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Abstract

This paper is primarily focused on the identification of structural forces, with
the objective of localizing forces injected into structures in the mid-high frequency
range. An energy method, called the Simplified Energy Method(MES), has al-
ready been introduced for the purpose of predicting an energy density distribution
for structural acoustic problems in the mid-high frequencyrange. The present pa-
per proposes using this same energy method to solve inverse structural problems.
More specifically, the injected forces are to be estimated and localized through
knowledge of a set of energy densities within the structure.The 2D formulation of
this inverse approach, known as Inverse MES (or IMES), is first expressed. Both
the boundary and internal sources can then be detected by applying the proposed
formulation. Numerical test results are processed using a 2D Kirchhoff plate, and
a number of conclusions are also drawn regarding IMES capabilities. Moreover,
this paper offers a numerical comparison with another energy-based method.

keyword: Energy flow; MES; Forces identification; Forces localization; Injected
power density; Energy density; Intensity

1 Introduction

The identification of force features that serve to excite structural components is a key
concern in the field of structural engineering. The localization and quantification of
input loads is of considerable interest; frequently, the direct measurement of sources
proves quite complicated to perform. Indirect means for defining excitation often pro-
vides an effective alternative. A tremendous amount of workhas been performed and
published regarding this issue [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The problem being
considered herein may also have applications in structuralhealth monitoring. Damage,
whose features often remain unknown, leads to changes in thevibration energy distri-
bution of structural members. Both the magnitude and position detection of damage
thus become key parameters.
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In general, two approaches are available in the literature relative to input force iden-
tification aspects. The first has more or less been inspired byidentification approaches
for the black box-like behavior of dynamic systems, coupledwith the introduction
of estimation theories. As an example, in references [1, 2],the author uses an on-
line recursive inverse method in order to estimate the inputforces of beam and plate
structures. The inverse method has been based on the Kalman filter plus a recursive
least-squares algorithm that includes just a small number of measurement responses
within the structure. Several types of input forces have been successfully identified.
This method performs effectively in estimating the input forces of beam structural sys-
tems from noisy measurements. It has been shown [3] that a Kalman filter method may
be used to estimate a timewise variation rod force. The second approach consists of
defining the input force that allows the measured set of inputs to verify the equilibrium
equations given in either continuous or discretized form. For example, a number of
authors have developed a pertinent strategy, called the RIFF method, for identifying
vibration sources [4, 5, 6]. The underlying principle entails both the discretization of
motion equations via a finite difference scheme and the computation of force distri-
bution from a set of displacements measured on the structure. Regularization is then
achieved through a spatial window and a wave number filter. Feasibility studies were
conducted for beam and plate elements, and an application tocylindrical shells has been
proposed [6]. Recently, this approach was coupled to near-field acoustic holography in
order to make a successful identification from acoustic measurements [5]. Perotin and
Granger offered another approach, whereby a modal model of astructure along with
a spatial orthonormal decomposition of the excitation fieldare used in order to derive
the force identification technique [7]. The problem associated with the vibration input
force localization has also been addressed in the structural intensity community; more-
over, instead of applying an analytical model [4] or modal model [7] in the inversion
process, discretized finite element (FE) or boundary element (BE) can be introduced
into the identification [10, 11]. Noiseux [8, 9] wound up using intensity vectors to
indicate the energy flow and source localization.

It should be noted however that most of what has been proposedin the literature
focuses on a limited frequency band, more precisely the so-called low-frequency re-
gion where modal overlap is weak and where resonant behaviorof the structure still
dominates. As frequency increases, existing methods lose their advantage. The first
such drawback pertains to the robustness of strategies offered relative to noise and
uncertainties. It is expected that approaches based on the spatial discretization of
data will be very sensitive to discretization errors over short wavelengths. A costly
and time-consuming treatment is thus expected in order to deal with high-frequency
band features. Moreover, identification strategies that use finite element, boundary
element or simplified analytical modeling of the targeted structure are naturally con-
fronted with intrinsic limitations when modeling in the mid-high frequency regime.
The need is therefore expressed to establish an identification tool that takes into ac-
count both medium and high-frequency particularities. Theuse of an energy-based
method, which seeks to produce a robust estimation of the average vibration level, is
the approach adopted in this paper to treat the problem.

