhood V of Ĉ ∩ NC in NC , such that, for every q ∈ V , the
orbit of q intersects MC after some time t(q) which depends in a C1 way on q. The map ΘC is well-
defined and C1 on V . Moreover, there exists ν > 1 such that, for every q ∈ Ĉ ∩ NC , the derivative
DΘC(q) : TqN

C → TΘC(q)M
C satisfies

• DΘC(q).Guq = F u
ΘC(q)

and ‖DΘC(q).v‖g ≥ ν‖v‖g for every v ∈ Guq .

Proof. Consider a point q ∈ Ĉ ∩ NC . By proposition 5.1, the orbit of q intersects MC at some point
r ∈ Ĉ ∩MC . Now, recall that :

• N , MC
1 , MC

2 are C1 hypersurfaces with boundary that are transversal to the orbits of XB ;
• V was chosen so that C is contained in the interior of V . This implies that Ĉ does not intersect

neither the boundary of the hypersurface N , nor the boundary of hypersurface MC
1 and MC

2 . It
follows that Ĉ does not intersect MC

1 ∩MC
2 . Hence, q is in the interior of N , and r is in the

interior of MC
1 or MC

2 .

This implies the existence of a neighborhood Vq of q in N such that, for every q′ ∈ V , the forward orbit
of q′ intersects MC after some time t(q′) which depends in a C1 way on q′. By definition of Θ, for every
q′ ∈ Vq, we have Θ(q′) := X

t(q′)
B (q′). In particular, Θ is well-defined and C1 on Vq. This proves the

two first statements of the proposition.

Since BII is invariant under the flow of XB, the map ΘC maps BII ∩NC on BII ∩MC . Now, observe
that, for every q ∈ BII ∩NC , the direction Guq is nothing but the tangent space of BII ∩NC at q, and the
direction F u

ΘC(q)
is nothing but the tangent space of BII ∩MC at ΘC(q). This shows that dΘC(q) maps

Gug on F u
ΘC(q)

for every q ∈ Ĉ ∩NC .

We are left to prove the existence of a constant ν > 1 such that ‖DΘC(q).v‖g ≥ ν‖v‖g for every
q ∈ Ĉ ∩NC and every v ∈ Guq . For this purpose, we will use the maps

α : BII ∩NC −→ K ∩ V C and ω : BII ∩MC −→ K ∩ V C .

We recall that α maps a point r ∈ BII ∩ NC to the α-limit point of the orbit of r, and that ω maps a
point s ∈ BII ∩MC to the ω-limit point of the orbit of s (see section 4). We also recall that α is a C1

local isometry for the metrics induced by g on BII ∩NC and K ∩ V C , and that ω is a C1 local isometry
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for the metrics induced by g on BII ∩MC and K ∩ V C (proposition 4.3). Finally, we observe that, for
r ∈ BII ∩NC ,

ω(ΘC(r)) = ω(r) = f(α(r)).

The first equality is due to the fact that ΘC(r) and r are on the same orbit ; the second one is an immediate
consequence of the definition of the Kasner map f . This shows that the last statement of proposition 6.4
is equivalent to the following statement about the Kasner map : there exists a constant ν > 1 such that,
for every p ∈ C and every v ∈ TpK, one has ‖Df(p).v‖g ≥ ν.|v|g.

This last statement is an immediate consequence of the elementary properties of the Kasner map, and
of our choice of the riemannian metric gC . Indeed, the riemannian metric gC was chosen so that it
induces the same metric on K∩V C as the euclidean metric h = (dΣ1)2 + (dΣ2)2 + (dΣ3)2 + (dN1)2 +
(dN2)2+(dN3)2 (see the end of subsection 3.4 and the end of section 5). And, as we already mentionned
in the introduction, since C is a compact subset of the Kasner circle K which does not contain any of
the three special points T1, T2, T3, there exists a constant νC > 1 such that, for every q ∈ C and every
v ∈ TpK, we have ‖Df(p).v‖h ≥ νC‖v‖, where ‖ ·‖h denotes the metric induced onK by the euclidean
metric h. �

Let U := Φ−1(V). Clearly, U is a neighborhood of Ĉ ∩MC in MC . Combining propositions 6.3
and 6.4, one immediately gets :

Proposition 6.5. The Poincaré map ΦC is well-defined and C1 on U . The compact set Ĉ ∩MC is a
hyperbolic set for Φ. More precisely, there exists a constant ν ∈ (0, 1) such that, for every q ∈ Ĉ ∩MC ,

• dΦC(q).v = 0 for every v ∈ F sq ,
• dΦC(q).F uq = F u

ΦC(q)
, and ‖(dΦC(q))−1.v‖g < ν‖v‖g for every v ∈ F u

ΦC(q)
.

