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Abstract

Acoustic modelling, applicable to poroelastic materials in a wide fre-
quency range, is time consuming. This paper offers an energy method for
optimising absorption coefficients at the boundaries of an acoustic cavity.
The influence of absorption coefficients on this proposed energy method
will be examined first. The next step will seek to optimise the location
of absorbing materials. Numerical results will prove the method’s effec-
tiveness. Improvements in the overall optimisation process will also be
proposed. A model based on polynomial interpolations will be developed
in order to further reduce time consumption.
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1 Introduction

Acoustical insulation is a major issue in engineering applications such as trans-
portation (aircraft, automotive industry) or civil engineering. Noise mitigation
is indeed required for the sake of public comfort. The level of noise can often be
reduced through absorbent materials. Poroelastic materials such as foams are
among the noise treatment packets. The weight and location of such additional
materials however become key concerns. The optimisation process has received
considerable attention as part of this noise abatement strategy. Predictive nu-
merical modelling serves as the basis for determining optimisation quality. Noise
prediction focuses on the widest frequency band of interest. The entire audible
frequency range (up to 20 kHz) should in fact be taken into account by the nu-
merical modelling approach. Classically speaking, pressure noise displays three
different types of behaviour as frequency increases (see Figure[ll The first band
defines the low-frequency region, in which finite element methods and/or bound-
ary element methods are well adapted. The second and third frequency regions


http://dx.doi.org/10.1016/j.apacoust.2011.01.014

define the mid- and high-frequency domains. In the open literature, many op-
timisation processes are based on finite element or boundary element methods,
and only very few focus on the mid-high frequency domain. The main goal
of this paper is to address noise optimisation issues in the mid-high frequency
range.
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Figure 1: LF, MF and HF behaviours

The finite element method (FEM) is one of the most widely employed tools
available for assessing the dynamic behaviour of such optimisation problems [T}
2]. Nevertheless, the excessive computational cost associated with solving large-
size models, as required for example in the frequency response calculation, con-
stitutes a major limitation with this method. Another limitation of the FEM is
related to model reduction aspects when convergence of the ”classical” reduced
modal basis is not necessarily satisfied a priori in the short wavelength domain.
More precisely, Silva et al. [I] proposed a method to maximise the absorption
performance of insulating poroelastic systems using a coupled finite element
model and evolutionary strategies. In reference [2], the main intention was to
propose a numerical model of a room that allows computing the pressure field
within the volume, in combination with a global optimisation algorithm. Ana-
lytical methods can also be used in the optimisation process for some situations.
For instance, Dupont and Galland [13] applied analytical methods to optimise
absorbing material locations in order to reduce the sound power transmitted
by a plate. However, such an approach is limited to well defined and classical
geometries.

Many authors have explored the topic of absorbing materials. Among them,
let’s cite M.A. Biot [15, [16], K. Attenborough [17] and J.F. Allard [I8]. Our
aim here is not to deal with such complex formulations, but instead to apply an
energy method in order to optimise absorption coefficients on the boundaries of
an acoustic cavity. In this context, a number of authors have already studied
acoustical behaviour in damped cavities. Let’s mention the work conducted for
years in the area of prediction in cavities [20] 21 22} 23] 24]. More recently,
authors have been focusing on simplified models [I9] and the optimisation of
structures coupled with acoustic cavities [25] [26]. Energy methods are expected
to offer many advantages. Such methods are well adapted to medium and high-



frequency situations and yield smaller matrices and fast optimisation processes.
Moreover, energy methods are often used as alternatives in the high and medium
frequency ranges. Among these methods, the most widespread remains the
Statistical Energy Analysis (SEA) [3], which provides the mechanical energy
of complex built structures. We have chosen to use a local energy formalism,
as first proposed by Nefske and Sung [4] and improved by many subsequent
authors [0 [0, 12| [8 10, 28, 29, 30]. In the following discussion, this energy
method will be called the Simplified Energy Method (or MES). MES has already
been evaluated and validated for various elastic media such as beams [3] [7], @],
membranes and plates [5l [10], and acoustic cavities [7, [12]. This method has
also been considered in both the transient and stationary cases [6] [T, []].