Energy methods are often used as alternatives in the medium and high frequency
ranges whenever numerical methods like finite element or boundary equation-based
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formulations encounter significant limitations. Among such energy methods, the most
widespread remains theStatistical Energy Analysis(SEA) [12], which yields the me-
chanical energy of complex built-up structures. Many energy methods have been based
on SEA, in an attempt to enhance the Statistical Energy Analysis robustness and pre-
dictability. Let’s cite the work of Nefske and Sung [13], whoderived alocal energy
formalism. Many authors have improved on this model [14, 15], leading to theSim-
plified Energy Method(MES), which has been applied to various domains, including
beams, plates and acoustic cavities [15, 20] as a “direct” prediction tool.

In this paper, the primary concern revolves around the use ofMES in predicting
energy sources [16]. This issue necessitates inverting thedirect formulation. The
paper will be structured as follows. To ensure clarity, the direct MES formulation
will be reviewed in Section II, before providing the inverseMES formulation. A two-
dimensional case will then be considered and the algebraic matrix format of the inver-
sion problem offered in Section III. In order to validate theproposed method, numerical
simulations will be run in Section IV. A step-by-step strategy will be employed during
the validation process. An initial step introduces direct estimated energies into the
inversion sequence, while a second attempt simulates the input energy using a finite
element code. A 2D plate will be studied, in addition to identifying surface sources.
Ultimately, a comparison of the inverse MES results with an inverse SEA formulation
will serve to complete the numerical experiments.

2 Overview of the direct energy flow method MES

2.1 Assumptions

The Simplified Energy Method (MES) is based on a description of two local energy
quantities. The first is the total energy densityW defined as the sum of the potential
energy density and the kinetic energy density. The second energy variable~I is the
energy flow. The energy balance can then be written as follows:

~∇ · ~I + πdiss= πinp (1)

where~∇ is the gradient operator,πdiss is the dissipated power density andπinp

the input power density. MES adopts the same damping model asSEA, as previously
discussed in the literature [12], which can be expressed as:

πdiss = ηωW (2)

whereη is the loss factor andω the circular frequency. The propagating waves con-
sidered in this MES formulation are made of partial energy quantities corresponding to
both direct and reverberated fields. Since the considered fields are quadratic variables,
the superposition principle can thus be applied:

£ =
∑

i

£i (3)
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where(£,£i) are quadratic variables corresponding to either global energy or a

partial energy associated with wave fields(W,Wi) or
(

~I, ~Ii

)

. In the following, an in-

trinsic energy law will be introduced, and this often enables defining the wave velocity
c:

~Ii = c ·W i~n (4)

This expression simply defines the energy velocity, which insome cases is the
same as the group velocity, as the ratio of energy flow to convected energy density.
This expression was demonstrated in a number of textbooks [21] and applies to any
kind of linear elastic propagating wave.

2.2 Direct formulation

In the following, the derivation of the MES formulation is offered by considering a
nDimensional (nD) space. The following equations are valid forn = 2 or n = 3 in
the general case. In the next sections, we will consider then = 2 case, whereas the
n = 3 case will be treated in a subsequent article. In consideringa symmetrical wave
field and Equations (4) and (1), the MES approach [17] leads tothe following relation:

1

rn−1

∂

∂r

(

rn−1~I
)

+ ηωW~n = 0 (5)

which can also be written using Equation (4) as:

− c2
1

rn−1

∂

∂r

(

rn−1W~n
)

= ηω~I (6)

Moreover, this equation can now be rewritten by consideringjust theW field, thus
providing alocal energy equationfor symmetrical wave energies, i.e.:

1

rn−1

∂

∂r

(

rn−1W
)

+
ηω

c
W = 0 (7)

Energy variables are defined as the superposition of a directfield and a reverber-
ated field, both of which can be summed to obtain the total field, as explained in Equa-
tion (3). A representation of these fields is given in Figure (1), where only the intensity
field has been shown.~Idir is the direct field, while~I rev is the reverberated field.

