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Abstract

This paper is primarily focused on the identification of stunal forces, with
the objective of localizing forces injected into structine the mid-high frequency
range. An energy method, called the Simplified Energy MettMBES), has al-
ready been introduced for the purpose of predicting an graegsity distribution
for structural acoustic problems in the mid-high frequeranyge. The present pa-
per proposes using this same energy method to solve invieustusal problems.
More specifically, the injected forces are to be estimated lanalized through
knowledge of a set of energy densities within the structiree 2D formulation of
this inverse approach, known as Inverse MES (or IMES), i$ éxpressed. Both
the boundary and internal sources can then be detected byirapthe proposed
formulation. Numerical test results are processed using Kichhoff plate, and
a number of conclusions are also drawn regarding IMES chipedi Moreover,
this paper offers a numerical comparison with another snrkeged method.

keyword: Energy flow; MES; Forces identification; Forcesalmation; Injected
power density; Energy density; Intensity

1 Introduction

The identification of force features that serve to excitedtiral components is a key
concern in the field of structural engineering. The locdicraand quantification of
input loads is of considerable interest; frequently, threatimeasurement of sources
proves quite complicated to perform. Indirect means fomiladj excitation often pro-
vides an effective alternative. A tremendous amount of wak been performed and
published regarding this issue [1,(2,3/[4] 5| 6, 17,18, 9/ 1), The problem being
considered herein may also have applications in strudtgath monitoring. Damage,
whose features often remain unknown, leads to changes wilihagtion energy distri-
bution of structural members. Both the magnitude and positietection of damage
thus become key parameters.
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In general, two approaches are available in the literatladive to input force iden-
tification aspects. The first has more or less been inspiréddnyification approaches
for the black box-like behavior of dynamic systems, couphéth the introduction
of estimation theories. As an example, in referencés|[11Hg,author uses an on-
line recursive inverse method in order to estimate the ifimaes of beam and plate
structures. The inverse method has been based on the Kalteampliis a recursive
least-squares algorithm that includes just a small numbereasurement responses
within the structure. Several types of input forces havenbmeccessfully identified.
This method performs effectively in estimating the inputfs of beam structural sys-
tems from noisy measurements. It has been shbwn [3] thatradefilter method may
be used to estimate a timewise variation rod force. The skapproach consists of
defining the input force that allows the measured set of mfmverify the equilibrium
equations given in either continuous or discretized forrar é&xample, a number of
authors have developed a pertinent strategy, called thE Ri€thod, for identifying
vibration sourced 4,15,/ 6]. The underlying principle elstéioth the discretization of
motion equations via a finite difference scheme and the ceatipn of force distri-
bution from a set of displacements measured on the strucRegularization is then
achieved through a spatial window and a wave number filteasiBdity studies were
conducted for beam and plate elements, and an applicatoyfinarical shells has been
proposed[B]. Recently, this approach was coupled to neltdicoustic holography in
order to make a successful identification from acoustic oreasents/ [6]. Perotin and
Granger offered another approach, whereby a modal modebtrfiature along with
a spatial orthonormal decomposition of the excitation fael used in order to derive
the force identification techniquiel[7]. The problem asdedavith the vibration input
force localization has also been addressed in the strdatteasity community; more-
over, instead of applying an analytical model [4] or modaldeld7] in the inversion
process, discretized finite element (FE) or boundary elérfi&H) can be introduced
into the identification[[10, 11]. Noiseux|[8] 9] wound up ugimtensity vectors to
indicate the energy flow and source localization.