Proposition 6.5 shows that the map ΦC : MC → MC and the set Ĉ ∩MC satisfy the hypotheses of
the stable manifold theorem 6.2 (for any contraction rate µ > 0). This shows the existence of local stable
manifold, with respect to the map ΦC , for the points of Ĉ ∩MC :

Theorem 6.6. For every ε small enough, for every q ∈ Ĉ ∩MC , the set

W s
ε (ΦC , q) := {r ∈MC | distg

((
ΦC
)n

(r),
(
ΦC
)n

(q)
)
≤ ε for every n ≥ 0}

is a C1-embedded disc of dimension 2 in MC , tangent to F sq at q, depending continuously on q in the
C1 topology. Moreover, for every constant µ > 0, there exists another constant K such that, for every
q ∈ Ĉ ∩MC , for every r ∈W s

ε (ΦC , q) and every n ≥ 0

distg
((

ΦC
)n

(r),
(
ΦC
)n

(q)
)
≤ Kµn.

7. STABLE MANIFOLDS FOR THE WAINWRIGHT-HSU VECTOR FIELD: PROOF OF THEOREM 1.3

We are left to prove that theorem 6.6 implies our main theorem 1.3.

Consider a point q ∈ C. Then heteroclinic orbit Oq,f(q) intersects the “Poincaré section” MC at one
and only one point, that we denote by q̄. Note that q̄ ∈ Ĉ ∩MC . The set W s

ε (ΦC , q̄) defined in the
statement of theorem 6.6 is a C1-embedded two-dimensional disc in the three-dimensional hypersurface
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with boundary MC . This disc is tangent to F sq̄ at q̄. Since the two-dimensional submanifold BVII0 ∪BII
is not tangent to F sq̄ at q̄, this implies that W s

ε (ΦC , q̄) ∩ BIX contains a C1-embedded two-dimensional
disc in MC . Moreover, this disc depends continuously on q̄.

Proposition 7.1. For every point r in W s
ε

(
ΦC , q̄

)
∩ BIX:

(1) there is an increasing sequence of times (tn)n≥0 such that distg(Xtn
B (r), fn(q)) −→

n→∞
0;

(2) the Hausdorff distance between the piece of orbit {Xt
B(r) ; tn ≤ t ≤ tn+1} and the heteroclinic

orbit Ofn(q),fn+1(q) tends to 0 when n goes to +∞.

Proof. We first prove item 1. According to theorem 6.6, we have

(29) distg
((

ΦC
)n

(r),
(
ΦC
)n

(q̄)
)
−→
n→∞

0.

Together with the continuity of the flow of XB, this shows the existence of a increasing sequence of real
numbers (τn)n≥0 such that

(30) distg
(
Xτn
B

((
ΦC
)n

(r)
)
, ω
((

ΦC
)n

(q̄)
))
−→
n→∞

0.

Since r ∈ BIX, there exists an increasing sequence of times (αn)n≥0 such that, for every n ≥ 0,

(31)
(
ΦC
)n

(r) = Xαn
B (r).

Since q̄ ∈ BII, we have, for every n ≥ 0,

(32) ω
((

ΦC
)n

(q̄)
)

= fn(ω(q̄)) = fn+1(q).

For every n ≥ 0, let tn+1 := τn + αn. Then (tn)n≥0 is an increasing sequence, and

(33) distg
(
X
tn+1

B (r), fn+1(q)
)
−→
n→∞

0.

This completes the proof of item 1.

To prove item 2, we decompose the piece of orbit {Xt
B(r) ; tn ≤ t ≤ tn+1} into three sub-pieces:

• First, the piece of orbit going from Xtn
B (r0) to ∆C

((
ΦC
)n

(r)
)
, contained in V . Formula (14),

together with (33) shows that, for n large, this piece of orbit is close to the heteroclinic orbit
Ofn(q),fn+1(q). In particular, for n large, the point ∆C

((
ΦC
)n

(r)
)

is close to the heteroclinic
orbit Ofn(q),fn+1(q).