In Figure 1,Φinp is the input power,Ω is the system surface and∂Ω is the system
boundaries. The elementary solutions in terms of energy density and active intensity
are denotedG and ~H , respectively.

G(S,M) =
1

SM
e−

ηω
c
SM ~H(S,M) =

c

SM
e−

ηω
c

SM~uSM (8)

whereSM =
∥

∥

∥

~SM
∥

∥

∥
. The kernels are determined at each point M of the con-

sidered space and created by a source located in S. By implementing a superposition
principle, the energy solution can then be expressed using the contribution of the pri-
mary sourceρ (direct field) and fictitious sourcesσ. The fictitious sources are unknown
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Φinp

Ω

∂Ω

~I rev

~Idir

Figure 1: Considered system

energy parameters representing the contribution of the reverberant field. More specifi-
cally, from [20]:

W (M) =

∫

Ω

ρ(S)G(S,M)dS +

∫

∂Ω

σ(P )~uSM~nPG(P,M)dP (9)

The active energy flow can be described by a similar expression:

I(M) =

∫

Ω

ρ(S)H(S,M)dS +

∫

∂Ω

σ(P )~uSM~nPH(P,M)dP (10)

whereρ corresponds to internal sources in the considered domain (in this case, a
two dimensional) andσ corresponds to sources at the boundaries of the two dimen-
sional space.

3 The inverse energy flow method IMES formulation

This section will focus on introducing a discretized formatof the energy integral equa-
tion, beginning with the definition ofT as the(N,N) geometric interaction matrix
betweenN two-dimensional edge elements. This operator is given below in reference
to Figure (2), withP andP ′ corresponding toPi andPj (pointS only concerns equa-
tion 12.

Tij =

∫

∂Ω

∫

∂Ω

1

2

1

PiPj

e−
ηω
c

PiPj~uPiPj
~nPi

dPidPj (11)

In reference to this same Figure (2), another(N, k) matrix is defined and called
hereinQ. This operator represents the geometric interaction taking place betweenN
boundary elements andk sources. Figure (2) was drawn withk set equal to1. When
considering the inverse problem, matrices are built assuming k sources, which will
comprise the unknowns of this problem. For example, settingk = m will lead to a
square problem to be solved. Hence, even if it were known thatjust one source had to
be found, the matrices would still be built withk > 1, wherek sources were located on
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Figure 2: element/element interaction

the plate. The identified point should be the nearest to the source, and the other(k− 1)
sources should be identified close to0. Matrix Q is thus expressed as follows:

Qij =

∫

∂Ω

1

2

1

SjPi

e−
ηω
c

SjPi~uSjPi
~nPi

dPi (12)

Two matrices, labeledY W andY I (with dimension(k,m) wherem denotes the
number of measurements) can then be defined in order to represent a geometric in-
teraction between sources and measurement points. These matrices are determined
respectively for the energy densityW and the energy flowI such that:

Y W
ij =

∫

∂Ω

1

SjPi

e−
ηω
c

SjPidPi (13)

Y I
ij =

1

c

∫

∂Ω

1

SjPi

e−
ηω
c

SjPi~uSjPi
dPi (14)

Ultimately,A andB can be defined as follows (whereId being the identity matrix
andρ the injected power vector):

A = Id− T (15)

B = Qρ (16)

The power vectorσ can thus be readily expressed as a function of the injected
power vectorρ as:

σ = A−1B = A−1Qρ (17)

By combining Equations (9), (10) and (17), the energy density vectorW and
energy flow vectorI can be obtained from:

W = SWρ = RWρ+ Y Wσ (18)

I = SIρ = RIρ+ Y Iσ (19)

whereRW andRI are defined as follows:

RW
ij =

1

SiMj

e−
−ηω

c
SiMj (20)

RI
ij =

1

SiMj

e−
−ηω

c
SiMj~uSiMj

(21)
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SW andSI are then given by:

SW = RW + Y WA−1Q (22)

SI = RI + Y IA−1Q (23)

Lastly, both theW and~I fields can be expressed thanks to a linear operator denoted
F as:

(

W, ~I
)

= F (ρ) (24)

The IMES formulation seeks to invert the operatorF proposed in Equation (24).
Sources are to be detected by means of measurements conducted on the structure. Since
the number of measurements is not equal to the number of sources, this problem is not
directly invertible, which prompts us to seek an operatorG that yieldsσ andρ as a
function ofW and~I.