It should be noted however that most of what has been propngée literature
focuses on a limited frequency band, more precisely theafleetlow-frequency re-
gion where modal overlap is weak and where resonant behakibe structure still
dominates. As frequency increases, existing methods laseddvantage. The first
such drawback pertains to the robustness of strategiesedffelative to noise and
uncertainties. It is expected that approaches based onptiglsdiscretization of
data will be very sensitive to discretization errors oveorshvavelengths. A costly
and time-consuming treatment is thus expected in order &bwligh high-frequency
band features. Moreover, identification strategies thatfirste element, boundary
element or simplified analytical modeling of the targetadcttire are naturally con-
fronted with intrinsic limitations when modeling in the midgh frequency regime.
The need is therefore expressed to establish an ideniifictdpl that takes into ac-
count both medium and high-frequency particularities. The of an energy-based
method, which seeks to produce a robust estimation of theageeribration level, is
the approach adopted in this paper to treat the problem.

Energy methods are often used as alternatives in the medidrhigh frequency
ranges whenever numerical methods like finite element ondiaty equation-based



formulations encounter significant limitations. Amonglsenergy methods, the most
widespread remains tt&tatistical Energy AnalysiéSEA) [12], which yields the me-
chanical energy of complex built-up structures. Many enpengthods have been based
on SEA, in an attempt to enhance the Statistical Energy Amahlpbustness and pre-
dictability. Let’s cite the work of Nefske and Surig [13], wHerived alocal energy
formalism. Many authors have improved on this model [14, ¥Edding to theSim-
plified Energy MethodMES), which has been applied to various domains, including
beams, plates and acoustic cavitles [15, 20] as a “direetiiption tool.

In this paper, the primary concern revolves around the usdE® in predicting
energy sources [16]. This issue necessitates invertinglitieet formulation. The
paper will be structured as follows. To ensure clarity, threat MES formulation
will be reviewed in Section Il, before providing the inveld&S formulation. A two-
dimensional case will then be considered and the algebraidxiormat of the inver-
sion problem offered in Section IIl. In order to validate greposed method, numerical
simulations will be run in Section IV. A step-by-step sttevill be employed during
the validation process. An initial step introduces direstireated energies into the
inversion sequence, while a second attempt simulates thé anergy using a finite
element code. A 2D plate will be studied, in addition to idigitig surface sources.
Ultimately, a comparison of the inverse MES results withrarerse SEA formulation
will serve to complete the numerical experiments.

2 Overview of the direct energy flow method MES

2.1 Assumptions

The Simplified Energy Method (MES) is based on a descriptiotwo local energy
quantities. The first is the total energy density defined as the sum of the potential
energy density and the kinetic energy density. The secoacggrvariablef is the
energy flow. The energy balance can then be written as follows

6 : f"’ Tdiss = Tinp (1)

whereV is the gradient operatofiy;,, is the dissipated power density ang,,
the input power density. MES adopts the same damping mod&iEAs as previously
discussed in the literature [12], which can be expressed as:

Tdiss = NwWW (2)

wheren is the loss factor ang the circular frequency. The propagating waves con-
sidered in this MES formulation are made of partial energymiities corresponding to
both direct and reverberated fields. Since the considereld fiee quadratic variables,
the superposition principle can thus be applied:

£=) "4 (3)



where(£, £;) are quadratic variables corresponding to either globailggner a
partial energy associated with wave field&, W;) or (f, I). Inthe following, an in-

trinsic energy law will be introduced, and this often enaldefining the wave velocity
c:

I'=c Wi (4)

This expression simply defines the energy velocity, whiclsame cases is the
same as the group velocity, as the ratio of energy flow to adadeenergy density.
This expression was demonstrated in a humber of textbodisajd applies to any
kind of linear elastic propagating wave.