• Then, a piece of orbit going from ∆C
((

ΦC
)n

(r)
)

to
(
ΦC
)n+1

(r), contained in B \ V . For n
large, this piece of orbit is close to the heteroclinic orbit Ofn(q),fn+1(q). Indeed, for n large,
the point ∆C

((
ΦC
)n

(r0)
)

is close to the heteroclinic orbit Ofn(q),fn+1(q), and if we write(
ΦC
)n+1

(r) = X
t(∆C((ΦC)n(r)))
B

(
∆C

((
ΦC
)n

(r)
))

, then t
(
∆C

((
ΦC
)n

(r)
))

depends con-
tinuously on ∆C

((
ΦC
)n

(r)
)

(proposition 6.4) and thus is uniformly bounded.
• Finally, a piece of orbit going from

(
ΦC
)n+1

(r) to Xtn+1

B (r), contained in V . Formula (14)
together with (33) show that, for n large, this piece of orbit is close to the heteroclinic orbit
Ofn(q),fn+1(q).

This completes the proof of item 2 �
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Corollary 7.2.

W s(q) =
⋃
t≥0

⋃
n≥0

X−t
(
W s
ε

(
ΦC ,

(
ΦC
)n

(q̄)
)
∩ BIX

)
.

Proof. The inclusion of the set on the right hand side in W s(q) follows from proposition 7.1. The
inclusion of W s(q) in the set on the right hand side is an immediate consequence of the definition
of W s(q). �

We can now complete the proof of our main theorem.

Proof of theorem 1.3. Fix η > 0, and we set

(34) Ds
IX(q) :=

⋃
−η≤t≤η

Xt
B
(
W s
ε

(
ΦC , q̄

)
∩ BIX

)
.

According to corollary 7.2, Ds
IX(q) is contained in W s(q). Since W s

ε (ΦC , q̄)) ∩ BIX is a C1-embedded
2-dimensional disc in MC , and since the orbits of XB are transversal to MC , we get that Ds

IX(q) is a
C1-embedded 3-dimensional disc in BIX. Since q̄ depends continuously on q (proposition 4.3), and since
W s
ε (ΦC , q̄) depends continuously on q̄ (theorem 6.6), the disc Ds

IX(q) depends continuously on q. �

Remark 7.3. The fact that W s(q) is an C1 injectively immersed open disc which depends continuousluy
on q (remark 1.4) almost follows from the same arguments. More precisely, theorem 6.6, corollary 7.2
and the transversality of MC to the orbits of X show that W s(q) is an increasing union of C1 embed-
ded closed discs which depend continuously on q. The only thing which remains to shows is that this
increasing union of closed discs is an open disc; this is actually a consequence of the fact that the orbit
of q under the Kasner map f is not periodic.

8. EXISTENCE OF CLOSED FORWARD-INVARIANT APERIODIC SUBSETS OF THE KASNER CIRCLE:
PROOF OF PROPOSITION 1.6

The purpose of this section is to prove proposition 1.6. This proposition should be quite obvious for
people with some culture in dynamical systems. Indeed, the Kasner map f : K → K is a degree −2
map of the circle K. This implies the existence of a continuous degree 1 map η : K → R/Z such that
η ◦ f = m−2 ◦ φ where m : R/Z → R/Z is defined by m(θ) = −2θ. Moreover, the Kasner map f
is expansive : the norm of the derivative of f (calculated with respect to the metric induced on K by
the rimennian metric h) is strictly bigger than 1, except at the three special points T1, T2, T3 (where it is
equal to 1). This implies that the map η : K → R/Z defined above is one-to-one, that is f : K → K is
topologically conjugated to the map m : θ 7→ −2θ. Finally, it is well-known by experts that, for |k| ≥ 2,
the union of all compact subsets of R/Z which are aperiodic for the map θ 7→ kθ is dense in R/Z. We
now give a more detailed proof of the proposition for the readers who may not necessarily be familiar
with low-dimensional dynamics.