ρ = G
(

W, ~I
)

(25)

Now, let’s introduce the quantityR (X ) defined as follows:

R (X ) =
∥

∥

∥

(

W, ~I
)

−FoX
(

W, ~I
)∥

∥

∥
(26)

where the operatoro is defined asfog(x) = f (g(x)). We now need to minimize
the quantityR (X ) over the operatorX . In the following discussion, the IMES will
be applied to a 2D plate. Consequently,Ω corresponds to the plate surface, whereas
∂Ω corresponds to the boundaries. In this case, only surface sources are being treated.
Since the access to structural intensities is a difficult task to perform experimentally,
the following simulations have been run by only consideringenergy densityW mea-
surements at certain locations of the structure. As a result, we will replaceSW byS for
the sake of clarity. MES equation (9) can then be discretizedto provide the following
matrix formulation:



















W1

W2

...
Wm



















=











S11 S12 . . . S1k

S21 S22 . . . S2k

...
...

. . .
...

Sm1 Sm2 . . . Smk





























ρ1
ρ2
...
ρk



















(27)

wherem is the number of measurements andk is the number of sources. To invert
this formulation, according to Equation (26), a matrixX must be found that minimizes
the quantityR(X):
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R(X) =

∥

∥

∥

∥

∥

∥

∥

∥

∥



















W1

W2

...
Wm



















−











S11 S12 . . . S1k

S21 S22 . . . S2k

...
...

. . .
...

Sm1 Sm2 . . . Smk





















X11 X12 . . . X1m

X21 X22 . . . X2m

...
...

. . .
...

Xk1 Xk2 . . . Xkm





























W1

W2

...
Wm



















∥

∥

∥

∥

∥

∥

∥

∥

∥

(28)

= ‖(Im − SX)‖

∥

∥

∥

∥

∥

∥

∥

∥

∥



















W1

W2

...
Wm



















∥

∥

∥

∥

∥

∥

∥

∥

∥

(29)

Matrix X is in fact chosen as a generalized inverse of matrix S:

X =
(

STS
)−1

ST (30)

The inverse formulation can then be performed. From a set of input energy param-
eters, the inversion can be achieved in order to characterize input sources. Section 4
below will describe the efficiency and limitations of the proposed strategy through nu-
merical experimentation.

4 Numerical simulations and Results

This section will perform a number of numerical tests on a plate in order to validate
the formulation. The first test case considered will be very simple; it consists of im-
plementing the inverse energy flow approach when using a set of energy predictions
based on the direct energy flow method. This set-up constitutes an MES/IMES simula-
tion. A more realistic test case will be examined afterwards. In this situation, the input
variables are computed from a full finite element model. A comparison between the
IMES formulation provided in this paper and an inverse SEA model will also be given.
Lastly, the effect of spatial discretization applied to theinput set of energy quantities
on the inversion process will be studied.

Case number Direct method Inverse method
1 MES IMES
2 FEM IMES
3 FEM Inverse SEA

Table 1: Numerical simulations

Table 1 summarizes the three test cases being considered herein. The corresponding
methodology is presented in Figure 3.

• The first one will allow verifying the potential for method inversion. If the matrix
given in equation 30 were indeed invertible, then the results should be perfect.
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• The second case is intended to apply IMES in data originatingfrom a finite ele-
ment code. First of all, the structure is modeled using the finite element software
COMSOL. Data are then extracted and treated through the IMES code, as ex-
plained in the previous section.

• The third case is similar to the second, yet an Inverse SEA software is used
instead of the IMES code. The goal here is to compare the efficiency of IMES
and Inverse SEA.

Results:
input

sources

Inverse method
MES or SEA

Extracted
data

(

W, ~I
)

Direct simulation
FEM or MES

Input
sources

To be compared

Figure 3: Numerical simulation methodology

4.1 MES/IMES simulation

An initial simulation, referred as the MES/IMES simulation, involved the processing of
IMES calculations using energy densitiesW derived from the direct MES formulation.
The model under study in this case is a thin plate, whose characteristics are described
in Table (2).