2.2 Direct formulation

In the following, the derivation of the MES formulation isfefed by considering a
nDimensional £D) space. The following equations are valid for= 2 orn = 3 in
the general case. In the next sections, we will considentke 2 case, whereas the
n = 3 case will be treated in a subsequent article. In considexrisyggnmetrical wave
field and Equation${4) andl(1), the MES approach [17] leadisedollowing relation:

1 9 n—17 =
which can also be written using Equatiah (4) as:
1 9 -
2 - ¥ n—1 2\ —
R (r Wn) nwl (6)

Moreover, this equation can now be rewritten by considejasgthelV field, thus
providing alocal energy equatiofor symmetrical wave energies, i.e.:

1 0
rn=1 Jr (
Energy variables are defined as the superposition of a disddtand a reverber-
ated field, both of which can be summed to obtain the total,fasdexplained in Equa-
tion (3). A representation of these fields is given in Fig(die where only the intensity
field has been showd@" is the direct field, whilg™" is the reverberated field.
In Figure[1,®"P is the input powers2 is the system surface al is the system
boundaries. The elementary solutions in terms of energgitieand active intensity
are denoted; and H, respectively.

W)+ W =0 (7)

c

SMG_%SM'JSM (8)

_ L gy 7
G(S,M) = S H(S,M)
whereSM = ‘ SMH The kernels are determined at each point M of the con-
sidered space and created by a source located in S. By impigrga superposition
principle, the energy solution can then be expressed ukigdntribution of the pri-
mary source (direct field) and fictitious sources The fictitious sources are unknown



Figure 1: Considered system

energy parameters representing the contribution of therbevant field. More specifi-
cally, from [20]:

W(M) = /Q (S)G(S, M)dS + /a o(P)isuiinG(PM)IP )

The active energy flow can be described by a similar expressio

I(M) = / p(SYH (S, M)dS +/ o(P)usyripH(P,M)dP (20)
Q o0
wherep corresponds to internal sources in the considered domaithi§ case, a
two dimensional) and corresponds to sources at the boundaries of the two dimen-

sional space.

3 The inverse energy flow method IMES formulation

This section will focus on introducing a discretized formfthe energy integral equa-
tion, beginning with the definition of" as the(N, N) geometric interaction matrix
betweenN two-dimensional edge elements. This operator is givenvbelaeference
to Figure [2), withP and P’ corresponding td&; and P; (point.S only concerns equa-
tion[12.

- 1 1 —L2P;Pj = ) )
T;; = /aQ \/aa 5 Pine uPipjnpidPZde (12)
In reference to this same Figufd (2), anoth®t, k) matrix is defined and called
herein@. This operator represents the geometric interaction ¢tpglace betweev
boundary elements aridsources. Figurd{2) was drawn withset equal td. When
considering the inverse problem, matrices are built assgrhisources, which will
comprise the unknowns of this problem. For example, setting m will lead to a
square problem to be solved. Hence, even if it were knownjtisabne source had to
be found, the matrices would still be built wikh> 1, wherek sources were located on



Figure 2: element/element interaction

the plate. The identified point should be the nearest to thecepand the othdk — 1)
sources should be identified closeltoMatrix @ is thus expressed as follows:

1 1 _wwgp.
;= — e e ‘Ug. p,p,dP; 12
%= 555 i P, (12)

Two matrices, labeled™” andY! (with dimension(k, m) wherem denotes the
number of measurements) can then be defined in order to egpraggeometric in-
teraction between sources and measurement points. Thdseanare determined
respectively for the energy density and the energy flow such that:

1 nw
Yy, = e~ SiPigp; (13)
’ oo S; P
1 1 e
L= — e SiPigg pdP; (14)

i = — (&
t C BQSjPi

Ultimately, A and B can be defined as follows (whefé being the identity matrix
andp the injected power vector):

A=Id—T (15)

B=Qp (16)

The power vector can thus be readily expressed as a function of the injected
power vectop as:
c=A"'B=A"1Qp a7

By combining Equationd{9),[(10) and_{17), the energy dgnsiictor IV and
energy flow vectord can be obtained from:

W=8"p=RYp+Y"s (18)

I=8"p=Rp+Ylo (19)

whereRW andR! are defined as follows:

| —
R} = em e M (20)
J 51]\4J
| —
I - SiMj ~
By =gage @ s (21)



SW andS’ are then given by:

SW =R" +YWATlQ (22)
ST=R'+Y'AT'Q (23)

Lastly, both théV and/ fields can be expressed thanks to a linear operator denoted
F as:

(w.1) = F (p) (24)

The IMES formulation seeks to invert the operafproposed in Equatioh (24).
Sources are to be detected by means of measurements cahdutihe structure. Since
the number of measurements is not equal to the number ofesuhis problem is not
directly invertible, which prompts us to seek an operagidhat yieldso andp as a
function of W and .

p=¢ (W, f) (25)

Now, let’s introduce the quantit® (X') defined as follows:

R(X) = H (W, f) ~ FoX (W, f) H (26)

where the operatar is defined asfog(z) = f (¢(z)). We now need to minimize
the quantityR (X) over the operato’. In the following discussion, the IMES will
be applied to a 2D plate. Consequenflycorresponds to the plate surface, whereas
0%} corresponds to the boundaries. In this case, only surfagessare being treated.
Since the access to structural intensities is a difficuk tagperform experimentally,
the following simulations have been run by only consideengrgy density’/” mea-
surements at certain locations of the structure. As a resaltwill replaceS" by S for
the sake of clarity. MES equatiol] (9) can then be discretiagatovide the following
matrix formulation:

Wi Si1 S ... Su p1
Wo So1 Sao ... Sop P2

. = . . . . . 27)
Wm Sml Sm? v Smk Pk

wherem is the number of measurements &@nig the number of sources. To invert
this formulation, according to Equatidn {26), a matkixmust be found that minimizes
the quantityR(X):



Wi Sii Sz ... Sk X1 X2 o0 Xim
Wy Sor Saz ... S Xor Xoo ... Xom
R(X) = ) — ) ) ) ) ) )
Wm Sml Sm2 cee Smk Xkl Xk2 cee ka
Wi
Wa
-5l
Wi

Matrix X is in fact chosen as a generalized inverse of matrix S:

X = (575) " 5T (30)

The inverse formulation can then be performed. From a setpftienergy param-
eters, the inversion can be achieved in order to charaetamput sources. Secti¢n 4

below will describe the efficiency and limitations of the posed strategy through nu-
merical experimentation.

4 Numerical simulations and Results

This section will perform a number of numerical tests on dela order to validate
the formulation. The first test case considered will be vémpte; it consists of im-
plementing the inverse energy flow approach when using afsstargy predictions
based on the direct energy flow method. This set-up corestitit MES/IMES simula-
tion. A more realistic test case will be examined afterwahdshis situation, the input
variables are computed from a full finite element model. A parnson between the
IMES formulation provided in this paper and an inverse SEAlglavill also be given.
Lastly, the effect of spatial discretization applied to thput set of energy quantities
on the inversion process will be studied.

Case number Direct method Inverse method

1 MES IMES
2 FEM IMES
3 FEM Inverse SEA

Table 1: Numerical simulations

Table€l summarizes the three test cases being considessd.liEne corresponding
methodology is presented in Figdide 3.

e The first one will allow verifying the potential for method/grsion. If the matrix
given in equatioh 30 were indeed invertible, then the resiibuld be perfect.

(29)



e The second case is intended to apply IMES in data originditorg a finite ele-
ment code. First of all, the structure is modeled using thtefalement software
ComsoL. Data are then extracted and treated through the IMES cadex-a
plained in the previous section.

e The third case is similar to the second, yet an Inverse SEAvaoé is used
instead of the IMES code. The goal here is to compare the egifigi of IMES
and Inverse SEA.

Input To be compared
sources
Extracted .
Direct simulation data Inverse method RiiSL:JIES'
FEM or MES - MES or SEA p
(W I ) sources

Figure 3: Numerical simulation methodology

4.1 MES/IMES simulation

Aninitial simulation, referred as the MES/IMES simulatjémvolved the processing of
IMES calculations using energy densitiésderived from the direct MES formulation.
The model under study in this case is a thin plate, whose ctaistics are described
in Table [2).