The present paper is organised as follows. The first section will describe the
optimisation problem. A definition of the inverse problem in terms of input-
output data will then be presented. The input parameters for this optimisation
process will also be recalled. The second section will summarise the Simplified
Energy Method (MES) formulation. The direct MES problem will be raised
in terms of calculating energy densities from both input power and dissipated
power at the boundaries. The sensitivity of energy density to acoustic absorp-
tion will then be discussed. This study will show that a 200% change in the
absorption coefficient « leads to only a 60% change in the pressure field inside
the cavity: the results on a therefore will not be very robust. The intention here
is for the outcome of these optimisation issues to yield an ”on-off” respons@.
The lack of robustness in results is thus not considered to be that important. In
order to improve time consumption statistics, a meta-model of energy distribu-
tion inside the cavity will be proposed. In this paper, the term “meta-model”
refers to an analytical model of system behaviour. More specifically, it is a
mathematical model along the lines of MES. This meta-model avoids the need
to recalculate energy matrices during the optimisation loop. Lastly, a series
of numerical experiments will be introduced and discussed. The optimisation
routine proposed in this paper allows for fast calculations thanks to the re-
duced model size. Nevertheless, a number of limitations remain: the material
is not being explicitly modelled; the porous medium is being modelled using an
absorption coefficient; and damping inside the cavity has been ignored.

2 Simplified Energy Method (MES)

2.1 MES formulation

The Simplified Energy Method is based on a description of two local energy
quantities. The first one is the total energy density W, defined as the sum of
the potential energy density and the kinetic energy density. The second energy
quantity I is the energy flow. The energy balance of such a system can be
written as follows:

1«On” means that the absorption coefficient is set at its maximum value, while “off” means
otherwise



Tdiss = —V - f (1)

where V is the gradient operator. mg;ss is the dissipated power density

and may be neglected because the MES damping model, which is the same as

SEA [3], can be written mgiss = nwW with the damping loss factor n << 1 in
acoustic fluids.

In this paper, we are particularly interested with the energy density W
since it is proportional to the square pressure p? in the cavity, which is directly
correlated with the sound level inside the cavity. Since W is a quadratic variable
made of partial energy quantities corresponding to both direct and reverberated
fields, the superposition principle can be applied:

W = Wdir + Wrcv (2)

In the following, an intrinsic energy law will be introduced (this law is often
used to define the wave velocity ¢):

I=c Wi (3)

where 1 is the normal outgoing unit vector. Equation [ offers a basic def-
inition of energy velocity; it clearly states that both energy flow and energy
density serve to define energy velocity. This expression is well known and has
already been demonstrated for general elastic media. A proof is available for
instance in [I4]. As an intrinsic law, this expression is adapted to all kinds of
waves under eventual consideration.

The MES formulation is derived by considering a 3D space. Let’s assume a
symmetrical wave field along with Equations B and [} the MES approach [12]
leads to the following relation:

19 (1) =0 ()

r2 Or

which can also be written using equation [3] i.e.:

10 -

Equation [ stems directly from the energy balance, which is expressed in
Equation Il For unloaded lossless media (in this case, the acoustic domain) in
the steady-state regime, Equation [[lunder axisymmetric conditions simply leads
to Equation [4]

The solution to Equation Bl corresponds to the radiosity method first pro-
posed by Kuttruff [11].

A representation of both direct and reverberated fields is given in Figure

The elementary solution of energy density is denoted G:

Glr) = 1 1

Yoc r?

(6)



Figure 2: MES formulation: direct and reverberated fields

where g is the solid angle. The energy density inside the cavity can then
be expressed as a function of the primary sources and fictitious sources located
on the boundaries:

W (P) = /a M) Tpar AM)G(M) DO

+ / o(M)ipar.A(M)G(M)ddQ  (7)
o0

—
where M is the integration point, @py = 24— and 7i(M) is the unit normal

P
vector on I at point M. ®(Fy) is the acoustic boundary source and (M) are

fictitious boundary sources. We will use the term “boundary source” to denote
those sources located on the cavity boundary (which may be due, for example,
to external excitations).