This plate is excited by an input power of1W/m2. In assumingN to be the num-
ber of edge plate elements, the IMES result found forN = m = 64 is presented in
Figure (4) (let’s recall thatm denotes the number of measurements).

It appears that the source has been correctly identified in this simulation (for both
localization and level). The inversion of

(

STS
)

has thus been validated. To illustrate
the effect of the number of measurementsm, we repeated the MES/IMES simulation
while decreasingm. The IMES results are shown in figure (5). Next, let’s then intro-
duce the factorξ = m

N
to quantify method efficiency (ξ = 1 corresponds to a square

matrix to be inverted).
It also appears that by increasing the number of measurementsm spread over the

plate surface corresponding toξ = 0.06, ξ = 0.14 and ξ = 0.5 respectively, the
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parameter unit value
Length m 1
Width m 1
Height m 2e− 3

Young’s modulus of elasticityE Pa 2.1e11
Poisson’s ratioν 0.3
Solid densityρs Kg/m3 7800

Loss factor η = 0.001

Table 2: plate caracteristics
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0
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0.3
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0.9
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0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: MES/IMES simulation for the plate

source is well localized and the error on the input power summarized in Table (3)
has been lowered. Nevertheless, the source input power is equal to 0.7 W/m2 for
ξ = 0.06, 0.75 W/m2 for ξ = 0.14 and0.82 W/m2 for ξ = 0.5 whereas it should
equal1 W/m2. The correct value of input power is obtained for higher values ofξ.
The IMES tends to accurately localize the input structural force yet underestimates the
amount of injected power.

4.2 FEM/IMES simulation

The IMES/MES subsection primarily allowed validating the
(

STS
)

inversion. This
subsection will consider the validation of an approach introducing FEM-simulated en-

ξ Error
0.06 30 %
0.14 25 %
0.5 18 %

Table 3: Error on the input power
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ergies. The IMES calculations were in fact processed using energy densitiesW stem-
ming from a finite element software (i.e. Comsol in this study). An FEM model of
the plate (whose characteristics are provided below) has been processed with1W/m2

excitation and the same number of elementsN . Given the input powerρ, the forceF
applied to a point on the plate is recalculated by:

ρ =
1

2

F 2

8
√
Dρsh

(31)

WhereD is the plate stiffness, defined byD = Eh3

12(1−ν2) . The FEM calculation
is then processed on the plate, thus providing the energy density W field used as an
input for IMES algorithm. The FEM calculations are first spatially averaged and then
frequency averaged. Octave bands are considered along withvarious center frequencies
fc. The values ofW output by the FEM calculation and performed aroundfc, are input
into the IMES algorithm. Results found forξ = 0.06, ξ = 0.14, ξ = 0.5 andξ = 1 are
all presented in figure (6).

The influence offc has also been assessed. Results found forξ = 1 and various
values offc are given in figure (7). This figure reveals an accurate sourcelocalization
regardless of thefc value within the medium to high frequency range.

Figure (8) displays the evolution of a localization termPrL with respect to the
center frequency.PrL is defined by the following equation:

PrL =

√

√

√

√

1

N

∑N
i=1(ρi − ρexacti )2

(ρexacti )
2 (32)

whereρi is thei component of the input power vector andρexacti is thei component
of the exact input power vector. It would appear that a good identification (both local-
ization and level) is derived for the source with values offc = 950Hz and higher. For
lower-frequency bands, the proposed method will only be able to localize the sources.

4.3 SEA / MES comparison

The statistical Energy Analysis (SEA) is widely recognizedas the original class of
energy methods. SEA provides the mechanical energy of complex built-up structures.
The goal of this subsection is to compare identification results obtained for FEM /
SEA and FEM / IMES simulations. Towards this end, Figures (9)and (10) indicate
the identification tendencies for various damping values when using FEM/IMES and
FEM/SEA identification strategies, respectively.