This plate is excited by an input power bii’/m?. In assumingV to be the num-
ber of edge plate elements, the IMES result foundXoe= m = 64 is presented in
Figure [4) (let’s recall thatn denotes the number of measurements).

It appears that the source has been correctly identifiedsrstimulation (for both
localization and level). The inversion ¢67'S) has thus been validated. To illustrate
the effect of the number of measurememtswe repeated the MES/IMES simulation
while decreasingn. The IMES results are shown in figuid (5). Next, let’s themant
duce the facto€¢ = % to quantify method efficiency;(= 1 corresponds to a square
matrix to be inverted).

It also appears that by increasing the number of measuremespread over the
plate surface corresponding o= 0.06, £ = 0.14 and¢ = 0.5 respectively, the




parameter unit value

Length m 1
Width m 1
Height m 2¢ — 3
Young’s modulus of elasticitys Pa 2.1ell
Poisson’s ratior 0.3
Solid densityp, Kg/m3 7800
Loss factor n = 0.001

Table 2: plate caracteristics

0.2 0.2
0.1 01
0

0 0.2 0.4 0.6 0.8 1

Figure 4: MES/IMES simulation for the plate

source is well localized and the error on the input power sanwad in Table[(3)
has been lowered. Nevertheless, the source input poweni €m0.7 W/m? for

& = 0.06, 0.75 W/m? for ¢ = 0.14 and0.82 W/m? for & = 0.5 whereas it should
equall W/m?. The correct value of input power is obtained for higher ealofé.
The IMES tends to accurately localize the input structwedé yet underestimates the
amount of injected power.

4.2 FEM/IMES simulation

The IMES/MES subsection primarily allowed validating tig”'S) inversion. This
subsection will consider the validation of an approachoidticing FEM-simulated en-

I3 Error
0.06 30%
0.14 25%
05 18%

Table 3: Error on the input power
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ergies. The IMES calculations were in fact processed usieggy densitie$V stem-
ming from a finite element software (i.e. Comsol in this sfudfn FEM model of
the plate (whose characteristics are provided below) has pecessed withiV//m?

excitation and the same number of elemekitsGiven the input powep, the forceF'

applied to a point on the plate is recalculated by:

1 F? (31)
TN Wi
Where D is the plate stiffness, defined by = ﬁ’iz) The FEM calculation

is then processed on the plate, thus providing the energsitgdi’ field used as an
input for IMES algorithm. The FEM calculations are first sply averaged and then
frequency averaged. Octave bands are considered alongawitius center frequencies
fe. The values of¥ output by the FEM calculation and performed aroyfpdare input
into the IMES algorithm. Results found fgr= 0.06, £ = 0.14, £ = 0.5 and¢ = 1 are
all presented in figuré{6).

The influence off. has also been assessed. Results found fer1 and various
values off, are given in figure[{[7). This figure reveals an accurate sdogadization
regardless of th¢g. value within the medium to high frequency range.

Figure [8) displays the evolution of a localization teffm; with respect to the
center frequencyPry, is defined by the following equation:

L3 (pi — pgmect)?
Prp = | — == : (32)
\l N (pgaety?

wherep; is thei component of the input power vector apfd*“! is thei component
of the exact input power vector. It would appear that a goedtification (both local-
ization and level) is derived for the source with valueg. o0& 950H z and higher. For
lower-frequency bands, the proposed method will only be &blocalize the sources.

4.3 SEA/MES comparison

The statistical Energy Analysis (SEA) is widely recognizithe original class of
energy methods. SEA provides the mechanical energy of aofqlilt-up structures.
The goal of this subsection is to compare identification ltesabtained for FEM /
SEA and FEM / IMES simulations. Towards this end, Figufésaf® [10) indicate
the identification tendencies for various damping valueemtising FEM/IMES and
FEM/SEA identification strategies, respectively.