Proof. Recall that T1, T2, T3 are the three Taub points on the Kasner circle K. Let I1, I2, I3 be the
closures of the three connected components of K \ {T1, T2, T3}, the notations being chosen so that T1 is
not one end of I1, T2 is not one end of I2, and T3 is not an end of I3.
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We consider the set Σ := {1, 2, 3}N endowed with the product topology, and the shift map σ : Σ→ Σ
defined by σ(a0, a1, a2, . . . )i = (a1, a2, a3, . . . ) (in other words, if a = (ai)i∈N ∈ Σ, then (σ(a))i =
ai+1). Let Σ0 be the subset of Σ defined as follows :

Σ0 = {a = (ai)i∈N ∈ Σ such that ai+1 6= ai for every i}.

Note that Σ0 is σ-invariant. We will construct a continuous “almost one-to-one” map h : Σ0 → K such
that h ◦ σ = f ◦ h.

Claim. For each sequence a := (ai)i∈N in Σ0, there exists a unique point p ∈ K such that f i(p) ∈ Iai
for every i ≥ 0.

In order to prove the existence of p, one just needs to notice that the image under f of each of the
intervals I1, I2, I3 is the union of the two other intervals. This implies that the intersection

⋂N
i=0 f

−i(Iai)
is non-empty for everyN , and therefore, that the intersection

⋂
i∈N f

−i(Iai) is non-empty. The existence
of p follows. In order to prove the uniqueness of p, observe that: for every ε > 0, there exists ν(ε) > 1
such that ‖|Df(p)‖|h ≥ ν(ε) for every x ∈ K such that dist(x, Ti) > ε for i = 1, 2, 3. Hence, if
p 6= p′ were two points such that f i(p) ∈ Iai and f i(p′) ∈ Iai for every i ≥ 0, then one would have
dist(f i(p), f i(p′)) → ∞ ; this is absurd since the lengths of I1, I2 and I3 are finite. Hence there is at
most one point p in

⋂
i∈N f

−i(Iai). This completes the proof of the claim.

Now, we consider the map h : Σ0 → K which maps a sequence a := (ai)i∈N to the unique point
p ∈ K such that f i(p) ∈ Iai for every i ≥ 0. This map h obviously satisfies h ◦ σ = f ◦ h. It is
continuous (this is an immediate consequence of the continuity of f ) and onto (because the image under
f of one of the intervals I1, I2, I3 is contained in the union of the two others). It is not one-to-one.
For example, the Taub point T3 has two pre-images under h : the sequences (1, 2, 1, 2, 1, 2, . . . ) and
(2, 1, 2, 1, 2, 1, . . . ). More generally, every point x ∈ K such that f i0(p) is a Taub point for some integer
i0 ≥ 0 (and thus f i(p) = f i0(p) for every i ≥ i0) has two pre-images under h, and these two pre-images
are preperiodic for σ. This is the only lack of injectivity of h : if p ∈ K has not a single pre-image under
h, then there exists i0 ≥ 0 such that f i0(p) is a Taub point (this follows from the fact that the intersection
between two of the three intervals I1, I2, I3 is reduced to a Taub point).

It follows that the image under h of a closed σ-invariant aperiodic subset of Σ0 is a closed forward-
invariant aperiodic subset of K. So we are left to prove that the union of all the closed σ-invariant and
aperiodic subsets of Σ0 is in dense in Σ0.

A element a = (ai)i≥0 of Σ0 is said to be square-free if it does not contain the same word re-
peated twice : for every i0 ≥ 0 and every ` > 0, the word ai0 . . . ai0+`−1 is different from the word
ai0+` . . . ai0+2`−1. It is well-known that there exist square-free elements in Σ0 (such an element may be
easily deduced from the well-known Prouhet-Thue-Morse sequence, see for example [1, corollary 1]).
Now let a = (ai)i≥0 ∈ Σ0 be square-free, then the σ-orbit of a does not accumulates on any periodic σ-
orbit, hence the closure of the σ-orbit of a is a closed forward-invariant aperiodic subset of Σ0. Moreover
the same is true, if one replaces a by a sequence a′ ∈ Σ0 which has the same tail as a (i.e. there exists i0
such that a′i = ai for i ≥ i0). The set of all sequences a′ which has the same tail has a is obviously dense
in Σ0. Hence the union of all closed σ-invariant aperiodic subsets of Σ0 is dense in Σ0. As explained
above, the proposition follows. �
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