The power balance on a point situated on a boundary allows expressing o(P)
as follows:

o(P) = [1— a(P)] { /6 oy PP TG00
4 /Q @(M)G(M)dQ} (8)

where «(P) is the absorption coefficient at point P. By discretizing Equa-
tion 8, o can be expressed as a function of ®.

2.2 Application

In this paper, MES is being applied through a matrix formulation. The equa-
tions from Section 2.1l are expressed as follows:



¢ = ([1d) - [a]) [T)6 + ([1d] — [o]) [Q]® (9)

where [Id] is the identity matrix and [a] the diagonal matrix of the absorption
coefficients. [T'] and [Q] are matrices corresponding to the discretization of the
integral formulations of Equation Let’s note that mesh size does not need
to be fine for energy methods like MES, which only involve quadratic variables.
The meshing criteria used in FEM or BEM would thus not be useful herein.
A coarse mesh size is sufficient and allows for a rapid optimisation process.
Equation [@ directly leads to &, as shown below:

¢ = ([Id) = [T] + [a][T) " ([Id] - [a]) [Q].® (10)
W can then be expressed by discretizing equation [ i.e.:
W = [R]® + [S]& (11)

Using equation [0, W can be rewritten as follows:

-

W = (18] + ([1d] - [T+ (S]] (1d — [e]) [Q1) 8 (12)

[M(a)] (n X m matrix)

It is now possible to express the objective function F(&):

Fla) =/

3 Optimisation problem

ST [M ()] [M ()|

(13)

Let’s consider the 3D acoustic cavity shown in FigureBl Acoustic sources may be
applied on the boundaries. Point sources inside the cavity will not be examined
since the context of this paper is tied to the aircraft and automotive industries.
Although the work programme outlined herein is quite academic and not directly
related to industry, only those excitations caused externally will receive our
attention. Such structures have already been studied by the authors in [27] and
comparisons have been drawn between the MES method and both BEM and
FEM methods, including a hybrid HMES method. The cavity structure has
been discretised; for each boundary element, an absorption coefficient (which
may depend on frequency) has been assigned. Once again, the aim of this paper
is to optimise the distribution of absorption on elements in order to control
acoustic energy within the acoustic domain.

The Simplified Energy Method (MES) has been described in depth in Sec-
tion 2.1] above, and its implementation leads to a matrix formulation of the
problem that can be written as follows:

W (a) = [M (a))® (14)



Figure 3: The acoustic finite element domain

Construction of the n x m matrix [M («)] has been explained in Section 211
n represents the number of points where W will be calculated, while m is the
number of facets originating from the discretisation of the structure. W =
{Wh, Wy, ..., Wn}T is the energy density vector inside the cavity, correlated
with the square pressure. This vector is computed at n points, which will be
referred to as test points in the following discussion. P = {®y, Do, ..., fIJm}T is
the vector of input power on the boundaries, and & = {«a1, a2, ..., am}T is the
vector of absorption coefficients on the boundaries. W can thus be computed
for n points inside the cavity. Let’s now define the quantity F to be minimised:

(15)

Function F' is computed for a single frequency; a frequency averaging tech-
nique may be employed for instance whenever a more realistic definition of the
impedance condition is introduced. Note that this function F' is in fact identical
to the L-2 norm of vector W. Optimisation of noise level within the cavity can
then be performed as follows:

e choosing n points in the cavity where the sound level is to be minimised;
e discretising the structure and computing the matrix [M (a)];

e applying an optimisation algorithm to minimise objective function F', with
a; (1 < i < m) being the variables.

The goal of this paper is not to develop new optimisation algorithms, hence
classical routines will be employed. In the next sections, we will develop the
MES principle and its application to optimisation problems.