In all cases, the source seems to be correctly localized, though the estimated value
of the input powerρ deviates from the expected valueρexact with increasingη. To
identify the localization sensitivity in figure (11(a)), weintroduce the same localiza-
tion termPrL given in Equation (32); moreover, representation of the quantification
sensitivity in Figure (11(b)) has led us to define another quality term PrQ obtained
from the following equation:
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PrQ =

√

(ρsource − ρexactsource)
2

(ρexactsource)
2 (33)

It appears that for both the localization and quantificationof sources, the FEM/IMES
results underestimates the FEM/SEA tendencies, which reflects that IMES that IMES
results are more efficient than ISEA results in identifying sources for the studied plate.
This finding would also suggest that the capacity of FEM/IMESlocalization remains
more stable when varyingη than FEM/ISEA localization results, for which this pre-
cision term increases when increasingη. Moreover, from both the FEM/IMES and
FEM/ISEA quantification trends, it can be remarked that goodresults are obtained
with weak damping values.

4.4 Effect of spatial discretization (sensors spread away from the
source)

In this subsection, the IMES validation will be considered in a realistic case, accord-
ing to which sensors are removed from the source. The IMES simulations were per-
formed using a set of uniformly-distributed sensors far from the source location. Re-
sults relative to these FEM/IMES simulation runs and sensors distribution in the plate
for m = 55 andm = 39 are given in figure (12).

The results obtained indicate that the source has been correctly localized, yet a
discrepancy remains between the estimated input powerρ is and the expected power
ρexact due to the lack of sensors close to the source. To analyze the localization sen-
sitivity of this method with respect to parameterξ defined below, Figure (13) depicts
the evolution in quality indexPrL evolution. This figure provides a presentation of
localization effectiveness.

It has thus been demonstrated that by using the IMES formulation, source local-
ization can be achieved while limiting the number of sensorsand distributing them far
from the source.

5 Conclusion

The aim of this paper has been to investigate the effectiveness of the Simplified Energy
Method (MES) in identifying sources from a set of given measured energies within a
plate. The MES formulation and related assumptions were first detailed. The inverse
formulation for identifying sources through data energy recovered from the plate was
then provided. Afterwards, the MES could be validated usingFEM / MES simulations
by inputting numerical data from the FEM software. A comparison with SEA was
also conducted and revealed that IMES is indeed more accurate. Lastly, a robustness
study was performed, displaying the MES performance when sensors were removed
from the source. Validation of this strategy for 3D acousticcavities is now underway.
In subsequent work, it will be worthwhile to test this methodby considering two or
more sources. From a theoretical perspective, the matricesand formulation proposed
herein should be capable of treating this type of problem, yet numerical considerations
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complicate the identification step. Moreover, it would be beneficial to validate the
method through experimental testing since the noise induced by ”real” measurements
should lead to findings regarding the inversion. From a numerical standpoint, it would
be interesting to introduce a random noise on the input data in order to estimate the
robustness of the inverse method proposed in this paper.
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Figure 5: MES/IMES simulations form = 4(ξ = 0.06) (a),m = 9(ξ = 0.14) (b),
m = 32(ξ = 0.5) (c) andm = 64(ξ = 1) (d)
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Figure 6: FEM/IMES simulations forξ = 0.06 (a),ξ = 0.14 (b),ξ = 0.5 (c) andξ = 1
(d)

17



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0.2

0.4

0.6

0.8

1

1.2

(d)

Figure 7: FEM/IMES simulations forfc = 800Hz (a),fc = 900Hz (b), fc = 950Hz
(c) andfc = 1500Hz (d)
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Figure 9: FEM/IMES simulations forη = 0.001 (a), η = 0.01 (b), η = 0.1 (c) and
η = 0.2 (d)
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Figure 10: FEM/SEA simulations forη = 0.001 (a), η = 0.01 (b), η = 0.1 (c) and
η = 0.2 (d)
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Figure 11: location (a) and quantification (b) sensitivities to the variation of damping
for FEM / IMES and FEM / SEA
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Figure 12: FEM/IMES simulations and sensors repartition for m = 55 ((a) and (b))
andm = 39 ((c) and (d))
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