In all cases, the source seems to be correctly localizedgththe estimated value
of the input powerp deviates from the expected valp&“e<t with increasing;. To
identify the localization sensitivity in figuré_(IL1(a)), virtroduce the same localiza-
tion term Pry, given in Equation[(32); moreover, representation of thentjfieation
sensitivity in Figure[(Tl1(b)) has led us to define anothedityuterm Pry obtained
from the following equation:

11



_ pexact )2
PTQ = \/(psource psource) (33)

2
(PS5iste)

It appears that for both the localization and quantificatibsources, the FEM/IMES
results underestimates the FEM/SEA tendencies, whictcteflbat IMES that IMES
results are more efficient than ISEA results in identifyingrses for the studied plate.
This finding would also suggest that the capacity of FEM/IM&&lization remains
more stable when varying than FEM/ISEA localization results, for which this pre-
cision term increases when increasing Moreover, from both the FEM/IMES and
FEM/ISEA quantification trends, it can be remarked that goegiilts are obtained
with weak damping values.

4.4 Effect of spatial discretization (sensors spread awaydm the
source)

In this subsection, the IMES validation will be consideradirealistic case, accord-
ing to which sensors are removed from the source. The IMESIaiions were per-
formed using a set of uniformly-distributed sensors fanfrile source location. Re-
sults relative to these FEM/IMES simulation runs and sendatribution in the plate
for m = 55 andm = 39 are given in figure[(12).

The results obtained indicate that the source has beenctgrtecalized, yet a
discrepancy remains between the estimated input ppvieiand the expected power
pe¥ect due to the lack of sensors close to the source. To analyzedthéization sen-
sitivity of this method with respect to parametedefined below, Figurd (13) depicts
the evolution in quality indexPr;, evolution. This figure provides a presentation of
localization effectiveness.

It has thus been demonstrated that by using the IMES formualasource local-
ization can be achieved while limiting the number of sensmic distributing them far
from the source.

5 Conclusion

The aim of this paper has been to investigate the effectsseokthe Simplified Energy
Method (MES) in identifying sources from a set of given meadienergies within a
plate. The MES formulation and related assumptions weredéatiled. The inverse
formulation for identifying sources through data energyorered from the plate was
then provided. Afterwards, the MES could be validated ugiyl / MES simulations

by inputting numerical data from the FEM software. A compani with SEA was

also conducted and revealed that IMES is indeed more aecurastly, a robustness
study was performed, displaying the MES performance whesas were removed
from the source. Validation of this strategy for 3D acoustrities is now underway.
In subsequent work, it will be worthwhile to test this methmdconsidering two or

more sources. From a theoretical perspective, the maitggormulation proposed
herein should be capable of treating this type of problemnyenerical considerations

12



complicate the identification step. Moreover, it would bedficial to validate the
method through experimental testing since the noise irdlbgereal” measurements
should lead to findings regarding the inversion. From a nigakstandpoint, it would
be interesting to introduce a random noise on the input catader to estimate the
robustness of the inverse method proposed in this paper.
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Figure 5: MES/IMES simulations farn = 4(£ = 0.06) (a), m = 9(£ = 0.14) (b),
m = 32(£ =0.5) (c) andm = 64(£ = 1) (d)
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Figure 6: FEM/IMES simulations fagf = 0.06 (a),£ = 0.14 (b),£ = 0.5 (c)and¢ = 1
(d)
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Figure 7: FEM/IMES simulations fof. = 800H z (a), f. = 900H z (b), f. = 950H z
(c)andf. = 1500H z (d)
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Figure 9: FEM/IMES simulations fop = 0.001 (a),n = 0.01 (b),n» = 0.1 (c) and
n = 0.2 (d)
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Figure 10: FEM/SEA simulations foy = 0.001 (a),n = 0.01 (b),n» = 0.1 (c) and
n = 0.2 (d)
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for FEM / IMES and FEM / SEA
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Figure 12: FEM/IMES simulations and sensors repartitionifio= 55 ((a) and (b))
andm = 39 ((c) and (d))
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Figure 13: location sensitivity to the variation f
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