4 Results
4.1 Effects of « on W

The aim of this section is to analyse the influence of o on the W field in the
cavity. Figure @] shows the variation in W as a function of the variation in «.
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Figure 4: Variation in W vs. variation in «

Figure @ indicates that large variations in « lead to minor variations relative
to W. For example, a 100% variation in a leads to a 40% change in W, which
therefore makes it impossible to obtain accurate results on the post-optimisation
values of a. Nevertheless, optimisation can allow identifying positions where «
should be increased.

4.2 Optimisation of a distribution

In this section, the position of absorbing materials will be optimised. The data
used for this optimisation algorithm are given below in Table [l It should
be noted that these optimisation steps are performed at a single test point;
consequently, results will depend on this particular point and should differ if
the noise needs to be reduced at another point.

It is also important to notice that absorption coefficients for absorbing mate-
rials are always frequency-dependent. In this paper, we have not considered the
frequency dependency aspect, but it could be included without any difficulty
by solving the problem for each frequency or frequency band in the considered
domain. Moreover, the results of this optimisation algorithm will demonstrate
that the optimal value for is either 0 or 1. Including frequency-dependent coef-
ficients would therefore yield the same results. Nevertheless, the energy method
considered in this paper is only valid in the context of mid-high frequency prob-



lems. The optimisation problem is thus to be solved in a frequency range where
modal overlap is quite high.

n 1
m 360
Qmin 0
Olmax 0.6
@ (mean) 0.3
First step a=0.3
Box dimensions 4x2x2m
Position of the source | (2.83,1.17,0)
Position of test point | (1.33,0.6,0.6)

Table 1: Input data used for optimisation routine

The optimisation algorithm is performed using a local gradient method. The
aim of this paper has not been to develop new optimisation methods; conse-
quently, an optimisation protocol subject to constraints has been adopted using
the FMINCON function of the MATLAB software. This optimisation problem can
then be formulated as follows:

O<ax<l1
Minimising F (&) = \/‘5T[M(a)]T[M(a)]<f>‘ so that % o

=0.3 (16)

=1 ¢

where N, is the number of absorbing patches. Let’s recall that every patch
covers an equal area so that the mean value of o over these two quantities is
the same. Keep in mind that the constraints on « prevent obtaining a trivial
result (i.e. @ =1 on all boundaries). In fact, these constraints are equivalent to
setting the number of absorbing patches.

The result of this optimisation algorithm is given in Figures Bl and [6l Let’s
recall that the source is located at (1.33,0.6,0.6), hence on the side not shown
in the figures.

It is apparent that this algorithm leads to values of a equalto iy Or Qpax-
The optimisation method is thus efficient for the purpose of optimising the
position of absorbing materials, yet does not prove useful in determining the
exact values of a. Regardless, we have shown in Section 1] that this kind of
optimisation would not have been sufficiently robust.

The algorithm used in this optimisation problem is a local gradient algo-
rithm, meaning that it requires initial values for a (see Table[I)). Results de-
pend on these initial values: the solution we derived may be a local solution
and moreover it may be possible to obtain other solutions if other initial values
were to be considered. For this reason, the next section will examine method
robustness.



Figure 5: Optimisation result: distribution of o on the boundaries (top view) —
white: a =0, black: o = 0.6

Figure 6: Optimisation result: distribution of a on the boundaries (bottom
view) — white: « = 0, black: & = 0.6

4.3 Method robustness

In order to study the robustness of this method, several calculations have been
carried out by considering various initial values.

From Figure[7 it can be observed that the final positions of absorbing ma-
terials remain independent of the initial values assigned to a. Moreover, certain
initial values lie outside the range 0 < o < 0.6 and lead to similar results, which
demonstrates method robustness. In conclusion, the method proves to be quite
robust and suitable for use with any initial condition, «;yi. Moreover, Figure [8]
shows that noise level in the cavity after optimisation does not depend on init
(at least for the case treated herein). Note that in Figure [ the level of noise
reduction can be defined as follows:

N, = it 00 (17)
optim

A good distribution of absorbing patches can thus serve to significantly re-
duce noise inside the cavity (at least at the considered test point).

10
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Figure 7: Study of method robustness
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Figure 8: Noise reduction in the cavity N,

A number of calculations have also been performed by considering two test
points and several initial values (see Table [2). Results are shown in Figure
these results are also independent of the initial values of a.

Notice that the MES calculation protocol assumes lambertian directivity (ie.

11



| 15% point | 2" point |
x=23 r=1.2
y=15 y=15
z=1.2 z=1.2

Table 2: Coordinates of the 2 test points used in these calculations

Qinit = 0.2 Qinit = 0.3
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0.4

0.2

Figure 9: Method robustness: 2 test points

d(f) = <=2). These results may differ when considering an alternative directiv-
ity. We have sought to use a uniform directivity d(#) = ;. Figure [[0 displays
the pertinent results; this figure has been obtained from a single test point and
should be compared to results presented in Figure [[l which are significantly
different. It would appear that knowing the directivity of the source is quite
important.

5 Introduction of the meta-model for fast opti-
mization

This section presents a meta-model designed for the absorption optimisation
problem. Two reasons offer motivation for using meta-modelling techniques.
The first relates to the type of predicted fields. The MES formulation normally
predicts smooth energy behaviour, which can be very effectively represented
through polynomial interpolation. MES also contains a number of drawbacks,
including the high computational cost of energy resulting from the kinds of ma-

12
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Figure 10: Method robustness: Uniform directivity

trices employed. The idea being introduced herein is a novel one compared to the
authors’ previous output. Moreover, calculations using the gradient method are
costly because the gradients have to be calculated using discretisation methods.
For these reasons, a meta-model has been proposed in this paper.

Since the problem solution is quite robust, we also suggest performing a
polynomial interpolation in order to quickly derive the solution to the problem.

In considering Equation[[4]applied to a single test point, it becomes possible
to write the matrices and vectors corresponding to the problem solution as
follows:

Wsol — W(asol) — [M(asol)]q) (18)

dso1 denotes the vector corresponding to the optimal solution of this problem.

The dimension of @, is thus equal to m, i.e. equal to the number of facets

stemming from discretisation of the structure. In this section, we have rewritten
Equation [I§] as follows:

&(xvyvz) = [Z(xvyvz)]g (19)

where {: {x,y, z, 22,92, 22, 2y, 22, yz}T and the dimension of matrix Z is
(n,N), with N dependent on the degree of polynomial interpolation (N = 10
in the present case).

Matrix Z can then be built by:

1

e performing p optimisation algorithms — {[asol], (@], [afol]};

13



| 15 point | 277 point [ 3'7 point | 4™ point |

=23
y=15
z=1.2

r=1.3
y=20.5
z=1.7

r=3.1
y=12
z=1.4

x=0.7
y=12
z=0.4

Table 3: Coordinates of the 4 test points used in these calculations

e linking these solutions to the test point positions: O_‘Zol = 2357 , where

€ = {ad, 1,29, (@92, ()2, ()2, 29y 2920y 27}, j € [1,p] and the
dimension of matrix ZJ equals (n, N);

e interpolating the system in order to be able to consider any test point;

e changing the values obtained of « in order to satisfy the constraints (0 <
a < 0.6). The results reported in section indicate that the values of
« were either a« = 0 or a« = 0.6, which leads us to apply the following
changes to the results:

—a<03=a=0
—a>03=a=0.6

The results of this optimisation method are illustrated in Figure [l The
noise level has been set equal to 1 in the case of a non-optimised configuration
(av = 0.3 everywhere on the boundaries). These calculations were performed for
4 different test points, which have been summarised in Table [Bl

Figure[ITlshows that the polynomial interpolation approach is not as efficient
as full optimisation; nevertheless, it provides for good results at a very low
calculation cost. Moreover, these results yield an initial result that is applicable
to the initial values for full optimisation. Other polynomial interpolations have
been conducted by considering 4th and 6th-order interpolations. Results are
given in Figures and Since these results show no improvement, the
second order proves to be sufficient (in the special case of a box-like cavity, as
studied in this work). The reason why orders above 2 do not improve results
should be related to the fact that approximations are inappropriate due to the
0-1 nature of absorption coefficient values. Moreover, the exact form of the
solution should not match any of the higher polynomial forms, and the “right”
solution seems to be quite regular (i.e. the solution should be an approximation
when considering a simple function).

6 Conclusion

In this paper, we have demonstrated the efficiency of optimising the position of
absorbing materials on boundaries of a cavity. Results prove to be satisfactory
even though the optimisation algorithm requires initial values; these results do
not depend on initial values in the special case of the box-like cavity studied

14
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Figure 11: Noise reduction: comparison between full optimisation and polyno-
mial interpolation: (1) initial values, (2) full optimisation, (3) fast optimisation

herein. It has been found however that optimisation results do depend on the
source directivity, which must be evaluated before conducting the MES cal-
culations. In order to perform a rapid optimisation, we have also proposed a
polynomial interpolation, obtained using just 8 calculation points; these calcu-
lations have been run using only 8 fully-optimised points. Results fall short of
the full optimisation results, yet the method allows reducing noise level in the
cavity.

References

[1] Silva, F. and Pavanello, R., An Evolutionary Optimization Method applied
to Absorbing Poroelastic Systems, Acoustical Society of America Journal,
vol. 123, pp. 3571 (2008)

[2] Dutilleux, G., Sgard, F. C. and Kristiansen, U. R., Low-frequency assess-
ment of the in situ acoustic absorption of materials in rooms: an inverse
problem approach using evolutionary optimization, Int. J. Numer. Meth.
Engng 2002; 53:21432161

15



0.5

Noise level
Noise level

Noise level
Noise level

Figure 12: Noise reduction: comparison between full optimisation and 4" de-
gree polynomial interpolation: (1) initial values, (2) full optimisation, (3) fast
optimisation

3]

[4]

[5]

[6]

R. H. Lyon, Statistical Energy Analysis of Dynamical Systems: Theory and
Application, Cambridge, Massachusetts, MIT Press, 1975.

D. Nefske, S. Sung, Power flow finite element analysis of dynamic systems:
Basic theory and application to beams, NCA Publication 3.

Y. Lase, M. Ichchou, L. Jezequel, Energy analysis of bars and beams: The-
oretical formulations, Journal of Sound and Vibration 192 (1996) 281-305.

F. Sui, M. Ichchou, L. Jezequel, Prediction of vibroacoustics energy using
a discretized transient local energy approach and comparison with TSEA,
Journal of Sound and Vibration 251 (2002) 163-180 .

A. Wang, N. Vlahopoulos, K. Wu, Development of an energy boundary
element formulation for computing high-frequency sound radiation from

incoherent intensity boundary conditions, Journal of Sound and Vibration
(2004), vol. 278, nol-2, pp. 413-436.

16



0.5

Noise level
Noise level

Noise level
Noise level

Figure 13: Noise reduction: comparison between full optimisation and 6% de-
gree polynomial interpolation: (1) initial values, (2) full optimisation, (3) fast
optimisation

[8] M. Ichchou, A. Le Bot, L. Jezequel, A transient local energy approach as
an alternative to transient SEA: wave and telegraph equations, Journal of
Sound and Vibration 246 (2001) 829-840.

[9] M. Ichchou, S. Akrout, J. M. Mencik, Guided waves group and energy
velocities via finite elements, Journal of Sound and Vibration 305 (2007)
931-944.

[10] P. Hardy, M. Ichchou, L. Jezequel, D. Trentin, A hybrid local energy for-
mulation for plates mid-frequency flexural vibrations, European Journal of

Mechanics - A /Solids, 28 (2009) 121-130.

[11] Kuttruff, H., 1997. Energetic sound propagation in rooms. Acoustica with
Acta Acoustica 83, 622-628.

[12] Ichchou, M., Jezequel, L., 1996. Comments on simple models of the energy
flow in vibrating membranes and transversely vibrating plates. Journal of
Sound and Vibration 195, 679-685.

17



[13] Dupont, J-B. and Galland, M-A., Active absorption to reduce the noise
transmitted out of an enclosure, Applied Acoustics, Volume 70, Issue 1,
January 2009, Pages 142-152

[14] L. Brillouin, Tensors in mechanics and elasticity, Academic Press, 1964

[15] M.A. Biot, Theory of Propagation of Elastic Waves in a Fluid-Saturated
Porous Solid. I. Low-Frequency Range, ASA, 1956, The Journal of the
Acoustical Society of America, 28 (2), 168-178

[16] M.A. Biot, Theory of Propagation of Elastic Waves in a Fluid-Saturated
Porous Solid. II. Higher-Frequency Range, 1956 Acoustical Society of
America Journal, 28, 179-+

. Attenborough, Acoustical characteristics of rigi rous absorbents an
17 K. A b h, A ical ch isti f rigid fib bsorb d
granular media, J. Acoust. Soc. Am. 73 (1983) 785-799

[18] J. F. Allard, A. Aknine, and C. Depollier, Acoustic properties of partially
reticulated foams with high and medium ow resistance, J. Acoust. Soc.
Am., 79 (1986) 1734-1740

[19] S. Besset and L. Jézéquel, Optimization of characteristics of porous mate-
rials based on a modal synthesis method, European Journal of Mechanics
- A/Solids, 28 (1), 102-109, 2009

[20] E.H. Dowell, G.F. Gorman IIT and D.A. Smith, Acoustoelasticity: General
theory, acoustic natural modes and forced response to sinusoidal excitation,
including comparisons with experiment, Journal of Sound and Vibration,
52(4), 519-542, 1977

[21] A. Trochidis and A. Kalaroutis, Sound transmission through double par-
titions with cavity absorption, Journal of Sound and Vibration, 107(2),
321-327, 1986

[22] S. Suzuki and S. Maruyama and H. Ido, Boundary element analysis of
cavity noise problems with complicated boundary conditions, Journal of
Sound and Vibration, 130(1), 79-96, 1989

[23] Kimihiro Sakagami and Masakazu Kiyama and Masayuki Morimoto and
Daiji Takahashi, Sound absorption of a cavity-backed membrane: A step
towards design method for membrane-type absorbers, Applied Acoustics,
49(3), 237-247, 1996

[24] A. Craggs, Coupling of finite element acoustic absorption models, Journal
of Sound and Vibration, 66(4), 605-613, 1979

[25] T. Yamamoto and S. Maruyama and S. Nishiwaki and M. Yoshimura,
Thickness optimization of a multilayered structure on the coupling sur-
face between a structure and an acoustic cavity, Journal of Sound and
Vibration, 318(1-2), 109-130, 2008

18



[26]

T. Yamamoto and S. Maruyama and S. Nishiwaki and M. Yoshimura,
Topology design of multi-material soundproof structures including poroe-
lastic media to minimize sound pressure levels, Computer methods in ap-
plied mechanics and engineering, 198(17-20), 14391455, 2009

S. Besset, M.N. Ichchou and L. Jzquel, A coupled BEM and energy flow
method for mid-high frequency internal acoustic, Journal of Computational
Acoustic, Vol. 18, No. 1 (2010) 6985.

M. N. Ichchou, A. Le Bot and L. Jézéquel, A transient local energy approach
as an alternative to transient sea: Wave and telegraph equations, Journal of
Sound and Vibration, Volume 246, Issue 5, 4 October 2001, Pages 829-840.

FS Sui,MN Ichchou, L. Jézéquel, Prediction of vibroacoustics energy using
a discretized transient local energy approach and comparison with TSEA,
Journal of Sound and Vibration, Volume 251, Issue 1, 14 March 2002, Pages
163-180.

F. Sui and M. N. Ichchou, Prediction of Time-Varying Vibroacoustic En-
ergy Using a New Energy Approach, J. Vib. Acoust. 126, 184 (2004).

19



	Introduction
	Simplified Energy Method (MES)
	MES formulation
	Application

	Optimisation problem
	Results
	Effects of  on W
	Optimisation of  distribution
	Method robustness

	Introduction of the meta-model for fast optimization
	Conclusion

